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3D Finite Difference Model of the Open Circuit Field of Permanent Magnet Spoke Type Axial Flux Machines
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This paper deals with Spoke Type Permanent Magnet Axial Flux Machines which have a great interest in transportation applications. Indeed, as the other permanent magnet axial flux machines they can have very high specific torque. The spoke type architecture has ability for flux weakening. 3D finite difference model of the open circuit field is developed.

In order to reduce the number of unknowns, the magnetic scalar potential formulation is used. According to the geometrical symmetries of the motor, the study domain can be reduced strongly. These choices contribute to get a fast computation time. The obtained results from this approach are compared to the results obtained by 3D finite element analysis.

II. INTRODUCTION

The Spoke Axial Flux Permanent Magnet machines (ST-PMAFM) due to their high specific torque are interesting for traction applications [START_REF] Jin | Analysis of Axial-Flux Halbach Permanent-Magnet Machine[END_REF]. The knowledge of the open circuit magnetic field is necessary to predict the machine performance [START_REF] Gieras | Axial flux permanent magnet brushless machines[END_REF].

In a sizing process, using the finite element method (FEM) to calculate this field is time consuming. Some approaches are alternative to FEM [START_REF] Dhifli | Analytical modeling of the magnetic field in axial field flux-switching permanent magnet machines at no-load[END_REF], [START_REF] De La Barriere | 3-D Formal Resolution of Maxwell Equations for the Computation of the No-Load Flux in an Axial Flux Permanent-Magnet Synchronous Machine[END_REF]. Analytical models of the open circuit field of axial field machines without saliency exist. The authors in [START_REF] Azzouzi | Quasi-3-D Analytical Modeling of the Magnetic Field of an Axial Flux Permanent-Magnet Synchronous Machine[END_REF] presents a quasi-3D model based on 2D solutions of Maxwell equations at the mean radius. In [START_REF] Yu | Three-dimensional analytic model of permanent magnet axial flux machine[END_REF] and [START_REF] Carpi | Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine[END_REF], models by separation of variables associated or not with Bessel functions are used to solve the 3D magnetic field. These analytical models cannot be applied to ST-PMAFM due to the saliency of the rotor.

In this paper, the 3D finite difference model (3D-FD) for the computation of the open circuit field of ST-PMAFM is presented. In order to get faster sizing, magnetic scalar potential (MSP) formulation is used, assumptions and symmetries are taken into account to reduce the study domain.

III. PROBLEMATIC DEFINITION

A. Machine Topology Presentation

The one pole ST-PMAFM geometry is presented in Fig. 1 with a 3D cylindrical coordinate system. Six poles pairs of buried Permanent Magnets (PM) are considered with orthoradial magnetization. Indeed, Fig. 1 shows the media arrangement of air gap (I), PM (II, V), Iron (III) and nonmagnetic media (IV, VI, VII) in this pole domain. According to the geometrical symmetries of the motor, and in order to decrease the computation time of the required model, the study domain could be strongly reduced as shown in Fig. 2. 

B. Assumptions

In order to simplify the problem, the following assumption are made:

-Iron medium assumed to be with infinite permeability, -A free space permeability (𝜇 0 ) assumed for nonmagnetic media.

IV. PROBLEM SOLUTION

A. Magnetic Scalar Potential Formulation

The problem solution is now described by considering the magnetic scalar potential formulation for each medium of the studied domain. By depending on the magneto-static equations [START_REF] Jin | 3-D Analytical Magnetic Field Analysis of Axial Flux Permanent-Magnet Machine[END_REF], the open-circuit field enables to write Maxwell's equations as follows:

𝑑𝑖𝑣(𝐵 ⃗ ) = 0 (1) 𝐻 ⃗ ⃗ (𝑟, θ, z) = -∇ ⃗ ⃗ Ω(𝑟, θ, z) (2) 
Indeed, in order to consider the material properties equations for all media in the motor, the magnetic flux density vector can be written as:

𝐵 ⃗ (𝑟, θ, z) = 𝜇(𝐻 ⃗⃗⃗⃗ + 𝑀 ⃗⃗ )

Hence, the use of (1-3) provides the partial differential equation as:

∆Ω(𝑟, θ, z) = 𝑑𝑖𝑣(𝑀 ⃗⃗ )

Therefore, for each medium we can consider the MSP expression as a 3D partial differential equation, expressed respectively as: Indeed, for irregular grid, the distance between any two consecutive nodes should be defined in terms of 𝑖 or 𝑗 or 𝑘, as expressed in [START_REF]ANSYS Mechanical APDL Low-Frequency Electromagnetic Analysis 215 Guide[END_REF](12)(13)(14)(15)(16).

𝜕 2 Ω 𝐼 𝜕𝑟 2 + 1 𝑟 𝜕Ω 𝐼 𝜕𝑟 + 1 𝑟 2 𝜕 2 Ω 𝐼 𝜕𝜃 2 + 𝜕 2 Ω 𝐼 𝜕𝑧 2 = 0 (5) 𝜕 2 Ω 𝐼𝐼 𝜕𝑟 2 + 1 𝑟 𝜕Ω 𝐼𝐼 𝜕𝑟 + 1 𝑟 2 𝜕 2 Ω 𝐼𝐼 𝜕𝜃 2 + 𝜕 2 Ω 𝐼𝐼 𝜕𝑧 2 = 1 𝑟 𝜕𝑀 𝜃 𝜕𝜃 (6) 𝜕 2 Ω 𝐼𝐼𝐼 𝜕𝑟 2 + 1 𝑟 𝜕Ω 𝐼𝐼𝐼 𝜕𝑟 + 1 𝑟 2 𝜕 2 Ω 𝐼𝐼𝐼 𝜕𝜃 2 + 𝜕 2 Ω 𝐼𝐼𝐼 𝜕𝑧 2 = 0 (7) 𝜕 2 Ω 𝐼𝑉 𝜕𝑟 2 + 1 𝑟 𝜕Ω 𝐼𝑉 𝜕𝑟 + 1 𝑟 2 𝜕 2 Ω 𝐼𝑉 𝜕𝜃 2 + 𝜕 2 Ω 𝐼𝑉 𝜕𝑧 2 = 0 (8) 𝜕 2 Ω 𝑉𝐼 𝜕𝑟 2 + 1 𝑟 𝜕Ω 𝑉𝐼 𝜕𝑟 + 1 𝑟 2 𝜕 2 Ω 𝑉𝐼 𝜕𝜃 2 + 𝜕 2 Ω 𝑉𝐼 𝜕𝑧 2 = 0 (9) 
𝜕 2 Ω 𝑉𝐼𝐼 𝜕𝑟 2 + 1 𝑟 𝜕Ω 𝑉𝐼𝐼 𝜕𝑟 + 1 𝑟 2 𝜕 2 Ω 𝑉𝐼𝐼 𝜕𝜃 2 + 𝜕 2 Ω 𝑉𝐼𝐼 𝜕𝑧 2 = 0 (10) 
{ ℎ 𝑖 = 𝑟 𝑖+1 -𝑟 𝑖 ℎ 𝑖-1 = 𝑟 𝑖 -𝑟 𝑖-1 ℎ 𝑗 = 𝜃 𝑗+1 -𝜃 𝑗 ℎ 𝑗-1 = 𝜃 𝑗 -𝜃 𝑗-1 ℎ 𝑘 = 𝑧 𝑘+1 -𝑧 𝑘 ℎ 𝑘-1 = 𝑧 𝑘 -𝑧 𝑘-1 (11) (12) (13) (14) (15) (16) b) Local Numeration
In order to simplify the work procedure in 3D polar grid shown in Fig. 3, thus Table II Thus, the local numeration for the 3D grid is shown in Fig. 4.

c) Global Numeration

To consider the problem in a simpler way, a global index numeration is employed [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF]. The combination of the three local indices 𝑖 , 𝑗 and 𝑘 will occurs into global indices (𝑎 0 , 𝑎 1 , 𝑎 2 , 𝑎 3 , 𝑎 4 , 𝑎 5 and 𝑎 6 ) for nodes (0, 1, 2, 3, 4, 5 and 6) respectively; such that:

{ 𝑎 0 = [(𝑗 -1)𝑁 𝑟 + 𝑖] + (𝑘 -1)𝑁 𝑟 𝑁 𝜃 𝑎 1 = 𝑎 0 + 𝑁 𝑟 𝑎 2 = 𝑎 0 + 1 𝑎 3 = 𝑎 0 -𝑁 𝑟 𝑎 4 = 𝑎 0 -1 𝑎 5 = 𝑎 0 -𝑁 𝑟 𝑁 𝜃 𝑎 6 = 𝑎 0 + 𝑁 𝑟 𝑁 𝜃 (17) (18) (19) (20) (21) (22) (23)
Where, ℎ 𝑖 , ℎ 𝑗 and ℎ 𝑘 represents the distance between the main node 𝑎 0 with its neighbor nodes in 𝑟, 𝜃, 𝑧 directions respectively. 

2) FD Derivatives

The second order Taylor's series [START_REF] Haberman | Applied partial differential equations: with Fourier series and boundary value problems[END_REF] is used to compute the FD derivatives related for radial, ortho-radial and axial components of the MSP regarding the interior nodes. Indeed, these derivatives could be expressed in terms of the global numeration by employing Fig. 4 which shows the 3D polar grid for the study domain. The FD derivatives, could be expressed as:

3) Treatment of FDM Equations

In the following sub-sections, explanations regarding the interior nodes, interfaces and boundaries will take place. However, it's difficult to write all the FD expressions related for the continuity and boundary conditions due to the limited number of pages.

a) Interior nodes

Regarding the second member of Poisson equation in ( 6), the ortho-radial magnetization component 𝑀 𝜃 is the only considered and applied to the ST-PMAFM. Hence, the discretization in (24-27) for different media regarding the interior nodes, could be used to express the related MSP in one FD expression, that could be written as: 𝐴(𝑎 0 , 𝑎 0 )Ω 𝑎 0 + 𝐴(𝑎 0 , 𝑎 1 )Ω 𝑎 1 + 𝐴(𝑎 0 , 𝑎 2 )Ω 𝑎 2 + 𝐴(𝑎 0 , 𝑎 3 )Ω 𝑎 3 + 𝐴(𝑎 0 , 𝑎 4 )Ω 𝑎 4 + 𝐴(𝑎 0 , 𝑎 5 )Ω 𝑎 5 + 𝐴(𝑎 0 , 𝑎 6 )Ω 𝑎 6 = 0

(28) Such that, 𝐴(𝑎 0 , 𝑎 0 ) … 𝐴(𝑎 0 , 𝑎 6 ) in (28) represents the geometric coefficients for the irregular grid.

b) Interfaces

For the reduced pole study domain, the continuity conditions between several neighboring media exists only by the continuity of its normal magnetic flux density component. Indeed, the tangential component of the magnetic field intensity vector (𝐻 𝑡 ) on one side of the interface is equal to that of the other side in the absence of any surface current density between them. Hence, they can be mathematically written as:

{ (𝐻 𝑖 ⃗⃗⃗⃗ -𝐻 𝑗 ⃗⃗⃗⃗ ) ∧ 𝑛 ⃗ = 0 (𝐵 𝑖 ⃗⃗⃗⃗ -𝐵 𝑗 ⃗⃗⃗⃗ ) • 𝑛 ⃗ = 0 (29) (30) 
Where 𝑖 and 𝑗 are the indices of two adjacent media and 𝑛 ⃗ is the unit vector, normal to the boundary between two media.

{ 𝜕Ω 𝜕𝑟 = -ℎ 2 ℎ 4 (ℎ 2 + ℎ 4 ) Ω 𝑎4 + ℎ 4 ℎ 2 (ℎ 2 + ℎ 4 ) Ω 𝑎2 + ℎ 2 -ℎ 4 ℎ 2 ℎ 4 Ω 𝑎0 𝜕 2 Ω 𝜕𝑟 2 = 2 ℎ 4 (ℎ 2 + ℎ 4 ) Ω 𝑎4 + 2 ℎ 2 (ℎ 2 + ℎ 4 ) Ω 𝑎2 - 2 ℎ 2 ℎ 4 Ω 𝑎0 𝜕 2 Ω 𝜕𝜃 2 = 2 ℎ 3 (ℎ 1 + ℎ 3 ) Ω 𝑎3 + 2 ℎ 1 (ℎ 1 + ℎ 3 ) Ω 𝑎1 - 2 ℎ 1 ℎ 3 Ω 𝑎0 𝜕 2 Ω 𝜕𝑧 2 = 2 ℎ 6 (ℎ 5 + ℎ 6 ) Ω 𝑎6 + 2 ℎ 5 (ℎ 5 + ℎ 6 ) Ω 𝑎5 - 2 ℎ 5 ℎ 6 Ω 𝑎0 (24) (25) (26) (27)
c) Boundaries Regarding the reduced study domain shown in Fig. 2, a normal flux density exists at the planes 𝜃 = 0 and at 𝑧 = ℎ 𝑚 + 𝑔 that represents respectively the middle of the PM and the stator bore surfaces. Indeed, due to the geometric and magnetic symmetries, a zero normal magnetic flux density component will occur at the plane 𝜃 = 𝜋 2𝑝 ⁄ , because in the ST-PMAFM, the field component when exists in the iron media (III) will be tangential at the anti-symmetric boundary condition, hence its normal component will be null. However, all boundary conditions are summarized in Table III. The problem solution, could be formulated by applying the following matrix equality, considering all the nodes in the studied domain as:

{𝐴(𝑖 * 𝑗 * 𝑘) 2 } • {Ω(𝑖 * 𝑗 * 𝑘)} = {𝑆(𝑖 * 𝑗 * 𝑘)} (37) 
Where: {𝐴} is the coefficient square matrix of size (𝑖 * 𝑗 * 𝑘), {Ω} and {𝑆} are vector matrices of size (𝑖 * 𝑗 * 𝑘) represents the magnetic scalar potential and magnetic source respectively. Hence, in order to compute the axial component flux density 𝐵(𝑟, 𝜃, 𝑧), thus the magnetic scalar potential Ω solution should be obtained firstly from (37). Then, by employing this solution, in the material properties in (3), thus it will provide finally (38).

𝐵 𝑧 = 𝜇 0 [-( ℎ 5 ℎ 6 (ℎ 5 + ℎ 6 ) Ω 6 - ℎ 6 ℎ 5 (ℎ 5 + ℎ 6 ) Ω 5 + ℎ 6 -ℎ 5 ℎ 5 ℎ 6 Ω 0 )] (38) 
V. STUDIED ST-PMAF MACHINE

The studied spoke type motor parameters are given in Table IV. 

VI. FE MESH AND FD GRID

In ANSYS Emag [START_REF]ANSYS Mechanical APDL Low-Frequency Electromagnetic Analysis 215 Guide[END_REF], the study domain is meshed by a bilinear hexahedral element. Consequently, it is used to solve the magnetic scalar potential formulation by 29386 nodes. On the other hand, in FD (Matlab ® software used) tool, the grid is irregular with 31746 nodes. Fig. 5 and Fig. 6 shows the finite element mesh and finite difference grid respectively. were the magnetic flux entering the air gap medium at this plane shall be fully concentrated. The angle 𝑡 𝑎 is the interface angle between the two non-homogenous media permanent magnet and iron. Table V represents a comparison between the two numerical methods, regarding the number of nodes, magnetic energy evaluation and CPU time computation. The two approaches show that the magnetic energy calculated in the air gap of the machine has approximately the same value, with a very close number of nodes for the mesh in the studied domain. Knowing that the simulations considered on an Intel Xeon (2 processors) E5-2623 v3 with 3.00GHz as a processing frequency. showing. Hence, it seems that it is an interesting model for sizing axial field machines with saliency, especially due to the lack of 3D analytical magnetic field model for this kind of machine. To calculate the others main electrical characteristics, the inductances in the DQ axis, the 3D-FD armature reaction field will be set-up in a future work.

Fig. 1 .

 1 Fig. 1. One pole study domain for ST-PMAFM

Fig. 2 .

 2 Fig. 2. 3D representation of the reduced pole ST-PMAFMFor instance, the machine to be considered has a single rotor. Thus TableIdefines the dimensions for each region in this domain.

B. 3D Finite Difference Method 1 )

 1 Grid for FDM In 3-D cylindrical coordinates, a FD treatment occurred for the MSP solution of Poisson and Laplace equations (5-10) considering all media. a) Indicial numeration for 3D polar reference In this part, the basic numeration for the study domain is considered. The main node and its neighbors are mentioned with their respective distances as shown in Fig. 3.

Fig. 3

 3 Fig. 3 Indicial numeration for irregular grid in 3D polar reference

Fig. 4 .

 4 Fig. 4. Local and global numeration for 3D irregular grid

  Table III: REDUCED ONE POLE STUDY DOMAIN BOUNDARY CONDITIONS 𝑟 = 𝑅 𝑖𝑛𝑡 𝐵 ⃗ (𝑅 𝑖𝑛𝑡 , 𝜃, 𝑧) • 𝑛 ⃗ = 0 (31) 𝑟 = 𝑅 𝑒𝑥𝑡 𝐵 ⃗ (𝑅 𝑒𝑥𝑡 , 𝜃, 𝑧) • 𝑛 ⃗ = 0 (32) 𝜃 = 0 𝐻 ⃗ ⃗ (𝑟, 0, 𝑧) ∧ 𝑛 ⃗ = 0 (33) 𝜃 = 𝜋 2𝑝 ⁄ 𝐵 ⃗ (𝑟, 𝜋 2𝑝, 𝑧 ⁄ ). 𝑛 ⃗ = 0 (34) 𝑧 = -ℎ 𝑛𝑚 𝐵 ⃗ (𝑟, 𝜃, -ℎ 𝑛𝑚 ). 𝑛 ⃗ = 0 (35) 𝑧 = ℎ 𝑚 + 𝑔 𝐻 ⃗ ⃗ (𝑟, 𝜃, ℎ 𝑚 + 𝑔) ∧ 𝑛 ⃗ = 0 (36)

Fig. 5 .

 5 Fig. 5. Mesh in ANSYS Emag with 29326 nodes

Fig. 7 .Fig. 8 .

 78 Fig. 7. Finite element result for axial flux density component at stator bore

Fig. 9 .Fig. 10 .

 910 Fig. 9. Finite element results 𝐵 𝑧 (𝑟) along radial segment at angular position 𝜃 = 𝜋 2𝑝

  VIII. CONCLUSION This paper proposes a 3-D finite difference model of the open circuit field of spoke type-axial flux permanent magnet machines. Comparisons with finite element show that the method allow to calculate accurately local quantity such as the magnetic flux density and global quantity such as the magnetic energy in the air gap. Care have been taken to verify the accuracy of the computation of axial flux density on stator bore. Indeed, with the axial flux density on stator bore, it is possible to calculate the open circuit flux which is one of the main electrical characteristics of spoke type synchronous machines. The computation of these quantities are quite-fast

  Table I defines the dimensions for each region in this domain.

TABLE I .

 I 

				𝑚
				0 ≤ 𝜃 ≤ 𝑡 𝑝
				0 ≤ 𝑧 ≤ ℎ 𝑚
	℧ 𝐼𝐼𝐼 iron pole		𝑅 𝑖𝑛𝑡 + 𝐿 𝑖𝑛𝑡 ≤ 𝑟 ≤ 𝑅 𝑖𝑛𝑡 + 𝐿 𝑖𝑛𝑡 + 𝐿 𝑚
			{	𝑡 𝑝 ≤ 𝜃 ≤ 𝜋 2𝑝 -𝑡 𝑝 ⁄
				0 ≤ 𝑧 ≤ ℎ 𝑚
	℧ 𝐼𝑉 non-magnetic material			𝑅 𝑖𝑛𝑡 ≤ 𝑟 ≤ 𝑅 𝑖𝑛𝑡 + 𝐿 𝑖𝑛𝑡 { 0 ≤ 𝜃 ≤ 𝜋 2𝑝 ⁄
				0 ≤ 𝑧 ≤ ℎ 𝑚
	℧ 𝑉𝐼 non-magnetic material	{	𝑅 𝑖𝑛𝑡 + 𝐿 𝑖𝑛𝑡 + 𝐿 𝑚 ≤ 𝑟 𝑅 𝑖𝑛𝑡 + 𝐿 𝑖𝑛𝑡 + 𝐿 𝑚 + 𝐿 𝑒𝑥𝑡 0 ≤ 𝜃 ≤ 𝜋 2𝑝 ⁄
				0 ≤ 𝑧 ≤ ℎ 𝑚
	℧ 𝑉𝐼𝐼 non-magnetic material			𝑅 𝑖𝑛𝑡 ≤ 𝑟 ≤ 𝑅 𝑒𝑥𝑡 { 0 ≤ 𝜃 ≤ 𝜋 2𝑝 ⁄
				-ℎ 𝑛𝑚 ≤ 𝑧 ≤ 0

3D MEDIA DIMENSIONS ℧ 𝐼 air gap { 𝑅 𝑖𝑛𝑡 ≤ 𝑟 ≤ 𝑅 𝑒𝑥𝑡 0 ≤ 𝜃 ≤ 𝜋 2𝑝 ⁄ ℎ 𝑚 ≤ 𝑧 ≤ ℎ 𝑚 + 𝑔 ℧ 𝐼𝐼 North pole magnet { 𝑅 𝑖𝑛𝑡 + 𝐿 𝑖𝑛𝑡 ≤ 𝑟 ≤ 𝑅 𝑖𝑛𝑡 + 𝐿 𝑖𝑛𝑡 + 𝐿

  introduces the local numeration for each node.

Table II :

 II LOCAL NUMERATION FOR INTERIOR NODES

	Local numbering	Indicial
	0	(𝑖, 𝑗, 𝑘)
	1	(𝑖, 𝑗 + 1, 𝑘)
	2	(𝑖 + 1, 𝑗, 𝑘)
	3	(𝑖, 𝑗 -1, 𝑘)
	4	(𝑖 -1, 𝑗, 𝑘)
	5	(𝑖, 𝑗, 𝑘 -1)
	6	(𝑖, 𝑗, 𝑘 + 1)

TABLE IV .

 IV PARAMETERS OF ST-PMAFM

	Parameter	Value
	𝑀 𝜃	909 kA/m
	𝑅 𝑖𝑛𝑡	160 mm
	𝐿 𝑖𝑛𝑡	9 mm
	𝐿 𝑚	60 mm
	𝐿 𝑒𝑥𝑡	11 mm
	ℎ 𝑛𝑚	10 mm
	ℎ 𝑚	30 mm
	𝑔	1 mm
	𝑝	6
	𝑡𝑎	5 °
	𝑡𝑖𝑝	10 °

TABLE V :

 V NODES NUMBER, MAGNETIC ENERGY AND CPU TIME COMPARISONS BETWEEN THE TWO METHODS

	Method	Number of	Magnetic	CPU time
		nodes	energy (Joule)	(seconds)
	3D-FD	31746	0.641	3.3
	3D-FE	29386	0.637	14.4