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Chapter 1
Cooperation

Jean-Pierre Georgé and Marie-Pierre Gleizes and Valérie Camps

"Great discoveries and improvements invariably involve the
cooperation of many minds"
Alexander Graham Bell

"Thank you for your cooperation and vice versa"
Eugene Ormandy

Abstract This chapter aims at providing the reader with a thorough understanding
of the notion of cooperation and its use as a self-organisingmechanism in artificial
systems. As the complexity and scope of applications increase, the need for self-
adaptation must be addressed by software engineers. This chapter describes why
and how cooperation can be used for this. An intuitive understanding of the con-
cept will be provided, as well as definitions. As computer scientists, the readers
will be introduced to the translation of the concept in artificial systems through the
Adaptive Multi-Agent Systems (AMAS) theory. The importance of adaptation and
emergence will be presented, as well as how cooperation plays the role of the en-
gine for self-organisation. Technically, a multi-agent system approach is used and
the architecture of a cooperative agent in this theory is described.

For a concrete understanding of this approach, two case studies are described in de-
tail. The first is a dynamic and open service providing MAS where all the providers
and customers (the agents) need to be put in relation with oneanother. This rela-
tionship needs to be constantly updated to ensure the most relevant social network
(by being cooperative one with another). The second is a multi-robot resource trans-
portation problem where the robots (the agents) have to share the limited routes to
efficiently transport the resources (by choosing cooperatively how to move). Each
description focuses on how cooperation can be applied, whatNon Cooperative Sit-
uation are for the agents and how it enables them to self-organise towards the ade-
quate emergent function (and these concepts will also be explained).

Jean-Pierre Georgé and Marie-Pierre Gleizes and Valérie Camps
University Paul Sabatier - IRIT, 118 route de Narbonne, 31062Toulouse Cedex 9 - France
e-mail: {george, gleizes, camps}@irit.fr
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Objectives This chapter aims at providing the reader with a thorough under-
standing of the notion of cooperation and its use in artificial systems. In this
chapter the reader will:

• understand cooperation both on an intuitive level and as a definition;
• see an illustration of cooperation in natural systems and understand its im-

portance;
• learn about the AMAS (Adaptive Multi-Agent Systems) theorywhich

states how to use cooperation as an engine for self-organisation, effectively
building adaptive multi-agent systems;

• be guided as he will try to apply it in artificial systems and discover how it
has been done in existing applications;

• see how cooperation can be used as a self-organising mechanism in artifi-
cial system to produce emergent functionalities.

1.1 Introduction

The new applications that software engineers have to develop become more and
more complex (see "History and Definition" chapter). The different events encoun-
tered by the system cannot all be known at the specification phase of the system
design. Therefore, designers need new approaches to designadaptive systems, i.e.
enabling the system to adapt itself to unexpected events. One powerful way to obtain
this is to rely on the emergence of the required functionalities in a given environment
or context.

To obtain emergent phenomena, different methods or mechanisms have been
studied by researchers (see the other chapters in this book). In the approach pre-
sented in this chapter, we assume that to change the functionof a system, the system
only has to change the organisation of its agents. For example, a common defini-
tion of agent organisation in the agent literature is that itis defined by the lines of
communication of the agent components, the authority relationships between them,
and the individual agent functionality. Based on this definition if any if these three
aspects changes for some reason then the agent organisationalso changes.The be-
haviour rules enabling this self-organisation are based oncooperationwhich is the
heart of this emergence-based bottom-up approach.

Everybody has an intuitive understanding of what cooperation is about. Readers
can see an illustration in Fig. 1.1. This chapter aims at giving a better understanding
of this simple notion so that it can be applied in complex artificial systems when
needed to improve their functioning or for facilitating their design.

Cooperation is classically defined by the fact that two agents cooperate if they
need to share resources or competences [8, 33]. We add to thisdefinition, the fact



1 Cooperation 3

Fig. 1.1 Cooperation increases mutual benefit of parties involved. Even for mules !

that an agent tries on one hand, to anticipate cooperation problems and on the other
hand to detect cooperation failure and try to repair these non cooperative situations
[29]. To anticipate, the agent always chooses the actions which perturb other agents
it knows as little as possible (another agent is perturbed when the action hinders it
for its own goals or if the action results in any king of cost for it).

In this chapter, we present an approach to design self-organising systems based
on multi-agent [33] systems and cooperation (see also the chapters of this book
describing the ADELFE methodology). The next section clarifies the concept of co-
operation by giving a background context, explaining related notions and defining
it. In Sect. 1.3 and 1.4, the theoretical notions and the resulting technology con-
stituting the adaptive multi-agent systems (AMAS) theory are expounded. In this
theory, systems’ self-organisation capabilities are based on the social inspired no-
tion of cooperation. To illustrate that approach, two applications are then presented,
one concerning a service providing multi-agent system and one elaborating on a
multi-robot resource transportation problem. The focus ison the implementation of
cooperative behaviours and how they enable the self-organisation which solves the
problems constituting each application. Finally, the readers will be able to test and
train their skills with practical exercises asking to implement cooperation in various
situations.
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1.2 Understanding Cooperation

This section will rapidly clarify the underlying concepts which support cooperation
such as the notions of collective activity in social systems, interaction and commu-
nication. It will then give an intuitive understanding of cooperation and definitions
illustrated by examples in natural systems, both animal andhuman. It will show that
multi-agent systems are quite fond of cooperation, that computer science provides a
more formal definition of cooperation for artificial systemsand that it seems to be a
promising mechanism for achieving self-organisation and emergence.

1.2.1 Underlying Concepts

As soon as an activity involves more than one lone entity, interaction is bound to ap-
pear eventually. This interaction can take multiple forms,from simple pushing, rac-
ing, giving something, to more elaborate exchanges, negotiations, deals, and finally
complex organised social structures as seen with social insects or human groups.
Communication (directly of indirectly through the environment) plays of course an
essential role in enabling this interaction, as well as a representation of the others,
their nature and their goals.

Computers and software are build as powerful Input/Output systems with well-
known communication and interaction means when considering computer-peripheral
or computer-computer interaction. Things get more complicated as complexity
grows, entities get mode heterogeneous, resources get scarce, goals vary and the
whole is of course expected to produce relevant and optimal results. At this point,
an agent model facilitates further analysis of the systems.Ferber [8] produced a first
clear interaction typology of situations depending on the goals of the agents (com-
patible or not), resources availability (sufficient for allor not) and competences of
the involved agents (does each agent possess all its needed competences ?). This is
summarised in Table 1.1.

A brief explanation of the different situation types is presented below:

• Situation 1. Since each agent is self-sufficient, there is no need for cooperation.
Agents can still benefit from cooperating to get optimised results. Example:"I
can set up my tent on my own, but if you help me and then I help you, we might
set both up before the storm. Or at least, there will be one already usable when
the rain hits and we can share it. Isn’t it nice ?"

• Situation 2. The agents do not have all the competences needed to be self-
sufficient. This is the classic case, for instance, where robots have to move boxes
which are to heavy for one robot to carry. Two robots need to cooperate to move
one box together, then another.

• Situation 3. Resources are insufficient and the agents have to share thesere-
sources. For instance, a one-way bridge situation is optimally handled when
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Goals Resources CompetencesSituation type Interaction Cate-
gory

1 Compatible Sufficient Sufficient Independence Indifference
2 Insufficient Simple collabora-

tion
3 Insufficient Sufficient Cluttering Simple cooperation
4 Insufficient Coordinated col-

laboration
5 Incompatible Sufficient Sufficient Pure individual

competition
Antagonism

6 Insufficient Pure collective
competition

(requires negoti-
ated cooperation)

7 Insufficient Sufficient Individual conflicts
for resources

8 Insufficient Collective conflicts
for resources

Table 1.1 Interaction types depending on goals, resources and competences as done by Ferber

agents agree to wait to let some agents cross on one direction, then on the other
and so on.

• Situation 4. Here both resources and competences are limited. As an example,
we can mix both previous examples and have plenty of our robots needing to
cross the bride in one direction or another (see also the application presented in
Sect. 1.5.2).

• Situation 5,6,7 and 8.These situations have the same characteristics as the pre-
vious ones with one huge exception: the agents do not have thesame goals. For
instance, each robots aims at gatheringall the boxes. They can start attacking
each other, avoid each other if possible or, more rationally, negotiate. Such ne-
gotiation commonly originates from the belief that acquiring at least some of
the available boxes is still preferable to acquiring none. These situations usually
require that agents either actively communicate to reach anagreement, or have
some means to exclude or punish agents which are not cooperating, at least if the
aim is to reach a global optimum or to limit risk for an individual agent.

1.2.2 What is Cooperation ?

The reader cetainly already has at least an intuitive understanding of cooperation,
for basically, one only has to look at their own everyday cooperation. The above
table, explanations and examples also give an intuitive understanding. Dictionaries
simply define it as:

Definition 1.1. Cooperation:the act of cooperating, or of operating together to one
end; joint operation; concurrent effort or labor. [1913 Webster]
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Definition 1.2. Cooperate:To act or operate jointly with another or others; to con-
cur in action, effort, or effect. [1913 Webster]

Furthermore, the following explanation can be found onWikipedia1: "Cooper-
ation is the process of working or acting together, which canbe accomplished by
both intentional and non-intentional agents. In its simplest form it involves things
working in harmony, side by side, while in its more complicated forms, it can involve
something as complex as the inner workings of a human being oreven the social
patterns of a nation. It is the alternative to working separately in competition. [...]
cooperation may be coerced (forced), voluntary (freely chosen), or even uninten-
tional, and consequently individuals and groups might cooperate even though they
have almost nothing in common qua interests or goals. Examples of that can be
found in market trade, military wars, families, workplaces, schools and prisons,
and more generally any institution or organisation of whichindividuals are part
(out of own choice, by law, or forced)."

We can find a multitude of cooperation examples in nature and social systems,
whatever the size of the group or its aims. A usual example is how an anthill man-
ages to quite efficiently gather food, or how termites build complex structures using
stigmergy [15]. The ant, by leaving pheromones on the groundwhen returning to the
nest after finding food ensures that other ants looking for food have a better chance
to quickly find food sources. Moreover, these pheromones accumulate and evapo-
rate in a way that enables the emergence of collective patterns, for instance one can
observe in specific laboratory set-ups that after a while allants take the shortest path
[4].

The most notorious and well studied social experiment involving cooperation is
theprisoner’s dilemma2. Two prisoners face specific different sentences depending
on if they denounce each other or not as having committed the crime, and they can’t
speak with each other. If they both denounce each other, theyface heavy sentences,
if they both deny, they face light sentences, and if only one denounces the other, he
walks while the other pays for the crime alone. The rational action is to both deny
(they cooperate) so that as a team, the cost is small. A more realistic set-up is the
iterated prisoner’s dilemmawhere the situation occurs more than once and where
trust and reputation enter the game.

It is important to note that not all activity involving at least two agents can be
seen as cooperation. All prejudicial activity of one agent on another is of course the
contrary of cooperation. But even a fully altruistic behaviour is not cooperative in
the sense that when some agents sacrifice themselves for the others, it might not be
the best for the group as a whole. Cooperation implies that both parties benefit from
the activity, at least in the long run.

It is also interesting to note that agents can act cooperatively but with very dif-
ferent social strategies. The most simple strategy, which could be calledbenevolent
cooperation, is to suppose that every agent is also cooperative and so, the agent

1 www.wikipedia.org
2 http://en.wikipedia.org/wiki/Prisoner’s_dilemma



1 Cooperation 7

always spontaneously cooperates when asked. This is an assumption which can eas-
ily be taken when building an artificial system where each agent is designed to be
cooperative. Open heterogeneous systems where agents are free to enter and no nor-
mative structure exists to enforce cooperation forces the agents to be more prudent.
The agents rely on negotiation, trust, reputation and so on,leading to atit-for-tat
cooperation.

1.2.3 Using Cooperation in Artificial Systems

Cooperation was extensively studied in computer science byAxelrod [1] and Huber-
man [19] for instance. "Everybody will agree that cooperation is in general advan-
tageous for the group of cooperators as a whole, even though it may curb some indi-
vidual’s freedom" [17]. Relevant biological inspired approaches using cooperation
are for instanceAnt Algorithms[7] which give efficient results in many domains.

Multi-Agent Systems [33] are a perfect paradigm to apply cooperation: several
to numerous possibly heterogeneous entities, each with itsown local view, knowl-
edge and goals striving to achieve a collective function as effectively as possible.
The need to cooperate is inherent in these kind of systems, not surprisingly since
they are essentially a social systems metaphor. All imaginable means to implement
cooperation can be used since the only limit is what functionality a designer can put
into an agent. Well known and studied mechanisms that can be used to realise coop-
eration include negotiation protocols, trust, reputation, gossip, normative structures,
stigmergy, etc. (refer to corresponding chapter for more detail).

The next section will give a more formal and specific definition of cooperation
when used in MAS. It is intended as a guide for the design of thebehaviour of the
agents. The main aim of this guide is to ensure that the systemas a whole, by having
the agents locally and cooperatively self-organise, behaves as expected (or as best
as it is possible) in any situation.

1.3 The Philosophy of theAMAS Theory

This section presents an informal and intuitive approach ofthe AMAS theory in
order to show the process followed to construct this theory and to highlight the
motivation that lead to the development of this theory. First, the objectives of the
AMAS theory are expounded. For this, we start by presenting examples of the kind
of complex adaptive systems we want to develop and the characteristics tackled by
this theory. Then, three main concepts of the AMAS theory arepresented. The first
concerns the adaptation and explains how a system can adapt.The second concept
focuses on emergence and describes why we can qualify the global behaviour of the
artificial system as emergent. The last concept is about cooperation, which plays a
fundamental role in the AMAS theory.
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1.3.1 Objectives

Example systems are briefly presented here to give the readera better idea of the
kind of systems this approach is used on. Specificities aboutthe agents and the
MAS they constitute are given, as well as the more general or philosophical aim of
this approach.

Examples of Targeted Adaptive Complex Systems

The adaptive multi-agent systems we want to design are dedicated to solve complex
problems. These problems exclude simple brute force solvers and lead us to design
complex systems in order to solve them. Some illustrative examples include:

• a time tabling with numerous and dynamic constraints in which when a new
constraint is changed the new solutions must minimise the numbers of changes
in the time tabling,

• manufacturing control which is a problem of production planning and control.
Its concern is the application of scientific methodologies to problems faced by
production management, where materials and/or other items, flowing within a
manufacturing system, are combined and converted in an organised manner to
add value in accordance with the production control policies of management [36].

• molecule folding which consists in finding the organisationbetween the atoms
constituting the molecule that minimises the global energyof the molecule. It is
a difficult problem because of the lack of knowledge about theinter-atom influ-
ences (see the TFGSO website3).

Many more of these kind of problems exists, which generally share one or more
of the characteristics presented in the following sub-section.

Context and Scope of AMAS

The agents have to collectively solve the problem and thus all the agents participate
in the solving without deliberatively lying or being malicious. The agents can be
compared to sub-programs which contribute to the design of the global program in
classical computer science. In this case, designer do not conceive a sub-program
which would hide a result or provide a false result when they find the right one. This
approach focuses on MAS in which autonomous agents have to solve a common
task or reach a common objective. By consequence, the AMAS theory cannot be
fully used to design all the adaptive complex systems and allkind of simulation of
these systems in the same MAS. For example, a system used to simulate in a same
system an economic system with layers and malicious agents would require other
approaches.

3 www.irit.fr/TFGSO
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The application field is concerned by applications with the following character-
istics:

• the application is complex in the sense of complex systems (see "Definition"
chapter)

• the control and the knowledge can (and often has to) be distributed,
• there is a problem to solve. The problem can be expressed as a task or a function

to realise, a structure to be observed...,
• the application objective can be very precise such as the optimisation of a func-

tion or more diffuse such as the satisfaction of the system end-users,
• the system has to adapt to an endogenous dynamic (with the add-ons or removing

of parts of the system) or exogenous (with the interaction with its environment),
• the system is underspecified. In this case the adaptation is amean to design it

(see "Methodologies" chapter).

Objectives of the AMAS Theory

Specifyinga priori an organisation for a system that will have to deal with un-
expected events constrains (maybe inopportunely) the space of possibilities. It is
commonly admitted that it is very difficult to predict how a real complex system
will behave in a dynamic environment. Because there is a hugenumber of states
in the space search, it is not possible to explore all of them in a reasonable time.
A goal of the AMAS theory is to provide means to enable the system to find its
right configuration in a given environment in order to be in adequacy with this envi-
ronment (this will be explained in the next sub-section). Inthese terms, the AMAS
theory can be used to produce systems with the same aims as those produced with
optimisation methods such as simulated annealing [20], genetic algorithms [18, 14],
swarm algorithms [4, 7].

Since von Bertalanffy [3], many authors [30, 16, 22, 24] havestudied systems of
different order that cannot be apprehended by studying their parts taken separately:
"We may state as characteristic of modern science that this scheme of isolable units
acting in one-way causality has proven to be insufficient. Hence the appearance, in
all fields of science, of notions like wholeness, holistic, organismic, gestalt, etc.,
which all signify that, in the last resort, we must think in terms of systems of ele-
ments in mutual interaction"[3].

By consequence, scientists who are interested in these complex systems, must
propose new models and new approaches to study and design such systems. The
AMAS theory is one of these theories which aim to assist in designing adaptive
complex (multi-agent) systems. Complying to the previous point of view, it focuses
on the elements of the system that are the agents. The main concern is to design
interacting autonomous agents with local knowledge which would collectively pro-
vide the global system with a coherent behaviour. The question is: what are the local
rules of behaviour for these agents? Cooperation is the key as the reader could easily
guess.



10 Jean-Pierre Georgé and Marie-Pierre Gleizes and Valérie Camps

1.3.2 Adaptation

Adaptation is commonly defined by the capability a system hasto change its internal
structure in order to modify its behaviour to reach adequacywith its environment
[37, 9] (see "Definition" chapter). Adequacy means that the behaviour of the system
fits well inside its environment. For example, if we observe acrisis management
system during a forest fire, the system is composed of the rescue team (such as fire
men, doctors...) and autonomous artificial resources (suchas robots). The environ-
ment of the system is the forest and the people present in the forest (wounded or
not). We can say that the system is adequate from the environment point of view if
it can stop the fire, rescue the wounded and save the other people.

A multi-agent system is a system composed of several interacting and au-
tonomous agents. The relationships between the agents provide the organisation of
the global system. These relationships can be expressed in terms of:

• tasks relations between the agents, for example an agent A provides to an agent
B the result of a task or an information;

• beliefs relations about others agents; for example, an agent can have a point of
view and a confidence on others agents;

• physical relations between agents, for example two atoms are linked in a molecule
by a covalent link.

For example, the EPE (Emergent Programming Environment) system [10] shows
an organisation between the following agents: the two "+" ("plus") and "*" ("mul-
tiply") operators and 3 numbers (120, 2 and 10) which can alsobe seen as simple
agents. The aim of these agents is to form an organisation to exchanges values and
calculate a final result. With the organisation in Fig. 1.2 the global behaviour of the
system is to compute and provides the value: 120. The system can then be required
to produce a different value.

Fig. 1.2 Simple calculus agents in a first configuration representing a function with a result of 120.

An intuitive idea (applied in the AMAS theory) to realise theadaptation of a com-
plex system composed of several interacting and autonomousagents is to change its
organisational structure. Continuing with the example, you can see on Fig. 1.3 a new
organisation of the EPE system. This new organisation provides a new final result



1 Cooperation 11

Fig. 1.3 Simple calculus agents after reorganising, representing a function with a result of 210.

which is now 210. The adaptation capability of this system lies on its capability to
change and find its right organisation.

In the AMAS approach, we consider that each partPi of a systemS achieves a
partial function fPi of the global functionfS (cf. Fig. 1.4). fS is the result of the
combination of the partial functionsfPi , noted by the operator "◦". The combination
being determined by the current organisation of the parts, we can deducefS = fP1 ◦
fP2 ◦ ...◦ fPn. As generallyfP1 ◦ fP2 6= fP2 ◦ fP1, by transforming the organisation, the
combination of the partial functions is changed and therefore the global functionfS
changes. This is a powerful way to adapt the system to the environment. A pertinent
technique to build this kind of systems is to use adaptive MAS. As in Wooldridge’s
definition ofmulti-agent systems[35], we will be referring to systems constituted by
several autonomous agents, plunged in a common environmentand trying to solve
a common task.

Since we want the system to find by itself its organisation, wecharacterise it as
self-adaptive. Note that we have to distinguish a system which is adapted because
the designer stops it, changes something in it and launches it again, from systems
which adapt themselves to react to their environment. For example, in the first case,
a car which does not start is not well adapted but after a mechanic has repaired it
the car starts and is adapted to the need of its owner. In the second case we can take
an example in natural systems with the Darwinian evolution where animals evolve
to adapt to their environment. This book is dedicated to the second type of systems.

In the AMAS approach, the organisation changes are done autonomously by the
agents of the system and it is a process of self-organisation(as it has been defined
in the "Definition" chapter). This self-organisation is theorigin of emergent global
properties at the system level which cannot be predicted when given only the agents
behaviours.

1.3.3 Emergence

As you can see in the "Definition" chapter, emergence is a widely studied concept
and numerous definitions exist. Because you are computer scientists, we provide
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Fig. 1.4 Adaptation: changing the function of the system by changing the organisation.

a "technical" definition of emergence, relying on computer science concepts. It is
based on three points:

1. The subject.The goal of a computational system is to realise an adequate func-
tion, judged by an external observer. It is this function, which may evolve during
time, that has to emerge. The term function must be taken in a general meaning
and not in a strict mathematical sense. A global function here can be a problem
solving, a coherent behaviour, a structure... In software engineering it is simply
what the system has to do.

2. The condition. This function is emergent if the coding of the system does not
depend in any way of the knowledge of this function. Still, this coding has to
contain the mechanisms allowing the adaptation of the system during its coupling
with the environment, so as to tend any time towards the adequate function.

3. The method. To change the function in the AMAS theory, the system only
has to change the organisation of its components. The mechanisms which al-
low the changes are specified by cooperative self-organisation rules providing
autonomous guidance of the components behaviour without any knowledge on
the collective function.

The condition is perhaps the more difficult part to understand. As a designer, we
know what the system has to do and we want to "control" what thesystem will do.
Designers want to control the emergence which seams completely antinomic with
the meaning of emergence. Therefore, most of the time, the phenomenon observed
is not a surprise for the designer. But we can qualify it as emergent, from an engi-
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neering point of view, because if only the code of the agents is accessible and can
be studied, the study cannot explain and predict the global function realised by in-
teracting agents. In this sense, the global function is emergent. It is the reason why
we need to code local criteria to guide the agents behaviour and the agents does not
know the global function. The way to obtain this global function is not coded inside
the agent code. In the AMAS theory, these local criteria are based on the aim to
maintain cooperation.

1.3.4 Cooperation as the Engine for Self-Organisation

For a MAS, implementing this adaptation with an emergent global function implies
that the designer only has to take care of the agent by giving it the means to decide
autonomously to change its links with the other agents. As you have seen, we start
from the principle that, to have a relevant behaviour, the elements that constitute
a system have to be "at the right place, at the right time" in the organisation. To
achieve this, each agent is programmed to be in a cooperativesituation with the
other agents of the system. Only in this case does an agent always receive relevant
information for it to compute its function, and always transmit relevant information
to others. The designer provides the agents with local knowledge to discern between
Cooperative and Non Cooperative Situations (NCS4).

Cooperation can be summarised in the following attitude: anagent tries to help
and not hinder the other agents. So an agent has to detect and eliminate NCS he
encounters and it has to avoid to create new NCS. This behaviour constitutes the
engine of self-organisation. Reader can compare this with how stigmergy (described
in the "Stigmergy" chapter) is used in ant colonies (even if stigmergy can also be
seen as a means to cooperate).

Depending on the real-time interactions the MAS has with itsenvironment, the
organisation between its agents emerges and constitutes ananswer to the afore-
mentioned difficulties in complex systems (cf. Sect. 1.1): indeed, there is no global
control of the system. In itself, the emergent organisationis an observable organisa-
tion that has not been given first by the designer of the system. Each agent computes
a partial functionfPi , but the combination of all the partial functions produces the
global emergent functionfS.

By principle, the emerging purpose of a system is not recognisable by the system
itself, its only criterion must be of strictly local nature (relative to the activity of the
parts which make it up). By respecting this, theAMAStheory aims at being a theory
of emergence.

4 The concept of NCS will be precisely defined in section 1.4.1, Definition 1.4
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1.4 TheAMAS Theory: Underlying Principles and
Implementation

The two first parts of this section expound the main definitions and theorem the
AMAS theory is based on. This theory can be applied at the system and also at the
agent level. Because the global system behaviour is the result of interacting agents,
the architecture and the general algorithm of an agent are described in the two last
parts.

1.4.1 The Theorem of Functional Adequacy

In order to show the theoretical improvement coming from cooperation, theAMAS
(Adaptive Multi-Agent System) [12] theory has been developed, which is based
upon a specific theorem which is described bellow. This theorem describes the re-
lation between cooperation in a system and the resulting functional adequacy5 of
the system. For example, let’s consider a car as a system and the driver plus the
real world as its environment. If the driver wants to move forward with the car and
acts on the car to do this and if the car goes backward, the system behaviour is not
adequate from the environment point of view.

Theorem 1.1.For any functionally adequate system, there exists at leastone co-
operative internal medium system that fulfils an equivalentfunction in the same
environment.

Definition 1.3. A cooperative internal medium system is a system where noNon
Cooperative Situationsexist.

Note that the cooperative internal medium system can be either built so as to be
functionality adequate or this system is given the capabilities to reach the adequacy
on its own.

In a cooperative internal medium system, the components composing the sys-
tem (which are in the internal medium) are always in cooperative situations. For
example, if we consider a manufacturing control problem (briefly described in Sect.
1.3), it has to be constantly in a solved state inside. This means that the products
are always made with all the constraints satisfied. From the environment point of
view the system is functionally adequate because all constraints are satisfied. In-
side the system, this means that the products, the work stations and the operators
have no problems to work together, they cooperate well, theyhave no NCS. In other
terms, we can say that all components are in the right location at the right time. The
configuration of the system is the right one.

5 "Functional" refers to the "function" the system is producing, in a broad meaning, i.e. what the
system is doing, what an observer would qualify as the behaviourof a system. And "adequate"
simply means that the system is doing the "right" thing, judged by an observer or the environment.
Therefore, "functional adequacy" can be seen as "having the appropriate behaviour for the task".
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We can apply this theorem to design complex adaptive systemscomposed of
agents. To obtain an internal cooperative medium, we have toguarantee cooperative
states between the agents inside the system and between the agents and the system
environment (if the agents can perceive it of course). We call this kind of agents:
cooperative agents.

To design cooperative agents, it is necessary to provide foreach of them a be-
haviour to be continually in cooperative interactions. Butin a dynamic environment
and open systems, this status cannot be always guaranteed. The objective is by con-
sequence to design systems that do the best they can when theyencounter diffi-
culties. These difficulties can be viewed as exceptions in traditional programming.
From an agent point of view, we call them Non Cooperative Situations (NCS, see
definition below) or cooperation failures.

The designer has to describe not only what an agent has to do inorder to achieve
its goal but also which locally detected situations must be avoided and if they are
detected how to suppress them (in the same manner that exceptions are treated in
classical programs). The agent design concerns on one part to provide the agent
its nominal behaviour (the capabilities to play its role in the system) but also a
cooperative behaviour to avoid and/or to remove the NCS. TheNCS are defined in a
very general and high level way with the above meta-rules at each step of the agent
life cycle (perception, decision, action). These meta-rules have to be instantiated in
each application by the designer.

Definition 1.4. An agent is in a Non Cooperative Situation (NCS) when:

(¬cperception) a perceived signal is not understood or is ambiguous; Here,signal
is a general term to point out something received or perceived by the agent (a
message, a video feed...).
(¬cdecision) perceived information does not produce any new decision;
(¬caction) the consequences of its actions are not useful to others.

Let us give examples from everyday life to better understandthese situations.
For the first situation, a signal is not understood when a person speaks to you in
Chinese and if you don’t understand Chinese. For the second situation, in the human
world, quite often a person overhears a conversation between other people and this
conversation doesn’t concern him, or he already knows the information. In the third
situation, if in a robot world, robots have to clean a room andif a robotRa prevents
another robotRb from moving,Ra does not act cooperatively.

We can identify seven NCS subtypes that further specify these situations:

• incomprehension(¬cper): the agent cannot extract the semantic contents of a
received stimulus,

• ambiguity(¬cper): the agent extracts several interpretations from a same stimu-
lus,

• incompetence(¬cdec): the agent cannot benefit from the current knowledge state
during the decision,

• unproductiveness(¬cdec): the agent cannot propose an action to do during the
decision,
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• concurrency(¬cact): the agent perceives another agent which is acting to reach
the same world state,

• conflict(¬cact): the agent believes the transformation it is going to operate on the
world is incompatible with the activity of another agent,

• uselessness(¬cact): the agent believes its action cannot change the world state or
it believes results for its action are not interesting for the other agents.

1.4.2 Consequence of the Functional Adequacy Theorem

This theorem means that we only have to use (and hence understand) a subset of
particular systems (those with cooperative internal mediums) in order to obtain a
functionally adequate system in a given environment. We concentrate on a particular
class of such systems, those with the following properties [12]:

• The system is cooperative and functionally adequate with respect to its environ-
ment. Its parts do notknow the global function the system has to achieve via
adaptation.

• The system does not use an explicitly defined goal, rather it acts using its percep-
tions of the environment as a feedback in order to adapt the global function to
be adequate. The mechanism of adaptation is for each agent totry and maintain
cooperation using their skills, representations of themselves, other agents and
environment.

• Each part only evaluates whether the changes taking place are cooperative from
its point of view – it does not know if these changes are dependent on its own
past actions.

This approach has been successfully applied in the engineering of self-organising
agent-based systems in various application contexts with different characteristics,
such as autonomous mechanisms synthesis [6], flood forecast[11], electronic com-
merce and profiling [13]. On each, the local cooperation criterion proved to be rele-
vant to tackle the problems without having to resort to an explicit knowledge of the
goal and how to reach it.

1.4.3 Architecture and Behaviour of anAMAS Agent

A cooperative agent in theAMAStheory has the four following characteristics. First,
an agent is autonomous in its decision taking: an agent can say "no" or "go" (start
some activity). Secondly, an agent is unaware of the global function of the sys-
tem; this global function emerges (of the agent level towards the multi-agent level).
Thirdly, an agent can on one hand try to avoid NCS and on the other hand detect
NCS and acts to return in a cooperative state. And finally, a cooperative agent is
not altruistic in the meaning that an altruistic agent always seeks to help the other
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agents. It is benevolent i.e. it seeks to achieve its goal while being cooperative. More
formally, the behaviour of anAMASagent can be described with an algorithm based
on the one found in Sect. 1.4.4.

Fig. 1.5 The different modules of a cooperative agent

Cooperative agents are equipped with several modules representing a partition of
their "physical", "cognitive" or "social" capabilities (cf. Fig. 1.5). Each module rep-
resents a specific resource for the agent during its "perceive-decide-act" life cycle.
The first four modules are quite classical in an agent model [35]. The novelty comes
from the Cooperation Module which contains local rules to solve NCS.

Interaction Modules. Agents’ interactions are managed by two modules. The
Perception Module represents the inputs the agent receivesfrom its environment.
Inputs may have different levels of complexity and types: integer, boolean for sim-
ple agents or even symbolic messages in a mail box for high level agents. The Action
Module represents the output and the way the agent can act on its physical environ-
ment, its social environment or itself (considering learning actions for example).
Similarly to the perceptions, actions may have different granularities: simple ef-
fectors activation for a robot or semantically complex message sending for social
agents.

Skill Module. Even if cooperative agents mainly try to avoid NCS, they have
several tasks to complete. The ways to achieve their goals are expressed in the Skill
Module. Skills are knowledge about given knowledge fields and allow agents to
realise their partial function – as a part of a MAS that produces a global function. No
technical constraints are required to design and develop this module. For example,
skills can be represented as a classical or fuzzy knowledge base of facts and rules
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on particular domains. It also can be decomposed into a lowerlevel MAS to enable
learning, as in the ABROSE online brokerage application [13], where skills were
decomposed into a semantic network.

Representation Module.As for the Skill Module, the Representation Module
can be implemented as a classical or fuzzy knowledge base, but its scope is the
environment (physical or social) and itself. Beliefs an agent possesses on another
agent, as well as all information the agent possesses on its environment are consid-
ered as representations. Like skills, representation can be decomposed into a MAS
when learning capabilities on representation are needed.

Aptitude Module. Aptitudes represent the capabilities to reason on perceptions,
skills and representation – for example, to interpret messages. These aptitudes can
be implemented as inference engines if skills and representations are coded as
knowledge bases. Considering a given state of skills, representations and percep-
tions, the Aptitude Module chooses an action to do. Cases when there is zero or
several proposed actions must be taken into account too (cf.Cooperation Module).

Cooperation Module. The cooperative attitudes of agents are implemented in
the Cooperation Module. As the Aptitude Module, this modulemust provide an
action for a given state of skills, representations and perceptions,if the agent is in a
NCS. Therefore, cooperative agents must possess rules to detect NCS. Several types
of NCS have been identified. For each NCS detection rule, the Cooperation Module
associates one or several actions to process to avoid or to solve the current NCS.

Internal Functioning of an AMAS Agent

Considering the described modules, the nominal behaviour of a cooperative agent is
defined as follows. During the perception phase of the agents’ life cycle, the Percep-
tion Modules updates the values of the sensors. These data directly imply changes
in the Skill and Representation Modules. Once the knowledgeupdated, the deci-
sion phase must result on an action choice. During this phase, the Aptitude Module
computes from knowledge and proposes action(s) or not. In the same manner, the
Cooperation Module detects if the agent is in a NCS or not. In the former case,
the Cooperation Module proposes an action that subsumes theproposed action by
the Aptitude Module. In the latter case, the only action6 proposed by the Aptitude
Module is chosen. Once an action chosen, during the action phase, the agent acts by
activating its effectors or changing its knowledge.

1.4.4 The Cooperative Algorithm

The algorithm in Fig. 1.6 may be viewed as a formal representation of the coop-
erative attitude of the agents described previously: according to theAMAStheory,

6 There is only one action possible, otherwise an NCS is detected.
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/* Definitions and notations */
P: Set of possible percept sets (perceptions, representations, orskills) at a given time for the
agent
A: Set of possible action sets for the agent
(p,a): The couples (p:P,a:A) are the rules of possible behaviours forthe agent, i.e. the actions
to be executed for a given percept set
NCSR: Non Cooperative Situation Rules, set of behaviours rules(p:P,a:A) corresponding to
the detection of a non cooperative situation and the associatedcorrective actions
SR: Skill Rules, set of behaviour rules (p:P,a:A) corresponding to the possible actions de-
pending only on percept sets (without having to refer to the beliefs of the agent).
BR: Belief Rules, set of behaviour rules (p:P,a:A) correspondingto the possiblecooperative
actions for given percept sets and by referring to the beliefs (to evaluate the cooperation).
(p1,a1) ≻ (p2,a2): "≻" expresses a priority relationship of the behaviour (p1,a1) over
(p2,a2).

Procedureaction(p:P) { /* p is the current percept set of the agent */
if (inCooperativeSituation(p))

executeUtilityAction(p)
else{ /* The agent is in a non cooperative situation */

executeNcsCounterAction(p);
executeUtilityAction(p);

}
}

Function inCooperativeSituation(p:P) Return Boolean {
for each (p’,a’) ∈ NCSR

if (p’ ⊆ p)
return false

return true;
}

Function executeUtilityAction(p:P) {
for each (p’,a’) ∈ SR∪BR| p’ ⊆ p

if (∄ (p”,a”) ∈ SR∪ BR| p" ⊆ p and (p”,a”)≻ (p’,a’))
do a’

}

Function executeNcsCounterAction(p:P) {
for each (p’,a’) ∈ NCSR| p’ ⊆ p

if (∄(p”, a”) ∈ NCSR| p” ⊆ p and (p”,a”)≻ (p’,a’))
do a’

}

Fig. 1.6 Procedure and functions for a cooperative agent
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agents have to be able to detect when they are in a NCS and in which way they can
act to come back in a cooperative situation.

In the algorithm, there are two main states to which the decision process may be
confronted: either the agent is in a cooperative situation (depending on its percep-
tions) (the function calledinCooperativeSituationreturns the value "true"), or it is
in a NCS (the function calledinCooperativeSituationreturns the value "false"). In
the first state, the agent simply chooses the action with the highest priority among
those which can be executed (function calledexecuteUtilityAction). Theses actions
are said to be utility actions in the algorithm, meaning thatthey are useful for the
goal of the agent, for another agent or for the system. If the agent can prevent NCS,
these actions also avoid to generate new NCS. In the other state, the agent is in
an NCS and, in addition to some possible utility action it will choose the correc-
tive action with the highest priority depending on its perceptions (function called
executeNcsCounteredAction).

Following such an algorithm, agents always try to stay in a cooperative situa-
tion and so the whole system converges to a cooperative statewithin and with its
environment. This leads – according to the theorem of functional adequacy – to an
adequate system.

Thus, this algorithm describes the typical decision process of a genericAMAS
agent. But the NCS and the actions which could be applied to solve them are not
generic: designers have to write their own- and so specific- NCS set and related
actions for each kind of agent they wish the system to contain. This work must be
performed during the design of the agents: the designer mustexhaustively find all
the NCS which could occur for each kind of agent and, for each one, find the relevant
actions which could solve the lack of cooperation. Methods (like ADELFE) can help
for this (see corresponding chapter in this book).

1.5 Applications

One does only truly understand a theory after taking two additional steps: study
a comprehensive example of the application of the theory andapplying it him or
herself. For the later, we strongly encourage the reader to tackle the exercises of
this chapter as they are intended to provide material to acquire practical know-
hows. The first step will be taken here as this section presentno less than two dif-
ferent application illustrating and detailing the use of cooperation conforming to
the AMAS theory. The first is a dynamic and open service providing MAS where all
the providers and customers (the agents) need to be put in relation with one an-
other. This relationship needs to be constantly updated to ensure the most relevant
social network (by being cooperative one with another). Thesecond is a multi-robot
resource transportation problem where the robots (the agents) have to share the
limited routes to efficiently transport the resources (by choosing cooperatively how
to move). Each description focuses on how cooperation can beapplied, what Non
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Cooperative Situation are for the agents and how it enables them to self-organise
towards the adequate emergent function.

1.5.1 A Service Providing MAS

1.5.1.1 Instantiation of the AMAS Approach to a Case Study

The first chosen case study to illustrate the AMAS approach consists in designing
a system which enables end-users and service providers to get in touch when they
share common points of interest. The application is made forthe electronic com-
merce field, an open, dynamic and distributed context [13].

The main requirement of such an electronic information system is to enable (i)
end-users to find relevant information for a given request and (ii) service providers to
have their information proposed to relevant end-users. In concrete terms, the system
has to provide:

• Personalised assistance and notification for the end-users,
• Propagation of requests between the actors of the system,
• Propagation of new information only to potentially interested end-users,
• Acquisition of information about end-users’ real interests, in a general manner,

and about providers’ information offers.

In such a system, every end-user and service provider has an individual goal: to
answer the request he/she has to solve. Each end-user and service provider does not
know the global function realised by the system. The system is open and strongly
dynamic because a great number of appearances or disappearances of end-users
and/or service providers may occur. Moreover, ana priori known algorithmic so-
lution does not exist. In this context, classical approaches to tackle such a problem
cannot be applied and the use of AMAS is then clearly relevant.

1.5.1.2 Environment Definition and Characterisation

The environment of the system consists of real end-users andservice providers who
have subscribed to the system. They exert pressure on the system (by submitting
requests in order to find relevant service providers or to seek potential customers)
and the system has to adapt itself to these constraints. The reorganisation of inter-
action links between agents representing end-users and service providers is a way
for the system to adapt to its environment which can be described as inaccessible,
continuous, non deterministic and highly dynamic.

We can say that such a system is functionally adequate when a satisfied end-
user wants to use services of the system again, and when each service is fully used,
namely in the most profitable way for the supplier.
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1.5.1.3 Agent Design

An end-user seeks a relevant service provider according to his/her centres of interest,
while a provider tries to find potentially interested end-users according to his/her
proposed services. These two actions are totally symmetricand we will only focus
on the search for a service.

In that system, entities are autonomous, have a local goal topursue (to find a
relevant service provider or to make targeted advertisement), have a partial view
of their environment (other active entities) or may interact with others to target the
search more effectively. They are then potentially cooperative. Furthermore, since
the system is open, new entities may appear or disappear and they may not be able to
communicate as they should (e.g., an entity does not understand requests from a new
one). Therefore, such an entity is prone to cooperation failures and can be viewed as
a cooperative agent. Each end-user (or service provider) isthen represented within
the system by an agent calledRepresentative Agent(see Fig. 1.7).

A representative agent (RA) aims at finding relevantRAsaccording to the request
that its associated end-user or service provider submittedfor solution. In accordance
with the agent model given in Sect. 1.4.3, anRAconsists of the following compo-
nents:

• The skills of anRAare those of the entity it represents.
• Representations that an agent possesses about itself or about otherRAs may

evolve at runtime and they have then to be adjusted. Because of this dynam-
ics, we can use an AMAS to implement them (more information about this point
can be found in [13]). When anRA receives a request, it has to query its repre-
sentations on itself to know if it is relevant to solve this request. If it is not, it has
then to query its representations on other known agents to identify if it knows an
agent able to solve the received request.

• The aptitudes of anRAenable it to modify its representations and to interpret a
received request. For example, when an end-user makes a request, his/herRAhas
to update its representations to learn the new centres of interest of its end-user.

• Messages exchanged betweenRAsconcern the requests to be solved. Physical
exchanges of these requests can be made using the mailbox concept, a buffer
enabling asynchronous communication.

1.5.1.4 Non Cooperative Situations Determination at the RALevel

NCS have to be instantiated to the current problem and actions to be done when
an agent is faced with an NCS have to be defined. AnRA is situated at the right
place in the organisation of the system if the 3 meta-rules given in Sect. 1.4 are
checked. AnRA may encounter four non cooperative situations during its percep-
tion/decision/action cycle:

1. Total incomprehension
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Fig. 1.7 A service providing multi-agent system architecture

Description: An agent faces total incomprehension when it cannot extract any in-
formative content from the received message: this may be dueto an error in trans-
mission or if the transmitter gets a wrong belief about it. This NCS is detected
during the interpretation phase when the agent compares thereceived request
with its own representation (words matching) and cannot extract any informative
content from the message; it has not the necessary competence.
Actions: Because the agent is cooperative, the misunderstood message is not ig-
nored; the agent will transmit the message to an agent that seems to be relevant
according to its representations on others.

2. Partial incompetence
Description: An agent is faced with partial incompetence when can extract an
informative content from only one part of the received message. This NCS is
detected during the interpretation phase when the agent compares the received
request with its own representation (words matching) and can extract an infor-
mative content from only a part of the message.
Actions: The receiving agent sends back the partial answer associated with the
understood part of the message. It sends the other part of therequest to a more
relevant agent.

3. Ambiguity
Description: An ambiguity occurs when the an agent can extract several infor-
mative content from the received message it is faced to an ambiguity. This NCS
is detected during the interpretation phase when the agent compares the received
request with its own representation (words matching) and can extract several in-
formative contents from the message.
Actions: An agent is supposed to intentionally and spontaneously send under-
standable data to others. Therefore, the receiver of an ambiguous message sends
back all its interpretations of the received request. The initial sender is then able
to choose the most pertinent one and update its representation about the receiver’s
skills.

4. Concurrence
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Description: A situation of concurrence occurs when two agents have similar
skills for a given task. This NCS is detected during the interpretation phase,
when the agent compares the received request with its own representation (words
matching). If it can extract an informative content from only a part of the request,
the agent compares this request with the representation it has about other agents
to find rival agents. An agentA competes with an agentB, fromB’s point of view,
if A can extract informative content from the same part of the request asB.
Actions: Redundancy is beneficial when an agent has not been able to reach its
aim or to accept a task it has been asked to undertake. In thesecases, it refers the
problem to its rival(s).

NCS being now instantiated to the current problem, the cooperative behaviour of
anRA is the following:

• when it detects an NCS, it acts in the world to come back to a cooperative state.
• when it does not detect an NCS, it follows its own goal.

The simple continued cooperative activity of the agents ensures that the global or-
ganisation (which agents are in relation with each other) isalways the most relevant
to satisfy every involved entity. By studying the situations in which cooperation can
occur and identifying corresponding behaviours, the application has been enhanced.
The analysis of cooperation provides the needed self-organising mechanisms and
can be seen as a guide for obtaining the desired emergent functionality.

1.5.2 Multi-Robot Resource Transportation

1.5.2.1 Resource Transportation Problem

The resource transportation problem is a classical task in Collective Robotics [31],
and it was proposed as a relevant benchmark for robotic systems by [4]. Robots
must transport resources (boxes) as fast a possible from a zone A to a zone B, sepa-
rated by a constrained environment. In Picard’s work [26, 29] presented here, these
zones are linked by two corridors too narrow for robots to cross one another side
by side (cf. Fig. 1.8). This environment leads to a spatial interference problem, e.g.
robots must share common resources: the corridors. Once engaged in a corridor,
what must a robot do when facing another robot moving in the opposite sense? Spa-
tial interference has been tackled by [32] in the case of robots circulating in corri-
dors and having to cross narrow passages (doors). Their solution is to solve conflicts
by aggressive competition (with explicit hierarchy), similarly to eco-resolution by
[8]. [21] propose to solve such problems thanks to attraction-repulsion mechanisms
based on altruistic behaviours triggering – a reverse vision of the eco-resolution. In
the application described here, Picard expounds a viewpoint halfway between the
two firsts, in which robots are neither altruistic nor individualist and cannot directly
communicate any information or intention. Moreover, no planifier system will an-
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Fig. 1.8 The environment of the resource transportation problem is composed of: a claim room
(at left), a laying room (at right) and two narrow corridors (at top and bottom). Robots pick boxes
against the left wall of the claim room (claim zone) and drop them against the right wall of the
laying room (laying zone).

ticipate trajectories because the use of planification in multi-robot domain remains
inefficient, considering the high dynamics of a robot’s environment.

1.5.2.2 Cooperative Model Instantiation

This section shows the instantiation – i.e. fulfilling each module – of the cooper-
ative agent model in order to design robots able to realise the transportation task.
This work appears in the ADELFE process (see the "Methodologies" chapter in this
book) in theDesign Work Definition, and more precisely in theDesign Agents Activ-
ity [28]. ADELFE process is an extension to theRational Unified Process(RUP) and
consists in four work definitions, which are specifically adapted to agent-oriented
software engineering: preliminary requirements, final requirements, analysis and
design. Requirements defines the environmental context of the system. Analysis
identifies the agents within other object classes.

Modules Fulfilling

ThePerceptions Modulerepresents inputs for agents. Concerning robots, they can
know positions of the two zones (claim and laying). Indeed, this example only fo-
cuses on adaptation to a circulation problem instead of a foraging one. For example,
we consider that the task of robots is to transfer boxes between rooms and that robots
do not get involved in identifying box locations. Here is a possible list of percep-
tions for transporter robots: position of the claim zone, position of the laying zone,
a perception cone in which objects are differentiable (robot, box or wall), proximity
sensors (forward, backward, left and right), a compass and the absolute spatial po-
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sition. The environment is modelled as a grid whose cells represent atomic parts on
which a robot, a box or a wall can be situated. The PerceptionsModule also defines
limit values of perceptions (e.g. 5 cells).

TheActions Modulerepresents outputs of agents on their environment. Possible
actions for transporter robots are:rest, pick, drop, forward, backward, left andright.
Robots cannot drop boxes anywhere in the environment but only in the laying zone.
They cannot communicate directly or drop land marks on the environment. In the
case of social agents that are able to communicate, communication acts are specified
in this module.

The Skills Modulecontains knowledge about the task the agent must perform.
Skills enable robots to achieve their transportation goals. Therefore, a robot is able
to calculate which objective it must achieve in terms of its current state: if it car-
ries a box then it must go to the laying zone, otherwise it mustreach the claim
zone. Depending on its current goal, the Skills Module provides an appropriate ac-
tion to process to achieve it. Robot’s goals are:reach claim zoneandreach laying
zone. Moreover, robots have intrinsic physical characteristics such as their speed,
the number of transportable boxes or the preference to move forward rather than
backward – as ants have. Such preferences are calledreflex values.

TheRepresentations Modulecontains knowledge about the environment (physi-
cal or social). Representation a robot has on its environment is very limited. From
its perceptions, it cannot identify a robot from another, but can know if it is carry-
ing a box or not. It also can memorise its past absolute position, direction, goal and
action.

TheAptitudes Moduleenables an agent to choose an action in terms of its per-
ceptions, skills and representations. Concerning transporter robots, a design choice
must be taken at this stage. In terms of the current goal, the Skills Module provides
preferences on each action the robot may do. The Aptitudes Module chooses among
these actions what will be the next action to reach the goal. Many decision functions
can be considered; e.g. an arbitrary policy (the action having the highest preference
is chosen) or a Monte Carlo method-based policy that is chosen for our example.
Therefore, the Aptitudes Modules can be summed up in a Monte Carlo decision
function on the preference vector (the list of action preferences for an agent) pro-
vided by the Skills Module. In the same manner, theCooperation Moduleprovides
preference vectors in order to solve NCS described in Sect. 1.5.2.3.

Action Choosing

At each timet, a robot has to choose between different actions that are proposed by
the two decision modules (skills and cooperation). At timet, each actionactj of the
robotr i is evaluated. For each action, this value is calculated in terms of perceptions,
representations and reflexes in the case of a nominal behaviour:

Vnomi
r i

(t,actj) = wpr i (t,actj)+wmr i (t,actj)+wrr i (actj)
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with:

• Vnomi
r i

(t,actj) represents the value for the actionactj at timet for the robotr i ,
• wpr i (t,actj) represents the calculated value in terms of perceptions,
• wmr i (t,actj) represents the calculated value in terms of memory,
• wrr i (t,actj) represents the calculated value in terms of reflexes.

As for aptitudes, an action preference vector is generated by the Cooperation
Module:Vcoop

r i (actj , t). Once these values calculated by the two modules for each
action of a robot, the vector on which the Monte Carlo drawingwill process is
a combination of the two vectors in which the cooperation vector subsumes the
nominal vector:

Vr i (t) = Vnomi
r i

(t) ≺Vcoop
r i

(t)

1.5.2.3 Cooperative Behaviours Study

In the previous section, the different modules of a robot andits components have
been detailed, except the Cooperation Module. This sectionaims at discussing coop-
eration rules to establish in order to enable the multi-robot system to be in functional
adequacy with its environment.

Cooperative Unblocking

Beyond the limited number of only two robots acting to transport boxes in a same
environment, the nominal behaviour cannot be sufficient. Indeed, a robot owns skills
to achieve its tasks, but not to work with other robots. In this very constrained envi-
ronment, spatial interference zones appear. If two robots,a first one carrying a box
and moving to the laying zone and a second one moving to the claim zone to pick a
box, meet in a corridor, the circulation is blocked – becausethey cannot drop boxes
outside the laying zone. Then, it is necessary to provide cooperative behaviours to
robots. Two main NCS (non cooperative situations) can be reactively solved:

A robot is blocked. A robot r1 cannot move forward because it is in front of a
wall or another robotr2 moving in the opposite direction7. In this case, if it is
possible,r1 must move to its sides (left or right). This corresponds to increasing
values of the cooperative action vector related to side movements:Vcoop

r1 (t, right)
andVcoop

r1 (t, le f t). If r1 cannot laterally move, two other solutions are opened.
If r2 has an antagonist goal, the robot which is the most distant from its goal
will move backward (increasingVcoop

r i (t,backward)) to free the way for the robot
which is the closest to its goal (increasingVcoop

r i (t, f orward) even if it may wait).
If r2 has the same goal thanr1, except ifr1 is followed by an antagonist robot

7 If r2 moves in another direction than the opposite direction ofr1, it is not considered as blocking
because it will not block the traffic anymore.
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Condition Action

ret∧ f reeR րVcoop
r i (t, right)

ret∧ f reeL րVcoop
r i (t, le f t)

ret∧¬( f reeL∨ f reeR)∧ant∧ toGoal∧cGoal րVcoop
r i (t,backward)

ret∧¬( f reeL∨ f reeR)∧ant∧ toGoal∧¬cGoal րVcoop
r i (t, f orward)

ret∧¬( f reeL∨ f reeR)∧ant∧¬toGoal րVcoop
r i (t,backward)

ret∧¬( f reeL∨ f reeR)∧¬ant րVcoop
r i (t, f orward)

With:
• ret: r i is returning;
• f reeR: right cell is free;
• f reeL: left cell is free;
• ant: in front of an antinomic robot;

• toGoal: r i is moving to goal;
• cGoal: r i is closer to its goal than its

opposite one;
• ր: increasing.

Table 1.2 Example of specification of the “a robot is returning” uselessness NCS.

or if r1 moves away from its goal (visibly it moves to a risky8 region),r1 moves
backward; elser1 moves forward andr2 moves backward.
A robot is returning. A robot r1 is returning9 as a consequence of a traffic block-
age. If it is possible,r1 moves to its sides (an is no more returning). Else,r1

moves forward until it cannot continue or if encounters another robotr2 which
is returning and is closer to its goal thanr1. Table 1.2 sums up the behaviour in
this situation. If there is a line of robots, the first returning robot is seen by the
second one that will return too. Therefore, the third one will return too and so on
until there are no more obstacles.

These rules correspond to resourceconflict (corridors) oruselessnesswhen a
robot must move backward and away from its goal. In the case ofrobots, situations
will not be specified as incomprehension because robots are unable to communicate
directly. These rules, which are simple to express, ensure that robots cannot block
each other in corridors. But, this cooperation attitude only solves problem temporar-
ily, creating returning movement and then implies time lossto transport boxes.

Cooperative Anticipation

By taking into account the previous remark, it seems possible to specify cooperation
rules to anticipate blockage situations in order to make thecollective more efficient.
We call thisoptimisationcooperation rules. Previous rules enable robots to extract
from blockage. A robot is in such a situation because it was crossing a zone fre-
quented by antinomic robots10. So as to prevent this situation, robots must be able
to avoid such risky zones: zones from which antinomic robotscome. In accordance,
an anticipation rule can be specified:

8 It is risky in the sense it may occur a lot of non cooperative situations such as conflicts.
9 A robot is considered as returning until it has no choice of sidemovements.
10 Robots with an antinomic behaviour to the considered robot, for instance going in the opposite
direction in a corridor



1 Cooperation 29

Fig. 1.9 The robots self-organise and a corridor dedication emerges. We can also see the position-
ing of all the virtual markers (dark squares) for all the robots and the two goals.

A robot sees an antinomic robot. If a robot r1 perceives a robotr2 having an
antinomic goal, ifr1 can move to its sides it does it else it moves forward.

Nevertheless, this reactive anticipation presents a majorproblem: once a robot
has avoided the risky zone, no mechanism ensures that it willnot go in it again, led
by its goal. In order to tackle this difficulty, robots can be equipped with a memory of
the risky zones (in the Representations Module). Each timet a robotr i experiments
an anticipation situation facing a robotr j , it adds to its memory a tuple (or virtual
marker)

〈

posX(r j , t), posY(r j , t),goal(r i , t),w
〉

in which posX(r i , t) andposY(r i , t)
represent the coordinates ofr j at the momentt. goal(r i , t) represents the goalr i was
achieving at timet. w represents a repulsion value. The higher the value is, the more
the robot will try to avoid the zone described by the marker when it is achieving
another goal thangoal(r i , t). Therefore, the robot inspects all its personal markers11

whose distance is inferior to the perception limit (to fulfilthe locality principle). A
marker with a weightw and situated in the directiondir at a distanced induces that
Vcoop

r i (t,diropp) will be increased ofw (diropp is the opposite direction todir).
As the memory is limited, tuples that are added must disappear during simulation

run-time. For example, the weightw can decrease of a given valueδw (calledforget-
ting factor) at each step. Oncew = 0, the tuple is removed from the memory. This
method corresponds to the use ofvirtual andpersonalpheromones. Finally, as ants
do, robots can reinforce their markers: a robot moving to a position corresponding
to one of its marker with another goal, re-initialises the marker. In fact, if the robot
is at this position, it might be a risky zone when it tries to achieve another goal.
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1.5.2.4 Cooperation and the Emergence of Corridor Dedication

Fig. 1.9 shows the corridor-usage after a while: their cooperative behaviour guides
the robots to use one corridor when trying to reach the boxes and the other to bring
them back. The anticipative behaviour is mainly responsible for this observance of
the emergence of a sense of traffic. Robots collectively dedicate corridors to partic-
ular goals. In fact, markers of all the agents are positionedonly at one corridor entry
for one direction as shown in Fig. 1.9. This view is only for monitoring purpose:
robots do not perceive all the markers, only their own. We canassign the emergent
property to this phenomenon because robots do not handle anynotion of corridor
– unlike some previous works [27]. Thus, just with local data, robots established a
coherent traffic behaviour that leads to an optimisation of the number of transported
boxes.

In this application, readers can see the relevance of cooperation as a local crite-
rion for agents to self-organise to be more adapted to a task.Considering the igno-
rance of the global task and the environment, the self-organising collective reaches
an emergent coherent behaviour, which is then more robust toenvironmental risks.
This example tackles a simple problem in a simple static environment in which the
collective achieves its global task. Other simulations in difficult and dynamic envi-
ronments confirm the relevance of cooperative self-organising collectives.

1.6 Conclusion

To understand how cooperation can be used to build complex artificial systems, a
theory of self-organising MAS, calledAMAShas been presented in this chapter.
This approach considers groups of cooperative agents whichmodify their interac-
tion when non cooperative situations occur, to reach a functional adequacy with the
environment. This approach has been illustrated by two different example applica-
tions: a service providing MAS and a multi-robot resource transportation problem.
In both, the global or macro-level functionality of the system emerges from the co-
operative interactions between micro-level entities, theagents.

It is mainly because uniqueness of a generic mechanism of learning or self-
organising is rarely admitted in the scientific community, that research in this field
explores many different directions. This opinion is clearly stated by Minsky [25]: "I
doubt that in any one simple mechanism, e.g., hill-climbing, will we find the means
to build an efficient and general problem-solving machine. Probably, an intelligent
machine will require a variety of different mechanisms. These will be arranged in
hierarchies, and even in more complex, perhaps recursive, structures. And perhaps
what amounts to straightforward hill-climbing on one levelmay sometimes appear
(on a lower level) as the sudden jumps of "insight"". But some others, like Inhelder
[23], consider that a general theory of leaning might be feasible: "in the contrary

11 Robots cannot share their memory as they cannot communicate.
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to Chomsky’s assertion, who states that no general theory ofcognitive learning is
possible, we strongly believe that knowledge learning is toa very general process,
be it logico-mathematical knowledge, physics, or natural language learning".

From the point of view exposed here, a general theory can not be tributary of
constricting presuppositions like the knowledge of the global function to achieve,
of specific attributes of the environment, or of an explicit environment-system feed-
back. This explains that the notions of emergence and self-organisation are deeply
embedded in this work. Cooperative self-organisation doesnot need any presup-
position about the finality of the system. Component agents only follow their own
individual objective (to be the most cooperative possible)rather than try to adapt
by individual learning to external perturbations. Even if such a system does not
possess any programmed finality at the agent level (except being cooperative), self-
organisation leads to the required collective result by emergence.

TheAMAStheory is a guide to design adaptive groups of agents in a simplified
manner since designing parts of the system is of a constructive nature. Instead of
starting from the global collective function and decomposing it in more elementary
functions, we start by designing agents (their elementary functions) as well as the
local criteria and behaviours that will guide their collective reorganisation. This is
the detection and treatment of non cooperative situations.This theory strongly relies
on emergence: the agents learn in a collective and non-predefined way. They modify
their organisation in relation to disturbing interactionswith the environment and
thus, their global function. The two illustrating examplesshow the usability and
relevance of this approach.

Quite a few other applications showed the adequacy of this emergent approach
for managing adaptation and complexity in artificial systems, but there is still a
lot of theoretical work to be done to explore its properties.For instance, we never
seemed to observe local attractors. If this method of searchspace exploring seems
unconcerned by a complex search space, it may be because the agents just ignore
this search space and explore another one, the one constituted of the cooperative
organisations of the system. But this will have to be proved.Another main objective
is the diffusion of anAMASdesign method among developers in the academic world
as well as the industrial one. For this, readers can refer to the "Methodologies"
chapter where theAdelfemethod is presented: a toolkit to develop software with
emergent functionality [28, 2].

Classic learning and adaptation techniques, which mostly have need of the
knowledge of a cost function associated with the global function, can not pretend
to produce emergent phenomena. This is why they fit the scope of the limitations
enunciated by the "no free lunch theorem" of Wolpert and MacReady [34]. This the-
orem stipulates that all search space exploration algorithms (deterministic as well as
stochastic), which make use of a search function to optimisea cost, globally have
equivalent performances. Indeed, each one of them is only efficient given the bias
introduced by the knowledge of the cost function. On a sufficiently vast corpus, they
have he same performance: very efficient algorithms for a specific class of problems
are the worst in another, and those with less efficiency are nevertheless average for
all classes.
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On the contrary, any effective theory of emergence does not fit in the scope of this
theorem since, by principle, the function to reach is unknown and so, there can not
exist an associated cost function. TheAMAStheory could well be efficient for any
class of problems. The glimpse of this possibility is one of the fascinating reason
to explore emergence in artificial systems and thus the ability to manage complex
adaptive systems.

1.7 Problems and Exercices

1.1. Carrying heavy boxes
There are two sort of boxes (light and heavy) lying around in adepot and they need
to be carried away. A human can only lift a light box and a heavybox is two times
the weight of a light one.

(a) How can the problem be solved by cooperation (ok, this oneis really easy).
Do the humans need to be able to communicate to cooperate ?

(b) We now have robots to carry the boxes but with the same limitations as the
humans. On top of that, because of expenses, only basic perception means are in-
stalled on the robots (they only perceive the boxes, not the other robots) and no
communication device is available. Is it still possible to solve the problem ? What
simple tweak to the behaviour of the robots would ensure thateven the heavy boxes
will be carried away given enough time ?

1.2. Foraging Ants and Cooperation

When ants forage for food, they leave a chemical substance on the ground when
returning to their nest carrying food. This substance is called pheromones and is a
mark which other ants can detect. Pheromones can accumulateon a given spot or
path and evaporate over the course of time. Readers can find plenty of on-line re-
sources explaining how pheromones work in different species and comprehensive
descriptions of ant behaviours. Readers can also take a lookat the "Methodologies"
chapter which uses an artificial ant foraging application asa case study. But a basic
understanding is quite enough to tackle this exercise.

(a) Explain how this use of pheromones can be qualified as "cooperative".

(b) Could the behaviour of natural ants be enhanced to be evenmore cooperative?
Imagine designing an artificial ant for a simulation or building an ant-like robot us-
ing pheromone-like marks and basic perceptions. Describe afew enhancements to
their basic behaviours (using pheromones or simple perceptions) which would make
them more cooperative and thus produce better results. At least six enhancements
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can be found.

1.3. Cooperation in an Open System
Benevolent or selfless agents spontaneously cooperate whatever the cost to them-
selves. This is not the case for most agents in open systems.

a) What can two agents do to ensure that the cost of cooperationis evenly dis-
tributed.

b) What is one of the most efficient ways to have plenty of cooperation going on
in an open system and still ensure that rogue or malevolent agents do not profit of
the cooperative attitude of others.

1.4. Classifying Cooperation Means
List as many means as you can which enable cooperation.

1.5. Colour Cubes Game
Consider the following game: in a house with several rooms connected by doors
there are cubes of different colours dispersed among the rooms and several robots.
We want all the cubes of the same colour in the same room. A robot can carry up
to 4 cubes and has three available actions: pick up cube, dropa cube, go to another
room. There are no communication means.

Your client wants to build a simulation which would solve theproblem. For this
he asks you to design a multi-agent system in which each agentcontrols a virtual
robot which can act once per simulation step.

Describe the algorithm of the agents so that a solution is efficiently reached and
does not depend on the number of robots, rooms, cubes or colours.

Key Points

• Cooperation is inherent to social interactions, structures and organisations.
• Cooperation is present in numerous natural systems, ranging from social

insects to human societies.
• Cooperation can take place in different forms and at different degrees.
• Cooperation is a powerful mechanism to implement self-organisation in

artificial systems.





Glossary

Cooperation The act or attitude of interacting in whatever the means withanother
for mutual benefit. It usually involves sharing of information or competences.

Adaptation Process leading to a modification of a system for it to better respond
to its environment.

Adequacy between a system and its environmentState reached when a system
flawlessly interact with its environment. Every action/reaction is relevant.

Self-organisation Process where a system changes its internal organization to
adapt to changes in its goals and the environment without explicit external control.

Emergence Pattern or function at the global level of a system appears solely from
local interactions among the lower-level components of thesystem.
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Acronyms

MAS Multi-Agent System
AMAS Adaptive Multi-Agent Systems
NCS Non Cooperative Situation
EPE Emergent Programming Environment
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Solutions

Problems of Chapter 1

Answers to questions concerning the notion of cooperation.

(Note : as most of the problems of this chapter are thinking exercises with fuzzy
boundaries, we will only provide help and guidelines here, instead of complete so-
lutions.)

1.1 Carrying heavy boxes
Help : in the case where robots can not communicate, what would happen if two
robots where to try and lift a heavy box at the same time by chance ? Maybe if there
are enough robots, a robot only has to wait a little when trying to lift a heavy box
for if another robot happens to try to lift the same box, they will actually be "coop-
erating" !

1.2 Foraging Ants and Cooperation
Help : you can start by asking yourself what situation could be qualified as non-
cooperative. For instance, if you have two ants searching for food, one going north
to south, the other south to north, and if they meet each other, it would be useless
for each ant to pursue its path, since the other has already explored this direction.

1.3 Cooperation in an Open System
Help : negotiation protocols can ensure a certain regulation in these systems.
Reader can also take inspiration from the Game Theory field orPeer-to-Peer al-
gorithms. In particular, reader can start by looking at the "Tit for Tat" strategy).

1.4 Classifying Cooperation Means
Help : for instance, sending a message asking for help is a suitable way to enable
cooperation as long as there exists other entities in the system willing to answer
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such a call. This case would be qualified as "explicit cooperation using direct com-
munication between willing entities".

1.5 Colour Cubes Game
Help : list all the non-cooperative situations a robot can face when entering a room.
Structure your algorithm as a subsumption architecture constituted of 3-parts mod-
ules as follows:

• situation type and priority
• detection conditions
• resolving action
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