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ABSTRACT

In this paper, we address the problem of tissue motion compensation in blood flow estimation from ultrafast
Doppler sequences. The goal is to improve the estimation of tumor contours, offering neurosurgeons better
visualization and thereby leading them to make better decisions while performing brain surgery. Estimating
these contours can be done by solving the problem of separation of blood flow and tissue in ultrasound images.
To solve this problem, we focus on a recently developed variant of the Robust Principal Component Analysis
(RPCA)-based method by embedding a deconvolution step into the algorithm in order to improve the resolution
of the reconstructed blood flow. However, this approach is prone to failure in the presence of tissue motion. In
this work, we propose to overcome this limitation by incorporating a motion compensation step into the above
RPCA-based method. We implement and quantitatively compare motion compensation algorithms based on the
Lucas-Kanade and Demon registration methods on simulation data. In addition, preliminary results are obtained
on in vivo data. We show that a motion compensation step allows to improve the perception of thin vascular
vessels and to reduce the amount of noise on the estimated flow.

Keywords: Ultrafast ultrasound, Doppler, Robust PCA, Blood flow, Demon registration, Lucas Kanade, Motion
compensation

1. INTRODUCTION

Brain surgery is the systemic treatment of brain cancers. To remove tumor more efficiently, one of the most
widely used methods is to determine the boundary between the tumor and other healthy tissues. We rely on the
fact that tumors induce a strong vascularization in their environment which leads to a strong presence of blood
flow around the tumor. Thus, a common approach is to evaluate the tumor area by estimating the blood flow
on the ultrasound images. In this work, we propose a high sensitivity and high resolution blood flow extraction
technique from ultrafast ultrasound sequences.

To obtain an estimate of blood flow, we must separate the flow from the surrounding tissues. For this purpose,
the SVD technique has been widely used [1]. It consists in decomposing the acquired spatio-temporal matrix
of the ultrasound slices into singular values and vectors. The singular values are then sorted and thresholded
to separate the blood flow from the surrounding tissues and noise. This is a fast and efficient technique, but it
requires empirical adjustment of some parameters. This often leads to insufficient separation results which make
this technique difficult to use in practice.

To address these shortcomings of the SVD, the RPCA method (or its variants), which allows to consider a
physical model of the data, has been investigated (see in e.g. [2,3] and references therein). These methods have
been reformulated as an inverse problem which is solved by using the alternating direction method of multipliers
(ADMM) framework. Subsequently, a deconvolution step was integrated based on the knowledge of the system
point spread function (PSF), that is experimentally measured or estimated jointly with the blood flow (non-blind
or blind-deconvolved respectively), to improve the resolution of the reconstructed blood flows [2, 3].

Despite their interest, all these methods rely on the assumption that the tissue surrounding the blood is
motionless. Thus, tissue movements induced by cardiac pulsatility, patient breathing, ultrasound probe, etc.
during the data acquisition are not considered by these algorithms. This consequently leads to an inaccurate
estimation in many cases. In this work, we propose to take into account the tissue motion by adding a motion
compensation step to the RPCA-based algorithm. The desired result is a precise visualization of underlying
vascular networks with a level of flow detection that allows the identification of tumor contours.



2. BACKGROUND

2.1 Robust Principal Component Analysis (RPCA)

To estimate the blood flow, an ultrafast in phase and quadrature (IQ) Doppler sequence is acquired. It consists
of Nt frames of size Nx×Nz, with Nz the depth, Nx the probe width and Nt the acquisition time. The first step
is to reshape the ultrafast Doppler acquisition into a 2D space-time matrix, known as the Casorati matrix [3,4].
The model for the separation between the blood flow and the surrounding tissues is the following:

C = S + T +N , (1)

where C is the Casorati matrix and where S, T and N are the Doppler blood flow, tissue and noise matrices
respectively. In the general case where the tissue is assumed to be motionless, T is of low rank and is thus caught
by the nuclear norm. The blood is considered to be present in relatively thin, limited in number vessels, S is
thus sparse and is promoted by the l1 norm. N is assumed to be an additive Gaussian noise.

The RPCA algorithm consists in resolving an inverse problem in which the estimate of S and T , i.e. (Ŝ, T̂ )
can be formulated as:

[Ŝ, T̂ ] = argmin
S,T

∥C − S − T∥2F + λ ∥S∥1 + ρ ∥T∥∗ , (2)

where λ, ρ > 0 are two hyperparameters balancing the trade-off between blood sparsity and tissue low rank.
∥ . ∥2F is the Frobenius norm, ∥ . ∥1 is the l1 norm and ∥ . ∥∗ is the nuclear norm.

2.2 Bind-Deconvolved Robust Principal Component Analysis (BD-RPCA)

The Bind-Deconvolved Robust Principal Component Analysis (BD-RPCA) algorithm integrates a deconvolution
step using the point spread function (PSF) which is estimated using a 2D blind convolution method in [5],
concurrently with the high-resolution blood flow [3]. Within this method, in order to improve the computational
speed, we assume that the PSF is a block circulant with circulant block (BCCB) matrix. More precisely, for an
ultrasound image degraded by a PSF:

S = HX , (3)

where the low-resolution blood flow S is the matrix product between H - the matrix in BCCB form of the
measured PSF and X - the high-resolution blood component to be estimated. So far, X has been estimated under
the assumption that the tissue is motionless. Thus, to further improve the resolution of the blood estimation,
we propose to take into account the movements of the tissue. This problem was also considered in [4] and [6]
with either inaccurate or complex methods. Let M be the joint movement of tissue and blood, the new proposed
model, more realistic, is the following:

C = M(HX + T ) +N . (4)

3. PROPOSED METHOD

3.1 Motion compensation

The standard procedure for estimating the movement is to have a separate processing phase dedicated to motion
correction. There are two strategies to take into account the tissue motion. The first one is to estimate the
apparent motion. The second one is to consider the motion compensation as a problem of non-rigid image
registration. This paper is a preliminary work which folds in the later strategy. We embed a classical registration
(Demon registration) [7] step in the RPCA-based method. We compare this method to techniques folding in the
first strategy, namely an explicit motion estimation prior to the blood separation. For this purpose, we consider a
motion estimation based on an optical flow approach, namely the Pyramidal Lucas-Kanade algorithm [8]. Finally,



we also compare these approaches to the algorithm proposed in [6], which includes a background-foreground
separation of the estimated motion using a stable principal component pursuit (SPCP) algorithm.

Demon registration is an image registration algorithm in which the estimated motion field is regularized by
Gaussian filtering in order to find a smooth solution. Each iteration of the Demon registration algorithm start
by computing a displacement field V which is calculated based on the optical flow equations:

Vx =
−(Iref − Imov)∇xxxIref

[(∇xIref)2 + (∇yIref)2] + (Iref − Imov)2 + ϵ
, (5)

Vy =
−(Iref − Imov)∇yyyIref

[(∇xIref)2 + (∇yIref)2] + (Iref − Imov)2 + ϵ
, (6)

where Vx and Vy represent respectively the horizontal and vertical components of the displacement field V,
Iref is the reference image, Imov is the image whose motion is to be compensated, ∇ corresponds to the matrix
gradient operator (∇x thus refers to the horizontal component of the gradient), ϵ is a term that prevents divisions
by zero. At each iteration, an inter-images displacement field is computed, this field is regularized and then the
image is registered. The final displacement field between two images is thus the sum of the displacement fields
found at each iteration. This is a very fast algorithm, but it works on an empirical basis, there is no guarantee
of convergence. In this study we used the pyramidal version (multi-scale registration) of Demon registration.

3.2 Simulation data

To evaluate these motion compensation algorithms, we use realistic simulation data mimicking typical speckle
patterns (See Fig. 1). The use of a simulation is motivated by the accessibility to the ground truth of the motion
fields. A flow is simulated in two rectangles of size 12 × 70 and 10 × 35 pixels respectively. The motion in
these two rectangles is generated using the circshift function of Matlab which produces a uniform and constant
movement in the chosen direction. Finally, the resulting image sequence is convoluted with an experimentally
measured PSF. This results in 400 images of size 451 × 161 pixels that have the same static tissue and two
rectangles of blood flow animated with motion. For all the images except the first one, a homogeneous, B-spline
displacement field is applied. This represents a weak displacement field with random directions. The amplitude
of the displacements does not exceed one pixel. This is a realistic movement for the tissue (in the context of an
inter-frame difference for ultra-fast imaging) that can be appraised visually but which does not represent in an
exhaustive way the movements that can occur (in particular the large movements).

Figure 1. (a) B mode of simulated data and (b) blood flow ground truth.



3.3 Performance assessment

We chose to use the endpoint error (EE) to assess the different algorithms. This error has an interesting physical
meaning for our problem, as it can be seen as an approximation of the percentage of the motion that has not
been compensated. The EE corresponds to the Euclidean distance between the estimated displacement and its
ground truth. In order to be able to compare the EE for different pairs of images, the EE is normalized by the
ground truth of the displacement, then the normalized EE is averaged over all displacements in the motion field.
Thus, we define the average value of the normalized endpoint error (Avg. nEE) as :

Avg. nEE =
1

NiNj

Ni,Nj∑
i,j=1

[(
UGT(i, j)− Û(i, j)

)2
+

(
VGT(i, j)− V̂ (i, j)

)2] 1
2[

UGT(i, j)2 + VGT(i, j)2
] 1

2

, (7)

where UGT and VGT are respectively the matrices of ground truth for the horizontal and vertical parts of
the motion field, Û and V̂ are respectively the matrices of the horizontal and vertical part of the estimated
motion field, Ni and Nj are respectively the numbers of rows and columns of the considered matrices. In the
following, to compare the motion compensation algorithms, we use the average value of Avg. nEE computed on
the sequence of images. More precisely, the first image of the sequence will serve as the reference image, the other
images of the sequence will have their motion compensated with respect to the first image. We will compare
each estimated displacement field with the corresponding ground truth by calculating the value of Avg. nEE.
In order to eliminate the statistical variance of the result, we will take the average of all Avg. nEE. It is this
average value that will quantify the quality of the motion compensation obtained by the algorithm considered.
From this point, when we speak of Avg. nEE it is implied that it is the average Avg. nEE calculated on all the
computed motion fields for the simulated sequence.

4. RESULTS

4.1 Simulation results

4.1.1 Movement estimation

There is a major challenge in the compensation of the joint movement of the tissue and the blood flow. In
addition to this joint motion, the blood flow possesses its own motion and it is partly this motion that allows
the separation of blood flow from tissues by the PCA methods. Indeed, the motion of the blood will reduce
its spatio-temporal coherence thus reducing the chances of the flow being classified as tissues by the algorithm.
Assuming that the motion compensation step has compensated for both the joint motion and the motion of the
flow, then it is likely to have damaged the separability between the tissue and the blood flow. Thus, the objective
will be to only compensate the joint motion which is represented by M in the equation (4). Therefore, the ground
truth of the motion does not include the motion of the simulated flow but only contains the homogeneous motion
field added after the convolution.

Table 1. Assessment of the studied motion compensation algorithms

Avg. nEE Time (s)

Demon registration 0.42 40

Pyramidal Lucas-Kanade + SPCP 0.57 189

Pyramidal Lucas-Kanade 0.68 26

The results of movement compensation are presented in Tab. 1. The Time corresponds to the execution
time of the motion estimation algorithm is seconds for the whole simulation sequence (399 images). The ob-
servation of the motion fields generated by the Pyramidal Lucas-Kanade algorithm shows that it suffers from
the defect of compensating the motion of the blood flow. The solution presented in the literature is to add a
foreground/background separation step on the motion field (we refer to the complete algorithm as Pyramidal



Lucas-Kanade + SPCP) in order to avoid compensating for the proper motion of the flow. Pyramidal Lucas-
Kanade + SPCP gives significantly better results by obtaining an Avg. nEE of 0.57 but at the same time this
change significantly increases the execution time of the algorithm. The most interesting result is obtained by
the Demon registration algorithm with an Avg. nEE equal to 0.42 obtained after only 40 seconds of computa-
tion. Almost 60% of the motion has been compensated which is rather satisfactory. Note that we tried to add
foreground/background separation technique to Demon registration, but we did not see any improvement in the
Avg. NEE.

4.1.2 Blood flow estimation

We compare the BD-RPCA and registration to the other techniques. The results of Power Doppler estimation
(PD) are depicted in Fig. 2. Fig. 2(a) is the PD obtained by BD-RPCA without motion correction; Fig. 2(b) is
the PD by Pyramidal Lucas-Kanade; Fig. 2(c) is the PD by Pyramidal Lucas-Kanade with SPCP [6]; Fig. 2(d)
is the PD by BD-RPCA with Demon registration.

Figure 2. Power Doppler estimated by BD-RPCA: without motion correction (a); with Pyramidal Lucas-Kanade (b);
with Pyramidal Lucas-Kanade and SPCP (c); with Demon registration (d).

One can see that the three motion compensation methods significantly reduce the number of false positives
(resulting from the tissue motion) in the flow estimation. However, there are still residual, and the estimated
flow still has significant blurs at its edges. Although the three methods give similar noise reduction, the blood
flow estimated with Demon registration presents considerably sharper edges. From this point of view, the result
obtained with the method presented in [6] is also better than the one estimated by Pyramidal Lucas-Kanade.

Table 2. Assessment of the flow estimation

NRMSE PSNR (dB)

No correction (control sample) 0.0755 22.4436

Demon registration 0.0512 25.8122

Pyramidal Lucas-Kanade + SPCP 0.0639 23.9261

Pyramidal Lucas-Kanade 0.0658 23.6408

The ground truth allows us to quantitatively compare the results using the normalized root mean square error
(NRMSE) and the peak signal-to-noise ratio (PSNR) as defined in [3]. The results reported in Tab. 2 are very
consistent with what we have observed above. Demon registration gives the smallest NRMSE and the highest
PSNR while having a reasonable computation time.

PD results show that registration algorithms are probably preferable to motion estimation algorithms because
the former will correct for small inter-image differences (even if they do not always estimate a very realistic
motion). This will remove false positives related to the moving tissue to a greater extent than in the case where
one estimates the optical flow.



4.2 in vivo results

Preliminary results using demon registration were obtained on in vivo ultrafast Doppler sequences acquired
during open brain surgery on human patient. The selected region contains a glioma. The size of this dataset
is 260×192×1000 pixels. An important characteristic of living tissue is that the motion is continuous, the
total movement accumulates from slice to slice. To take this information into account, for each image of the
ultrasound sequence except the first, the Demon registration algorithm is initialized with a displacement field
that is a fraction of the displacement field found for the registration of the previous image in the ultrasound
sequence. Moreover, the displacement computed at each iteration of motion field computation can now be
penalized (the convergence speed is reduced by computing proportionally smaller displacements) in the case
where the motion computed at the previous iteration has increased the inter-frame difference between the two
images. This addition limits the risks of divergence of the algorithm on large data sets.

Figure 3. (a) Power Doppler estimated on non-registered in vivo images; (b) Power Doppler estimated on in vivo images
registered with Demon registration.

It is difficult to evaluate in a relevant manner the results on the in vivo data as we do not possess the ground
truth. Ideally, we want to obtain a good contrast while keeping a maximum of blood vessels visible. Visually
examining the Fig. 3, one may remark that on the Power Doppler image estimated with Demon registration, we
can see the small vessels derived from the three main vertical vessels. One can also notice that this image has
much less noise on the right side. This is an area with little movement where it is easy to achieve a good quality
registration. However, one can see that in the Fig. 3 the maximum intensity of the power Doppler is lower. It
is likely that as for the simulation data, the motion related to the flow is also compensated which reduces the
contribution of the motion compensation.

5. CONCLUSION

In this paper, we have investigated the problem of motion compensation while estimating the blood flow. We
show that the compensated movements lead to a more precise estimation of the blood and thus could potentially
lead to a better brain cancer surgery. On the in vivo data we obtain an effective elimination of false positives.
We can also detect thin vessels that are normally not detectable. However, the image registration prior to the
BD-RPCA algorithm shows limitations when the motion is too important, which may happen for long ultrasound
sequences. Future work will be dedicated to estimate jointly the motion M with the high-resolution flow X by
means of an iterative approach.
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