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Abstract Tasks such as analysis, design optimization,

and uncertainty quantification can be computation-

ally expensive. Surrogate modeling is often the tool

of choice for reducing the burden associated with such

data-intensive tasks. However, even after years of in-

tensive research, surrogate modeling still involves a

struggle to achieve maximum accuracy within limited

resources. This work summarizes various advanced, yet

often straightforward, statistical tools that help. We fo-

cus on four techniques with increasing popularity in the

surrogate modeling community: (i) variable screening

and dimensionality reduction in both the input and the

output spaces, (ii) data sampling techniques or design

of experiments, (iii) simultaneous use of multiple surro-

gates, and (iv) sequential sampling. We close the paper

with some suggestions for future research.
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1 Introduction

Statistical modeling of computer experiments embraces

the set of methodologies for generating a surrogate

model (also known as metamodel or response surface

approximation) used to replace an expensive simulation

code [30, 56, 118, 156, 171, 209]. The goal is construct-
ing an approximation of the response of interest based

on a limited number of expensive simulations. Although

it is possible to improve the surrogate accuracy by using

more simulations, limited computational resources often

makes us face at least one of the following problems:

-- Desired accuracy of a surrogate requires more simu-

lations than we can afford.

-- The output that we want to fit is often not a scalar

(scalar field) but a high-dimensional vector (vector

field with several thousand components), which can

be prohibitive or impractical to handle.

-- We use the surrogate for global optimization and

we do not know how to simultaneously obtain good

accuracy near all possible optimal solutions.

-- We use the surrogate for optimization, and when

we do an exact analysis we find that the solution is

infeasible.

This paper discusses diverse techniques that have been

extensively used to address these four issues. We fo-

cus on (i) variable screening and dimensionality re-

duction [55, 121, 186, 213, 217], (ii) design of experi-

ments [113, 144, 147], (iii) use of multiple surrogates [58,

178, 214], and (iv) sequential sampling and optimiza-

tion [102, 108]. Although we will focus our discussion

on computer models, several of these techniques can be

either applied or extended to the cases in which data

comes from physical experiments.
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The remaining of the paper is organized as follows.

Section 2 reviews the variable screening and dimension

reduction techniques. Section 3 discusses issues relevant

to effective methods of sampling design points. Section 4

presents the use of multiple surrogates. Section 5 focuses

on sequential sampling techniques. Finally, section 6

closes the paper recapitulating salient points and con-

cluding remarks.

2 Reducing input and output dimensionality

2.1 Variables reduction in input space

As the number of variables in the surrogate increases,

the number of simulations required for surrogate con-

struction rises exponentially (curse of dimensionality).

A question at this point is then the following: is it nec-

essary to construct the response surface approximation
in terms of all the variables? Some of the variables

may have only a negligible effect on the response. Sev-

eral techniques have thus been proposed for evaluating

the importance of the variables economically. In the

next few paragraphs, we first provide a brief historical

overview of methods that have been proposed in this

context and which withstood the test of time. Then we

focus on a few recent techniques of particular interest

in more detail.

2.1.1 Variable screening techniques

A wide category of dimensionality reduction techniques

in input space is commonly referred to as variables
screening. Among the simplest screening techniques are

so called one-at-a-time (OAT) plans [47], which evaluate

in turns the effect of changing one variable at a time.

It is a very inexpensive approach, but it does not esti-

mate interaction effects between variables. Variations

of OAT screening that account for interactions have

been proposed by Morris [145] and Cotter [42].

Various statistical techniques such as Chi-square test,

t-test, F-test, correlation coefficients (e.g. Pearson’s,

Spearman’s, Kendall’s) are also among the simplest

techniques to carry out variable screening.

A very popular category of variable screening is step-
wise regression, first proposed by Efromyson in 1960 [54]

and refined further [10, 66, 83, 84]. Stepwise regression

is achieved in one of the following methods:

1. Forward stepwise regression starts with no vari-

able and tests adding one independent variable at

a time and adding that variable if it is statistically

significant to include that variable.

2. Backward stepwise regression starts with all vari-

ables, tests removing one variable at a time, and

removing the variable which leads to minimal dete-

rioration in the quality of fit.

3. Bidirectional stepwise regression is a combina-

tion of the above-mentioned two methods and tests

which variables should be included or excluded.

Agostinelli [3] presented a method to improve robust-

ness of the stepwise regression. Mitzi [130] presented an

overview of issues associated with this technique.

Such screening techniques are relatively simple but

may quickly become computationally intractable and

are not always well suited for subsequent use for sur-

rogate model construction due to the specific design of

experiments they involve. To address these issues neigh-

borhood component feature selection (NCFS) has been

proposed to select relevant input variables [221]. NCFS

solves an unconstrained multi-objective optimization
problem that minimizes the mean loss of a neighborhood

component analysis regression model while preventing

over-fitting by using a regularization term. The opti-

mum weights that are the results of the optimization

problem provide information regarding the significance

of the input variables, thus allowing variable screening.

The NCFS technique has been recently further enhanced

to reduce its computational cost and improve its robust-

ness in [114]. The resulting normalized neighborhood

component feature selection (nNCFS) method has been

applied to the design of the body-in-white of a vehicle

allowing to reduce the number of design variables from

31 to only 16.

2.1.2 Variance based techniques

Another category of screening techniques are variance

based. A simple, commonly used approach uses a k-level

factorial or fractional factorial design followed by an

analysis of variance procedure (ANOVA) [191]. The

procedure allows identifying the main and interaction

effects that account for most of the variance in the

response. ANOVA can be carried out either using a

reduced fidelity, computationally inexpensive model as

has been recommended in [73, 99, 179, 187, 193] and

more rarely using the high fidelity model as in [48].
Note that using a reduced fidelity model is a common

technique in variable screening, which will be illustrated

again in the next paragraphs with global sensitivity

analysis.

The iterated fractional factorial design (IFFD) method

[4, 173] is another screening approach, designed to be

economical for large number of variables (e.g. several

thousands). The method assumes that only very few
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variables account for most of the variance in the re-

sponse and calculates the main effects, quadratic effects

and cross term effects for these significant variables

based on a clustered sampling technique.

For additional details and applications on these

and additional sensitivity and screening methods, such

as Bettonvil’s sequential bifurcation method [15], the

reader can refer to [34, 116, 172] and the references

therein. In the remainder of this subsection we will de-

velop in more detail just a few techniques that we find

of particular interest.

An approach gaining popularity for finding and elim-

inating variables that have negligible effects is Sobol’s

global sensitivity analysis (GSA), initially introduced

by Sobol [186]. GSA is a variance-based approach that

provides the total effect (i.e. main effect and interaction

effects) of each variable, and thus indicates which ones

could be ignored. In the basic case, the variances are

usually computed using Monte Carlo simulation based

on an initial crude surrogate (assumed to be accurate

enough for screening). Numerous improvements have

been proposed to more efficiently compute Sobol’s sen-

sitivity indices and we refer the reader to the review in

[98] for an overview. Sobol indices being variance based

will also have issues for correctly assessing sensitivities

that are not reflected in variances but only in higher

order moments. Several methods have been proposed to

address this issue and we refer the reader to [19] for a

review. GSA has been successfully applied to many engi-

neering problems and as just a few examples we can cite

piston shape design [104], liquid rocket injector shape

design [196], bluff body shape optimization [140], opti-

mization of an integrated thermal protection system [79],

design of high lift airfoil [143], the identification of ma-

terial properties based on full field measurements [138],

stream flow modeling [36], performance characterization

of plasma actuators [33], uncertainty quantification in

multi-phase detonations [65].

2.1.3 Variable transformation techniques

Variable transformation techniques are another major

approach for reducing the number of variables and im-

proving the quality of fit in a surrogate. It is often driven

by exploiting the domain knowledge of the user. Box

and Tidwell [22] suggested that it is sometimes possible

to build a good quality approximation using the trans-

formed independent variables. In these methods, the

non-linear relationship between dependent and indepen-

dent variable is addressed by an upfront transformation

such that the relationship between transformed inde-

pendent variable and the dependent variable is more

amenable to surrogate modeling. A few effective trans-

formation techniques are enumerated as follows:

1. Mathematical operators - functions such as log(),

ln(), tanh(), power(), inverse(), abs() etc. are useful

to transform variables into more meaningful vari-

ables [147] for certain problems.

2. Variable scaling - such as scaling of independent

and/or dependent variables using uniform or normal

distributions is another effective transformation tech-

nique that helps improve the approximation. This

is particularly helpful when different variables have

different scales.

3. Filters - are used to handle known bifurcations in
the independent or dependent variables relationships

which are hard to model using a continuous indepen-

dent variable approach. In this method, values of

the independent variables above (or below) are fil-

tered out such that the same variable is applied only

under certain conditions. Some examples of common

filters are simple mean or moving-average based

filtering, threshold-based filter functions where a

variable is only considered on one side of the thresh-

old, and auto-correlations. These filters are quite

commonly used in time-series analysis and control

applications [69, 135, 167, 212].

One concept related to variables transformation but

relevant to physical problems consists in grouping the

variables into a smaller number by non-dimensionalization

(i.e. transforming variables of a physical problem into
variables that have no units). The Vaschy-Buckingham

theorem [25, 188, 199] provides a systematic construc-

tion procedure of non-dimensional parameters and also

guarantees that the parameters found are the mini-

mum number of parameters (even though not neces-

sarily unique) required for an exact representation of a
given partial differential equations based problem.

Following the initial works by Li and Lee [132] and

Dovi et al. [49] several authors have further shown that

improved accuracy polynomial response surface approxi-

mations can be obtained by using non-dimensional vari-

ables [38, 61, 111]. This is mainly because, for the same

number of numerical simulations, the generally much

fewer non-dimensional variables allow a fit with a higher

order polynomial. While this technique is not as popu-

lar as some of the screening or sensitivity approaches,

multiple works showed successful applications.

In [210] the approach was illustrated on statisti-

cal data from an automobile survey while in [126] the

method was applied to several engineering case studies

including a finite element (FE) based example.

In [80] the authors managed to reduce the num-

ber of variables from eight to four by constructing the
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surrogate in terms of non-dimensional variables for a

vibration problem of a free plate. In [201] a reduction

from nine to seven variables was achieved by using non-

dimensional parameters for FE analyses, modeling a

mechanical problem of a plate with an abrupt change

in thickness.

An even greater reduction in the number of variables

is possible if non-dimensionalization is combined with
other techniques. In [81] the authors achieved a reduc-

tion from fifteen to only two variables using a combina-

tion of physical reasoning, non-dimensionalization and

global sensitivity analysis for a thermal design problem

for an integrated thermal protection system. Physical

reasoning allowed formulating simplifying assumptions

that reduced the number of variables from fifteen to

ten. Non-dimensionalization was then applied on the

equations of the simplified problem reducing the number

of variables to three non-dimensional variables. Finally,

global sensitivity analysis showed that one of the non-

dimensional variables had an insignificant effect thus

leaving only two variables for the surrogate model.

While non-dimensionalization is by itself a variable

transformation technique, it can further benefit by a

combination with other techniques. Non-dimensionaliza-

tion combined with exponential scaling transformations

has been, for example, shown to be extremely effective

at both reducing the dimensionality and improving the

accuracy of surrogate models of mechatronic components

over a large domain of variation of the input variables

(multiple orders of magnitude) [26, 92, 142, 175].

2.1.4 Dimensionality reduction by subspace

construction

Another major variable reduction approach we would

like to comment on concerns problems in which the

designs of interest are confined into a reduced dimension

(e.g. a plane in three dimensional space). If all possible

input vectors (of dimension n) lie in a lower-dimensional

subspace (of dimension k, with k < n), then using the

initial input space for surrogate construction will lead to

poor results due to numerical ill-conditioning. A reduced

dimensional representation of the variables should then

be used by expressing the initially n-dimensional input

vectors in a basis of the corresponding k-dimensional

subspace.

Note that the fact that the input variables are not

independent but correlated, such that they can be con-

fined in a certain subspace, may appear as a wrong

problem formulation, and one should directly express

the problem in terms of independent variables. In many

problems though, the choice of the input variables is

majorly driven by controllable variables and often, defin-

ing a priori a subspace in which variables lie is hard

if not impossible. Let’s take the example of aeroelastic

coupling where the lift created by a wing is affected by

the deformed shape of the wing. To define the deformed

shape the simplest, physically meaningful description is

the deformed position of each finite element node in the

mesh used for the structural finite element solver. It is

obvious that the deformed positions at each node are not

independent, yet defining the subspace in which these

positions lie is far from trivial. Multiple techniques have

thus been developed in order to uncover the reduced
dimensional subspace in which the input variables lie.

Principal components regression (PCR) is a tech-

nique developed to fit an approximation (e.g. polyno-

mial) to the data in the appropriate sub-dimensional

subspace ([105] and [13, Chapter 3]). Mandel [141] has

shown that the technique can be advantageous also

when the variables-data is not strictly confined to a

subspace, but the components outside of the subspace

are relatively small. Rocha et al. [168] have shown that

for the problem of fitting wing weight data of subsonic

aircraft, PCR provides more accurate results compared

to other fitting techniques (polynomial interpolation,

kriging, radial basis function interpolation) due to its

ability to account for the physical and historical trends

buried within the input data.

The partial least squares [218] and sparse partial

least squares [35] techniques have also been proposed

as alternatives to principal component regression for

reducing very high-dimensional data. Recent techniques

also seek to combine both reduced dimensionality sub-

space learning and variance based sensitivity analysis

[5, 7, 123, 226] in order to more efficiently compute accu-
rate sensitivity indices for expensive computer models.

In the past decade multiple researchers sought to

develop specific covariance kernels for Gaussian process

surrogate models that intrinsically integrate dimension-

ality reduction. Several such techniques are based on
seeking a low dimensional linear subspace on which to

project the gaussian process input variables [20, 64, 184].

Various other methods to construct reduced dimensional

manifolds have also been explored [27, 46, 51, 149, 185].

Many of these Gaussian process surrogates have been de-

veloped or applied in the context of sequential sampling

(see section 5).

2.2 Dimensionality reduction in the output space

The question of a dimensionality reduction requirement

in the output space poses itself less often than in the in-

put space (that is, usually we want to have the minimal

number of variables that controls a particular scalar

field). For vector-based response, techniques that take
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into account correlation between components are avail-

able and can in some cases be more accurate than con-

sidering the components independently [113]. For a rel-

atively small dimension of the output vector, methods

such as co-kriging [146] or vector splines [223] are avail-

able. However, these are not practical for approximating

the high dimensional pressure field around the wing of

an aircraft or approximating heterogeneous displace-

ments fields on a complex specimen. These fields are

usually described by a vector with thousands to millions

of components. Fitting a surrogate for each component
is then time and resource intensive and might not take

advantage of the correlation between neighboring points.

Principal components analysis (PCA), which we al-

ready touched upon in the previous section addresses

this problem. PCA is also known as proper orthogonal

decomposition (POD) or Karhunen-Loeve expansion,

and it can be applied to achieve drastic dimensionality

reduction in the output space (reductions from many

thousands to less than a dozen coefficients are frequent).

POD finds a low dimensional basis from a given set of

N simulation samples. A field u depending of variables

of interest x sampled within a sampling domain D is

then approximated by

ũ(x) = Φα(x) =

nRB∑
i=i

〈u,Φi〉Φi , (1)

where u ∈ Rn is the vector representation of the field

(e.g. pressure or displacement fields),Φ = (Φ1, . . . ,ΦnRB )

is the matrix composed of the basis vectors Φi, i =

1, . . . , nRB ∈ Rn of the reduced-dimensional, orthogo-

nal basis, and α the vector of the coefficients of the field

in this basis (i.e. the orthogonal projection of the field

onto the basis vectors).

This approach allows approximating the fields in

terms of nRB POD coefficients αi instead of n com-

ponents of the vector u. For additional details on the

theoretical foundations of POD, the reader can refer to

[24, Chapter 3] (Nota Bene: the book’s foreword was

written by Raphael Haftka, to whom this special issue

is dedicated).

Once the reduced dimensional basis determined,

one can construct surrogate models for each αi i =

1, . . . , nRB based on the same N samples that were used

for POD basis construction. It might seem surprising

that, considering that n is equal to several thousands,

nRB can be low enough to easily allow the construction

of a surrogate model per POD coefficient, but success-

ful applications have proven the applicability of the

approach to a large variety of problems. This is due

to the fact that variations even in complex fields can

be controlled by physical phenomena exhibiting effects

characterized by relatively low dimensionality.

For example this approach has been successfully ap-

plied to the multidisciplinary design optimization of an

aircraft wing [39, 40]. The method enabled cost-efficient

fluid-structure interaction required for multi-disciplinary

design optimization. The initial application [39] was car-

ried out on a two-dimensional wing model, where the

variations in vectors of size n = 70 were reduced to only

two POD coefficients. A subsequent study [40] applied

the same approach to more realistic 3D wing models

where the pressure fields around the wing (aerodynamics

model) as well as the wing displacement field (struc-
tural model) were reduced and approximated via this

approach (reduction from many thousands to less than

a dozen components).

Using both surrogate modeling and dimensionality

reduction to model strongly coupled multidiscipliary

systems such as the fluid structure interaction on an

airfoil remains a challenge, in particular when seeking

to construct both the reduced basis and the surrogate

model as efficiently as possible. In this context sequential

sampling would appear particularly promising with first
attempts underway in this direction [14].

Another application of POD reduction combined

with surrogate modeling concerned Bayesian identifica-

tion of orthotropic elastic constants based on displace-

ment fields on a plate with a hole [82]. Variations in

the displacement fields (modelled by vectors with about

5,000 coefficients) were reduced to only four POD co-

efficients, containing enough information to perform

the identification. Surrogate models of these POD co-

efficients were constructed, enabling a sufficient cost

reduction for the Bayesian identification to be carried

out, which requires expensive correlation information.

Other applications of these combined techniques

include the heartbeat modeling of a whole heart [160,

161] and efficient reparametrization of CAD models

[158].

PCA/POD are linear techniques, in that the output

is expressed as a linear combination of the basis vectors.

Non-linear dimensionality reduction approaches have

been developed for cases where linearity will not pro-

vide a sufficiently accurate approximation. Kernel PCA

[177] solves a PCA eigenproblem in a new feature space

constructed through kernel methods. Local PCA subdi-

vides the initial design space into clusters and applies

PCA to each one of them. K-means [109] or spectral ap-

proaches [139] can be used as clustering methods. More

recently methods based on neural networks [95], and

in particular deep neural networks [97, 128], have be-

come extremely popular and allow large dimensionality

reductions for very high dimensional, highly non linear

problems. In this context autoencoders [215] and in par-

ticular variational autoencoders [115, 166] have shown
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to be quite effective in a large variety of domains. The

main challenge in applying deep neural networks based

approaches to problems involving physics based compu-

tational models resides in the requirement of large design

of experiments (i.e. training dataset) for appropriate

training.

To summarize, when seeking a surrogate of a high di-

mensional vector field it is often worth exploring first the

accuracy of linear approximations by PCA/POD. Even

for non-linear models these techniques have often been

shown to provide sufficient accuracy. Only when this is

not the case it is worth exploring the more advanced

non-linear dimensionality reduction techniques.

3 Design of experiments

Surrogate models are used to reduce the cost of design

and optimization by fitting “approximate” models for

complex problems which are expensive to solve. These

surrogate models are useful for design and optimization

only if they can predict the underlying behaviour accu-

rately. The accuracy of any surrogate model is primarily

affected by two factors: (i) noise in the data and (ii)

inadequacy of the fitting model (called modeling error

or bias error). While errors in the approximation due to
both reasons can be reduced by increasing the data avail-

able for approximation, practically the feasible number

of data points is limited by budgetary constraints. So,

we need to carefully plan the experiments to maximize

the accuracy of surrogates, and this exercise is known
as design of experiments (DOE). There have been a few

studies on the influence of different experimental de-

signs on predictions [75, 156, 180, 181]. We discuss the

problem characteristics that influence the construction

of DOE and different types of DOEs in the next two

subsections. We follow up that by some practical tips

by drawing on our experiences in this area.

3.1 Factors influencing the choice of DOE

We enumerate the following main considerations to be

undertaken while constructing a design of experiment:

1. Number of variables and order of surrogate

– This is a primary consideration in the surrogate

construction. The requirement for the number of

experiments increases rapidly as the number of vari-

ables increase. In Fig. 1, we notice that the number

of coefficients required for quadratic and cubic poly-

nomials increases rapidly as the number of variables

increase. This means that the number of experiments

required to build the model also increases rapidly.

2. Size of the design space – Similar to the number

of variables, the requirements on the number of data

points increase for problems with large design spaces.

Depending on the placement of the data points, we

could have large extrapolation region or large spaces

between the data points. Both of these can result in

poorer quality of fit.

3. Shape of the design space – We usually work

with regular design spaces which are easier to handle

as there are no restrictions on placing the experimen-

tal points. Occasionally, we get into cases where a
part of the design space is not feasible due to geo-

metric constraints or other reasons. In such cases,

we need to carefully plan the DOE to account for

the irregularities.

4. Nature of the underlying function– The num-

ber of data points required to build a surrogate model

is highly dependent on the underlying function that

we need to fit. When the underlying function is

well-behaved, lower order models can give a good

fit however when the underlying function is highly

non-linear, we need a higher order model and conse-

quently higher number of design points.

5. Noise in experiments – As discussed above, we

can have noise or bias error as dominant sources.

Experimental noise due to measurement error or

experimental errors is a dominant factor for phys-

ical experiments. For computer simulations, noise

could be due to numerical noise, which is usually

small unless there are issues with convergence as

observed in computational fluid dynamics or non-

linear finite element model simulations. If noise is the

dominant factor or error, we should use the DOEs
that minimize the influence of noise errors such as

minimum-variance designs [144].

6. Bias errors – The true model representing the data

is rarely known. This is a possible source of error

when we model a higher order true function with
a lower order surrogate. To truly address this, one

should try as large order surrogate as possible how-

ever, as shown in Fig. 1, the requirements of data

required to build a higher order surrogate increases

rapidly as we go to higher order models. There

are some DOE techniques that cater to reducing

the influence bias errors, such as minimum bias de-

signs [113, 147].

7. Cost of construction of the DOE – Finally, we

also consider the cost involved in building an efficient

experimental design. For most of the problems, the

cost of constructing an experimental design is much

smaller than the cost of running a single experiment.

However, the cost of constructing an experimental

design can be significant when we have a large num-
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Fig. 1: Increase in the number of coefficients (y-axis)

with the dimensionality of the problem (x-axis shows

number of variables).

ber of variables and experimental points to select.

In those cases, the selection of DOE through opti-

mality criterion based EDs may require substantial

computational effort in picking the optimal designs.

Generally, the design of experiment techniques seeks

to reduce the effect of noise and reduce bias errors

simultaneously. However, these objectives (noise and

bias error) often conflict. For example, noise rejection

criteria, such as D-optimality, usually produce designs

with more points near the boundary, whereas the bias

error criteria tend to distribute points more evenly in

design space. Thus, the problem of selecting a DOE is

a multi-objective problem with conflicting objectives

(noise and bias error). The solution to this problem

would be a Pareto optimal front of DOEs that yields

different trade-offs between noise and bias errors [78].

3.2 Types of DOEs

In its simplest form, a DOE could consider ‘‘one-factor-
at-a-time’’ which runs through a grid search by con-

sidering only one variable keeping others constant [47].

This is not effective as we cannot evaluate the impact

of interactions among variables. Myers et al. [147] and

Montgomery [144] have discussed various DOE tech-

niques in detail. Yondo et al. [224] has presented an ex-

cellent overview of different DOE techniques. While they

classify various DOEs into classical and modern DOE

groups, we expand that to the following four groups:

1. Classical DOE –Generally focus on minimizing

the influence of noise error in the approximation. In

such cases, the design points are located towards

the boundary of the space and there can be gaps in

the interior. Some examples are, full or fractional

factorial designs, central composite designs, optimal

designs that minimize some variance criterion, and

orthogonal arrays [147, 192].

2. Modern DOE – These DOEs are utilized when

bias errors are dominant or the design space is huge.

These techniques tend to place data points in the

interior of the design space such that a part of the

original design space is not covered by the largest

hypercube constructed by the selected data points

and that region would be subjected to extrapolation
by the fitted models. If responses in this region are

considered important, care must be taken to choose

the surrogate models which are less-susceptible to the

issues related to extrapolation. Some examples are,

space filling designs, random designs, Monte-carlo

sampling, quasi-random designs, Latin hypercube

sampling (LHS) [203] and uniform designs,

3. Hybrid Designs – These DOEs are used to find

balance between bias and noise errors. Some exam-

ples are, optimal LHS designs [206], orthogonal array

based LHS [127], multiple criteria-based designs [78].

4. Sequential DOE – While most studies are focused

on one-shot DOEs, the sequential DOEs are quite

popular in applications involving expensive simu-

lations. They start with a small subset of design

points and keep adding points in the region of inter-

est balancing the exploration and exploitation [44].

Section 5 will expand on such sequential sampling

techniques.

Recommendations are difficult for high-dimensional

problems as the curse of dimensionality will eventually

make the problems hard. Successful approaches are likely

to leverage a combination of strategies that include

efforts in reducing the search space, either by reducing

the bounds or by reducing the number of variables. In

addition, it is also very common to proceed with data

gathering sequentially. Strategies that rely on sequential

sampling can be used, but are likely to be augmented

by expert domain-knowledge.

3.3 Practical Recommendations

Based on our experience, we propose choosing the DOEs

based on the dimensionality and dominant source of

error as shown in Table 1 .

4 Surrogate modeling and ensembles

The simultaneous use of multiple surrogates addresses

two of the problems mentioned in the introduction:
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Table 1: Recommended DOE based on the dimensionality and dominant source of error

Number of variables Type of error Recommended DOE

≤ 5 Any Full factorial designs, composite designs (e.g., face-centered or central
composite designs), and space-filling DOEs (e.g., LHS)

> 5 and ≤ 10 Noise Classical DOEs that minimize variance such as D-optimal DOE and
space-filling DOEs (e.g., LHS)

> 5 and ≤ 10 Bias Modern DOE (minimize bias), space-filling DOE, LHS
> 5 and ≤ 10 Noise and bias Hybrid DOEs
> 10 Any Sequential DOEs in combination with dimensionality and search space

reduction

-- Accurate approximation requires more simulations

than we can afford by offering an insurance against

poorly fitted models.

-- Surrogate models for global optimization: since dif-

ferent surrogates might point to different regions of

the design space this constitutes at least a cheap

and direct approach for global optimization.

4.1 How to generate different surrogates

Most practitioners in the optimization community are

familiar at least with the traditional polynomial response

surface [23, 147], some with more sophisticated models

such as the Gaussian process and kriging [164, 190], neu-

ral networks [31, 85], or support vector regression [176,

183], and few with the use of weighted average surro-

gates [1, 77, 205]. The diversity of surrogate models
might be explained by three basic components:

1. Statistical modeling: for example, response surface

techniques frequently assume that the data is noisy

and the obtained model is exact. On the other hand,

kriging usually assumes that the data is exact and

is a realization of a Gaussian process.

2. Basis functions: response surfaces frequently use

monomials. Support vector regression specifies the

basis in terms of a kernel (many different functions

can be used).

3. Loss function: the minimization of the mean square
error is the most popular criteria for fitting the sur-

rogate. Nevertheless, there are alternative measures

such as the average absolute error (i.e., the L1 norm).

It is also possible to create different instances of the

same surrogate technique. For example, we could create

polynomials with different choice of monomials, kriging

models with different correlation functions, and support

vector regression models with different kernel and loss

functions. Figure 2 illustrates this idea showing different

instances of kriging and support vector regression fitted

to the same set of points.

In many applications, we might have to construct

surrogate models for multiple responses based on a single

(a) Kriging surrogates with different correlation functions.

(b) Support vector regression models with different kernel
functions.

Fig. 2: Different surrogates fitted to five data points

of the y = (6x− 2)
2

sin (2 (6x− 2)) function (adapted

from [209]).

set of pre-sampled points. Obviously we can always build

individual surrogate models for each surrogate model

separately. Nevertheless, some surrogate techniques al-

low for the simultaneous modeling of multiple responses.

As illustrated in Fig. 3, multi-layer perceptrons, one of

the most popular neural network architectures, can be

easily designed to accommodate multiple outputs. In

such case, the hidden layers are responsible to capture

shared features and inter-dependencies, while the very

last layer performs final differentiation of the multiple

responses. The Gaussian process can also be used to
model multiple and correlated responses. With a single

output, the Gaussian process is formulated as

f(x) ∼ GP (m(x), k(x,x′)) , (2)
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Fig. 3: Multi-layer perceptron neural network design for

multiple outputs.

where x are prediction points, x′ are observed points,

and m(x) and k(x,x′) define the mean and covariance,

respectively. One way to extend the formulation to
multiple outputs is to expand the mean and covariance

functions such that

f(x) ∼ GP (m(x),K(x,x′)) , (3)

where m(x) and K(x,x′) define the multiple-output

mean and covariance. The interested reader is referred

to [41, 60, 134] for further details.

4.2 Comparison of surrogates

The vast diversity of surrogates has motivated many pa-

pers comparing the performance among techniques. For

example, Giunta and Watson [74] compared polynomial

response surface approximations and kriging on ana-

lytical example problems of varying dimensions. They

concluded that quadratic polynomial response surfaces

were more accurate. However, they hedged that the

investigation was not intended to serve as an exhaustive

comparison between the two modeling methods. Jin et

al. [101] compared different surrogate models based on

multiple performance criteria such as accuracy, robust-

ness, efficiency, transparency, and conceptual simplicity.

They concluded that the performance of different sur-

rogates has to do with the degree of nonlinearity of

the actual function and the design of experiment (sam-

pled points). Stander et al. [189] compared polynomial

response surface approximation, kriging, and neural net-

works. They concluded that although neural nets and

kriging seem to require a larger number of initial points,

the three meta-modeling methods have comparable effi-

ciency when attempting to achieve a converged result.

Overall, the literature leads us to no clear conclusion.

Instead, it confirms that the surrogate performance

depends on both the nature of the problem and the

sampled points.

While different metrics can be used to compare sur-

rogates (such as the coefficient of determination R2, the

average absolute error, the maximum absolute error [86]-

[89]), here, we propose the use of the root mean square

error [101, 103]. The root mean square error eRMS in a

design domain D of volume V is given by

eRMS =

√
1

V

∫
D

(ŷ(x)− y(x))2dx , (4)

where ŷ(x) is the surrogate model of the response of

interest y(x). The integral of Eq. (4) can be estimated

using numerical integration at test points. As can be

seen in Fig. 2, the eRMS of a set of surrogates can greatly

differ in terms of accuracy. As a result, it might be hard

to point the best one for a given problem and data set.

4.3 Surrogate selection

We discussed how factors such as statistical modeling,
basis functions, and loss functions determine how we can

generate different surrogates. In practice, the selection

of a surrogate model also involves factors such as

-- Nature of the underlying function: while well-behaved

functions can be handled by simple linear regression,

highly nonlinear functions might call for sophisti-

cate approaches such as support vector regression,

Gaussian process, and neural networks.

-- Usages of the surrogate model: most surrogate mod-

els are built for allow for certain degree of extrapo-

lation far from observed data. Unfortunately most

approaches tend to fail as prediction is pushed far

away from data points. In such applications, uncer-

tainty estimates, such as those found in Gaussian

processes, are important as a reference for confidence

in predictions points.

-- Strategy for acquisition of data points: here we can

differentiate all-at-once versus sequential sampling

strategies. As we will discuss in the next section,

sequential sampling strategies are mostly based on

uncertainty estimates from surrogates.

If only one predictor is desired, one could apply either

selection or combination of surrogates [205]. Selection is

usually based on a performance index that applies to all

surrogates of the set (that is, a criterion that does not

depend on the assumptions of any particular surrogate

technique). In this case, the use of test points is a luxury

and we usually have to estimate the accuracy of the

surrogate based on the sampled data only. This explains

why cross validation for estimation of the prediction
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Fig. 4: Cross-validation error at the second point of the

five-point experimental design eXV 2
. The kriging model

is fitted to the remaining four points of the function

y = (6x− 2)
2

sin (2 (6x− 2)).

errors and assessment of uncertainty [204] based on

observed data has become so popular1.

A cross-validation error is the error at a data point

when the surrogate is fitted to a subset of the data

points not including this point. When the surrogate is

fitted to all the other p − 1 points, the process has to

be repeated p times (leave-one-out strategy) to obtain

the vector of cross-validation errors, eXV . Figure 4 il-

lustrates computation of the cross-validation errors for

a kriging surrogate. When the leave-one-out becomes

expensive, the k-fold strategy can also be used for com-

putation of the eXV vector. According to the classical

k-fold strategy [122], after dividing the available data (p

points) into p/k clusters, each fold is constructed using

a point randomly selected (without replacement) from

each of the clusters2. Of the k folds, a single fold is

retained as the validation data for testing the model,

and the remaining k − 1 folds are used as training data.

The cross-validation process is then repeated k times

with each of the folds used once as validation data.

Cross validation is a powerful way to estimate predic-

tion errors and assess uncertainty estimates since it is

based only on observed data and does not depend on

the assumptions of any particular surrogate technique.

Popular criteria built with cross validation include root

mean square error, maximum absolute error, coefficient

of determination (i.e., R2 and adjusted R2), prediction

variance, and others.

The square root of the PRESS value (PRESS

stands for prediction sum of squares) is the estimator

1 Nevertheless, cross validation should be used with caution,
since the literature has reported problems such as bias in error
estimation [152, 198].

2 In practice, k-fold implementations are influenced by the
size of datasets. With small to medium datasets, using clus-
tering algorithms, such as k-means [110], improves robustness.
When datasets are very large, clustering is very time con-
suming and potentially less important. Therefore, random
selection is commonly used.

Fig. 5: Weighted average surrogate based on the models

of Fig. 2.

of the eRMS :

PRESS =

√
1

p
eTXV eXV . (5)

Since PRESS is an estimator of the eRMS , one possible

way of using multiple surrogates is to select the model
with best (i.e., smallest) PRESS value [195, 205, 228].

Since the quality of fit depends on the data points, the

surrogate of choice may vary from one experimental

design to another.

Combining surrogates is based on the hope of can-

celing errors in prediction through proper linear com-

bination of models. This is shown in Fig. 5, in which

the weighted average surrogate created using the four

surrogates of Fig. 2 has smaller eRMS than any of the

basic surrogates. Cross-validation errors can be used to

obtain the weights via minimization of the integrated

square error [1, 205]. Alternatively, the weight compu-

tation might also involve the use of local estimator of

the error in prediction. For example, Zerpa et al. [227]

presented a weighting scheme that uses the prediction

variance of the surrogate models (available in kriging

and response surface for example).

Nevertheless, the advantages of combination over

selection have never been clarified, as a manifestation of

the no-free lunch theorem [219]. In addition, the success

of a surrogate model is highly dependent on its com-

putational implementation (including aspects such as

optimization of hyper-parameters, numerical implemen-

tation of linear algebra, etc.). As rough guidelines, we

refer to the work of Yang [222] and Viana et al. [205]. Ac-

cording to Yang [222], selection can be better when the

errors in prediction are small and combination works bet-

ter when the errors are large. Viana et al. [205] showed

that, in theory, the surrogate with best eRMS can be

beaten via weighted average surrogate. In practice, the

quality of information given by the cross-validation

errors makes it very difficult. In addition, since their

work used globally assigned weights, the potential gains

diminish substantially in high dimensions.
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4.4 Multiple surrogates in optimization

A surrogate-based optimization cycle consists of choos-

ing points in the design space (experimental design),

conducting simulations at these points and fitting a

surrogate (or maybe more than one) to the expensive

responses. If the fitted surrogate satisfies measures of

accuracy, we use it to conduct optimization. Then we

verify the optimum by conducting exact simulation. If

it appears that further improvements can be achieved,

we update the surrogate with this new sampled points

(and maybe zoom in on regions of interest) and conduct

another optimization cycle. In this scenario, it seems

advantageous to use multiple surrogates. After all, one

surrogate may be more accurate in one region of design

space while another surrogate may be more accurate in

a different region. The hope is that a set of surrogates

would allow exploration of different portions of the de-

sign space by pointing to different candidate solutions

of the optimization problem.

Examples of this approach can be found in the liter-

ature. For instance, Mack et al. [140] employed polyno-

mial response surfaces and radial basis neural networks

to perform global sensitivity analysis and shape opti-

mization of bluff body devices to facilitate mixing while

minimizing the total pressure loss. They showed that

due to small islands in the design space where mixing is

very effective compared to the rest of the design space,

it is difficult to use a single surrogate to capture such

local but critical features. Glaz et al. [76] used poly-

nomial response surfaces, kriging, radial basis neural

networks, and weighted average surrogate for helicopter

rotor blade vibration reduction. Their results indicated

that multiple surrogates can be used to locate low vibra-

tion designs which would be overlooked if only a single

approximation method was employed. Samad et al. [174]

used polynomial response surface, kriging, radial basis

neural network, and weighted average surrogate in a

compressor blade shape optimization of the NASA ro-

tor 37. It was found that the most accurate surrogate

did not always lead to the best design. This demon-

strated that using multiple surrogates can improve the

robustness of the optimization at a minimal computa-

tional cost. The use of multiple surrogates was found to

act as an insurance policy against poorly fitted models.

The drawback is that the strategy generate multiple

candidate points that need to be validated (potentially

increasing the needed computational budget) before the

optimization task is finished.

5 Sequential sampling

Surrogate-based optimization has been a standard tech-

nology for long time [8, 32]. Traditionally, the surrogate

replaces the expensive simulations in the computation

of the objective function (and its gradient, if that is

the case). The idea of using an stochastic processes for

global optimization dates back to the seminal work by

Kushner [125] (already coined as ‘‘Bayesian global op-

timization’’ or the ‘‘random function approach’’). Yet,

Jones et al. [108] added a new twist by using both pre-

diction and prediction variance of the Gaussian process

(or kriging) model to help selecting the next point to

be sampled in the optimization task. Therefore, instead

of exhausting the budget for data acquisition upfront,

practitioners can opt for fitting a sequence of surrogates

with each surrogate defining the points that need to be

sampled for the next surrogate. This can improve the

accuracy for a given number of points, because points

may be assigned to regions where the surrogate shows

sign of poor accuracy. Alternatively, this approach may

focus the sampling on regions of interest (e.g., targeting
optimization or limit state estimation).

5.1 Basic idea

In the literature [102, 117, 197], the word ‘‘sequential’’

is sometimes substituted by ‘‘adaptive’’ or ‘‘application-

driven,’’ and the word ‘‘sampling’’ is sometimes re-

placed by ‘‘experimental design,’’ or ‘‘design of exper-

iment.’’ In the machine/deep learning literature, the

term ‘‘Bayesian optimization’’ is also used to refer to

the same idea [59, 148, 220].

The basic sequential sampling approach finds the

point in the design space that maximizes the kriging

prediction error (here, we use the square root of the krig-

ing prediction variance). Fig. 6 illustrates the first cycle

of the algorithm. Fig. 6a shows the initial kriging model

and the corresponding prediction error. The maximiza-
tion of the prediction error suggests adding x = 0.21

to the data set. The updated kriging model is shown

in Fig. 6b. There is a substantial decrease in the root

mean square error, from eRMS = 4.7 to eRMS = 1.7.

Regions of high error estimates push exploration.

Literature on sequential sampling is vast. In this

paper, we decide to discuss a sample of research works

published in roughly the past 20 years.

Sample of papers published between 1998 and 2010

Papers addressed both fundamental formulation as well

as presented case study compatible with the computer

power available at the time. Some of the papers pub-

lished in this era include:
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(a) Maximizing sKRG(x).

(b) Updated KRG model.

Fig. 6: Basic sequential sampling. (a) shows that the

maximization of kriging prediction standard deviation,

sKRG(x), suggests adding x = 0.21 to the data set.

(b) illustrates the updated kriging (KRG) model after

x = 0.21 is added to the data set.

-- 1998 and 2001 - Jones et al. [108] proposed the for-

mulation that used the uncertainty Gaussian process

to guide the next set of simulations aiming at global

optimization of expensive black-box functions. In a

follow-up paper, Jones [106] presented an interesting

taxonomy discussing advantages and disadvantages

of different infill criteria.

-- 2000 - Audet et al. [6] used the expected violation,

a concept similar to the expected improvement, to

improve the accuracy of the surrogate along the

boundaries of the feasible/unfeasible region. The

approach was tested on analytical problems and a

wing platform design problem.

-- 2002 - Jin et al. [102] reviewed various sequential

sampling approaches (maximization of the prediction

error, minimization of the integrated square error,

maximization of the minimum distance, and cross

validation) and compared them with simply filling

of the original design (one stage approach). They

found that the performance of the sequential sam-

pling methods depended on the quality of the initial

surrogate -- there is no guarantee that sequential

sampling will do better than the one stage approach.

-- 2004 - Kleijnen and Van Beers [117] proposed an
algorithm that, after the first model is fitted, iter-

ates by placing a set of points using a space filling

scheme and then choosing the one that maximizes

the variance of the predicted output (variance of the

responses taken from cross validation of the original

data set). In a follow up paper, Van Beers and Klei-

jnen [197] improved their approach to account for

noisy responses. In the works of Kleijnen and Van

Beers, an improved kriging variance estimate [94] is

used and that might be a reason for better results.

-- 2006 - Rai [159] introduced the qualitative and quan-

titative sequential sampling technique. The method

combines information from multiple sources (includ-

ing computer models and the designer’s qualitative

intuitions) through a criterion called ‘‘confidence

function.’’ The capabilities of the approach were

demonstrated using examples including the design

of a bi-stable micro electro-mechanical system.

-- 2007 to 2009 - Ginsbourger et al. [71], Villemonteix

et al. [211], and Queipo et al. [157] share the com-

mon point of proposing alternatives to the expected

improvement for selection of points. Ginsbourger et
al. [71] extended both the expected improvement and

the probability of improvement as infill sampling

criteria allowing for multiple points in each addi-

tional cycle. However, they also mention the high

computational costs associated with this strategy.
Villemonteix et al. [211] introduces a new criterion

that they called ‘‘conditional minimizers entropy’’

with the advantage of being ready to use in noisy

applications. Queipo et al. [157] focused on the assess-

ment of the probability of being below a target value

given that multiple points can be added in each op-

timization cycle (this strategy is more cost-efficient

than the expected improvement counterpart).

-- 2007 - Turner et al. [194] proposed a heuristic scheme

that samples multiple points at a time based on non

uniform rational B-splines (NURBs). The candidate

sites are generated by solving a multi-objective opti-

mization problem. The effectiveness of the algorithm

was demonstrated for five trial problems of engineer-

ing interest.
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-- 2008 - Bichon et al. [16] proposed the efficient global

reliability analysis (EGRA) algorithm. As opposed

to global optimization, EGRA aims at improving

the accuracy of the surrogate model near the limit

state (target value). In the context of design under

uncertainty, the approach is useful for estimation of

the probability of failure. As the samples are added,

the surrogate accuracy near the boundaries of limit

state functions improves; and therefore, the accuracy

of the probability of failure estimate also improves.

-- 2008 - Forrester and Keane [58] published one of
the books on surrogate-based optimization that is

heavily geared towards modern approaches to se-

quential sampling. This book is written by engineers

for engineers and provides an extended and mod-

ern review, including topics such as constrained and

multi-objective optimization.

-- 2009 - Gorissen et al. [86] brought multiple surro-

gates to adaptive sampling. The objective is to be

able to select the best surrogate model by adding

points iteratively. They tailored a genetic algorithm

that combines automatic model type selection, auto-

matic model parameter optimization, and sequential

design exploration. They used a set of analytical

functions and engineering examples to illustrate the

methodology.

-- 2010 - Rennen et al. [165] proposed nested designs.

The idea is that the low accuracy of a model obtained

might justify the need of an extra set of function

evaluations. They proposed an algorithm that ex-

pands an experimental design aiming maximization

of space filling and non-collapsing points.

Sample of papers published between 2011 and 2021

In the past ten years, researchers kept the focus on

fundamental issues as well as addressed very important

practical aspects of sequential sampling. Some of the

papers published in this era include:

-- 2011 - Echard et al. [52] proposed a sequential sam-

pling procedure for the estimation of limit state

functions in reliability analysis. While similar in

spirit to EGRA [16] it proposes a different enrich-

ment criterion (U criterion) and has the advantage

of very simple integration in a Monte Carlo sampling

framework.

-- 2011 - Bichon et al. [17] extended the efficient global

reliability analysis algorithm to simultaneously han-

dle multiple limit state functions (i.e., failure modes).

Authors studied the performance of three different

approaches (i) a Gaussian process model for each

limit state function, (ii) a single Gaussian process

model to capture the ‘‘composite’’ limit state, and

finally (iii) a composite expected feasibility func-

tion. These approaches were tested against analytical

problems as well as the design of a liquid hydrogen

tank and a vehicle side impact problem.

-- 2012 - Bect et al. [11] expanded the sequential sam-

pling method aiming directly at the probability of

failure, as opposed to the limit state function. Au-

thors derive a stepwise uncertainty reduction strat-

egy and apply to analytical and structural reliability

problems.

-- 2012 and 2013 - Viana et al. [207, 208] proposed
using multiple surrogates that optimize the expected

improvement and expected feasibility as a cheap and

efficient way of generating multiple points in each

additional cycle. The diversity of surrogate models

drives the suggestion of multiple points per cycle

and keeping the implementation simple (avoiding the

computationally expensive implementations of multi-

point versions of the probability of improvement or

expected improvement).

-- 2014 - Zaefferer et al. [225] extended the formula-

tion of the efficient global optimization algorithm

to handle combinatorial problems. Their approach

involved using permutation measures such as the

Hamming distance and others, as opposed to simple

Euclidean distance. Authors tested their approach

using a collection of analytical problems.

-- 2015 - Hu and Du [96] demonstrated the use of

sequential sampling for reliability analysis with time-

dependent responses. Authors used a Gaussian pro-

cess that models the output of interest as a function

of input variables and time and discuss issues related

to the initial data set as well as uncertainty associ-
ated with the computation of the time-dependent

probability of failure.

-- 2016 - Haftka et al. [91] and Li et al. [133] published

almost simultaneously papers where they studied

parallelization of sequential sampling for global op-
timization. Haftka et al. [91] presented a formal lit-

erature survey where authors discussed exploration

versus exploitation, strategies based on one or mul-

tiple surrogate models, and evolutionary approaches.

Li et al. [133] presented a comparative study of par-

allel version of sequential sampling involving multi-

point sampling criteria and domain decomposition.

They discussed infill criteria such as the expected im-

provement and mutual information. Their numerical

study included analytical problems, looking into con-

vergence and robustness, as well as an engineering

application (air conditioner cover design).

-- 2017 - Rana et al. [162] proposed an algorithm to

address the curse of dimensionality in sequential

sampling using the standard implementation of the
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Gaussian process. In high-dimensions different in-

fill criteria can invariably show only few peaks sur-

rounded by almost flat surface, which makes their

optimization a very hard problem. The proposed

method builds on two assumptions (i) when the Gaus-

sian process length-scales (i.e. correlation length) are

large enough, they can make the gradient of infill

criteria useful, (ii) extrema of consecutive acquisi-

tion functions are close if the difference in the used

length-scales is small. The algorithm switches be-

tween finding ideal length scales and optimizing the
infill criterion. Authors tested their approach on an-

alytical and engineering problems ranging from 6 to

50 input variables.

-- 2018 - Chaudhuri et al. [28] presented an approach

for analysis of feedback-coupled systems (fire de-

tection satellite model and aerostructural analysis

of a wing) based on sequential sampling so that

the computational cost is minimized. They used an

information-gain-based and a residual-error-based

adaptive sampling strategy in their work.

-- 2019 - Bartoli et al. [9] proposed a framework to han-

dle nonlinear equality or inequality constraints while

performing global optimization using sequential sam-

pling. Their approach builds on mixture of experts

and augmented infill criteria (using a combination of

expected improvement and the estimated response

given by the surrogate). Using both analytical prob-

lems and engineering examples, authors compared

the results of their approach with other optimization

algorithms using criteria such as percentage of con-

verged runs, mean number of function evaluations

for converged runs, and standard deviation of the
number of function evaluations for converged runs.

-- 2020 - Knudde et al. [120] implemented sequential

sampling using deep Gaussian process models. The

claimed advantage of deep Gaussian process is their

ability to model highly non-linear and nonstationary
responses. Authors compared regular Gaussian pro-

cess, sparse Gaussian process, deep Gaussian process,

and Gaussian process models with nonstationary ker-

nels against an analytical problem, as well as the

Langley Glide-Back Booster problem by NASA [150]

and an electronic amplifier design.

-- 2021 - Beek et al. [12] proposed a batch sampling

scheme for optimization of expensive computer mod-

els with spatially varying noise. Authors reformu-

lated the posterior prediction variance to account for

the nonstationary noise. The approach is empirically

demonstrated on a set of analytical problems as well

as the design of an organic photovoltaic cell.

5.2 A practical view on sequential sampling

Understanding two important trade-offs - Surrogate

models are usually employed on problems where data is

computationally expensive to obtain. It is very conve-

nient to think that given a budget, defined in terms of

number of data points, one can go about acquiring data,

fitting one or more surrogate models, and then build a

model that will replace all the expensive simulations in

tasks such as design space exploration, global sensitivity

analysis, uncertainty quantification, optimization, etc.

The first trade-off one needs to understand when using

sequential sampling is that goal justifies the means that
data is obtained. In practical terms, if the goal is to

perform global optimization, one will use metrics such

as the expected improvement to sequentially gather

data and eventually find the global optimum. Since the

surrogate model is just a mean to achieve the end goal,

efficiency gains most likely come at the cost of a highly

specialized final surrogate model.

The second important trade-off to understand is

the compromise between exploration and exploitation.

This is very well explained in [106]. Essentially, even

though points are ideally added to achieve a specific goal

(exploitation), some of these points are inevitably added

to compensate for surrogate uncertainty (exploration).

Formulating the sequential sampling problem - While

sequential sampling can provide efficiency gains in terms

of number of data points and wall-clock time, it comes

at the cost of having to pre-define the intended task.

Table 2 summarizes some of the important aspects to

consider. Obviously, the first one is the goal of the task

itself, which is then used to define the sampling criteria.

The number of points added per cycle can influence the

sampling criteria as well and it is usually a decision that

is application dependent. For example, in simulation-

based design optimization, it is common to run multiple

simulations at once using parallel computing. The choice

of surrogate models to be used depends on the quality

of the available uncertainty estimates, but can also be

related to the number of points per cycle. After all,

each surrogate can provide one or more multiple points.

Last, but not least, the fidelity level of the data is

important, as it defines the one more level of complexity

in the surrogate modeling. Multi-fidelity approaches are

available and detailed in [28, 70, 229].

Choosing an infill (sampling) criteria - In its standard

form, the efficient global optimization (EGO) algorithm

starts by fitting a Gaussian process (kriging) model for

the initial set of data points. After that, the algorithm

iteratively adds points to the data set in an effort to



Surrogate modeling: tricks that endured the test of time and some recent developments 15

Table 2: Points to consider in sequential sampling

Feature Common options

End goal Surrogate accuracy / Global opti-
mization / Limit state estimation

Points per cycle Single / multiple
Surrogate modeling Single / multiple
Fidelity of data Single / multiple (variable)

improve upon the present best sample yPBS . In each

cycle, the next point to be sampled is the one that

maximizes the expected improvement

EI(x) = E [I(x)] = s(x) [uΦ(u) + φ(u)] ,

u = [yPBS − ŷ(x)]/s(x) ,
(6)

where Φ(.) and φ(.) are the cumulative density function

(CDF) and probability density function (PDF) of a nor-

mal distribution, ŷ(x) is the kriging prediction; and s(x)

is the prediction standard deviation -- here estimated

as the square root of the prediction variance s2(x).

Unlike methods that only look for the optimum pre-

dicted by the surrogate, EGO will also favor points

where surrogate predictions have high uncertainty. Af-

ter adding the new point to the existing data set, the

kriging model is updated (usually without going to the

costly optimization of the correlation parameters). Fig. 7

illustrates the one cycle of the EGO algorithm. Fig. 7a

shows the initial kriging model and the corresponding

expected improvement. The maximization of E[I(x)]

adds x = 0.19 to the data set. In the next cycle, EGO

uses the updated kriging model shown in Fig. 7b.

Table 3 summarizes the basic versions of popular in-

fill criteria used for different goals. The interested reader

can find discussion on other, and potentially more so-

phisticated, infill criteria in [9, 90, 91, 133, 151, 154, 169].

There are also variations for ‘‘noisy’’ data (coming from

stochastic simulators or physical experiments), as dis-

cussed in [57, 129, 154, 200]. For the most part, imple-

mentation of sequential sampling adding one point at

a time should be relatively straightforward; except for

the fact that the infill criteria is often challenging to

be optimized. As illustrated in Figs. 6 and 7, the infill

criteria used in sequential sampling can present several

local optima. Therefore, in practical terms, optimiza-

tion is carried over with specialized implementations of

optimization algorithms [107, 182].

Other important remarks - Research on concurrent

implementations of sequential sampling has extended

infill criteria, such as the probability of improvement

and the expected improvement, to versions that return

the infill criteria when multiple points are added to the

(a) Maximizing E[I(x)].

(b) Updated KRG model.

Fig. 7: Cycle of the efficient global optimization (EGO)

algorithm. (a) shows that the maximization of the ex-

pected improvement, E[I(x)], suggests adding x = 0.19

to the data set. (b) illustrates the updated kriging (KRG)
model after x = 0.19 is added to the data set.

data set (rather than a single point) [93, 155]. How-

ever, maximizing the multiple point infill criteria is

computationally challenging [72]. Alternatively, there

are approximations and heuristics that can be used to

reduce the computational cost. For example, one can ap-

proximate the multi-point probability by neglecting the

correlation (assuming that points would be far enough).

In that case, the single point probability can be used as

a computationally efficient approximation. A heuristic

called kriging-believer [72] has been extensively used.

After selecting a new sample, kriging is updated using

the estimated value as if it were data. The process is

repeated until one obtains the desired number of sam-

ples. Alternatively, multiple surrogates and ensembles

can also be used to suggest multiple points per cycle

[86, 208]. The interested reader can find survey and ded-

icated studies on parallelization of sequential sampling

for global optimization in [91, 133].
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Table 3: Overview of a subset of initially developed infill criteria. Φ(.) and φ(.) are the cumulative density function

and probability density function of a normal distribution. ŷ(x) and s(x) are the Gaussian process prediction mean

and standard deviation. Here, global optimization targets finding the minimum of a function.

Goal Criteria Definition Comments

Surrogate
accuracy

Entropy [45] |R| |JTR−1J| R is the correlation matrix of all the n+m points
(n are points already sampled and m are points
to be sampled) and J is a vector of 1’s. This is a
simple metric to compute; although it can be come
expensive when m is large.

Integrated mean
squared error [171]

−
∫
s2(x)dx Very elegant but computationally intractable.

Prediction uncer-
tainty

s2(x) This implementation is simplistic but can exhibit
slow convergence.

Global
optimiza-
tion [106]

Statistical lower
bound

ŷ(x)− κs(x) Parameter κ is an arbitrary positive number. This
implementation is simplistic but lacks the balance
between exploration and exploitation.

Probability of im-
provement

Φ
(
yT−ŷ(x)

s(x)

)
yT is a user-defined target value. The choice of yT
is arbitrary and can influence the performance of
the criterion.

Expected improve-
ment

s(x) [uΦ(u) + φ(u)] u = [yPBS − ŷ(x)]/s(x) and yPBS is the present
best solution. Improvement is defined as I =
max [yPBS − y((x)), 0]. This criterion has become
the gold standard due to its simplicity and robust-
ness.

Contour /
limit state
estimation

Expected feasibil-
ity [16]

(ŷ(x) −
ȳ)
[
2Φ(u)− Φ(u+)− Φ(u−)

]
−

s(x)
[
2φ(u)− φ(u+)− φ(u−)

]
+

ε
[
Φ(u+)− Φ(u−)

]
ȳ is the target value for the limit state function,

u = ȳ−ŷ(x)

s(x)
, u+ = ȳ+ε−ŷ(x)

s(x)
, u− = ȳ−ε−ŷ(x)

s(x)
,

ε = αs(x), and usually α = 2. This is the equivalent
of expected improvement for the case of contour
estimation.

Modified ex-
pected improve-
ment [163]

[α2s2(x) − (ŷ(x) −
ȳ)2] [Φ(u+ α)− Φ(u− α)]+2(ŷ(x)−
ȳ)s2(x) [φ(u+ α)− φ(u− α)] −∫ ȳ+αs(x)
ȳ−αs(x) (y − ŷ(x))2φ(u)dy

This comes after redefining improvement as I =
αs(x)−min [(y(x)− ȳ)2, α2s2(x)].

Weighted in-
tegrated mean
squared error [153]

−
∫
s2(x)W (x)dx W (x) = Φ(u+) − Φ(u−), u+ = ȳ+ε−ŷ(x)

s(x)
, u− =

ȳ−ε−ŷ(x)

s(x)
. This is a modified version of the classical

integrated mean square error criterion by weighting
the prediction variance with the expected proximity
to the target level of response.

Besides global optimization or contour estimation,

practitioners very often deal with constrained and multi-

objective optimization. [151] discussed how to use the

expected improvement of the objective function and

the probability of feasibility calculated from the con-

straint functions to handle constrained global optimiza-

tion. Durantin et al. [50] presented a friendly discussion

on sequential sampling for multi-objective optimiza-

tion problems including adaptations for multi-objective

constrained optimization. Examples of research that fur-

thered the treatment of constrains and multiple objec-

tives include, but are not limited to, [9, 43, 90]. Bartoli et

al. [9] proposed a framework to handle nonlinear equal-

ity or inequality constraints while performing global

optimization of multimodal functions. Their approach

is based on a robust implementation of the Gaussian

process (with conditioning of the correlation matrix to

support large number of design variable), a modified

expected improvement that is less multimodal than the

original version, and mixture of experts (a form of en-

semble). Aware of the potential challenges associated

with the computational cost of using the probability

of improvement and/or the expected improvement for

multi-objective problems, Couckuyt et al. [43] proposed
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a hypervolume-based improvement function coined for

multi-objective problems. Their approach also included

tracking changes in the Pareto front, and decomposing

the objective space. Guo et al. [90] explicitly proposed

using ensemble of surrogates for managing multiple

objectives in sequential sampling. They used support

vector machines, radial basis functions, and Gaussian

process with the argument that using ensembles is an

scalable way to achieve diversity, which is important as

the complexity of the problem grows.

In many real-world applications, engineers and sci-

entists are likely to face problems involving multiple

responses and/or multi-fidelity models. Liu et al. [136]

proposed an approach for handling sequential sampling

when dealing with multi-fidelity models that is based

on Voronoi tessellation. Using a combination of Voronoi

tessellation for region division, Pearson correlation coef-

ficients and cross validation analysis, authors determine
the candidate region for infilling a new sample. They

demonstrated the success of their approach using well-

kown set of analytical test functions as well as the design

optimization of a hoist sheave (based on finite element

modeling). Khatamsaz et al. [112] exploits the structure

of the Gaussian process to perform model fusion and
expected hypervolume improvement to perform efficient

multi-objective optimization when multiple sources of in-

formation are available. After performing an study with

analytical functions, authors applied their framework

to a coupled aerostructural wing design optimization

problem. Results were compared to ParEGO and NSGA-

II, two other well-known multi-objective optimization

approaches. Chaudhuri et al. [29] extended the EGRA

algorithm to multifidelity problems. Authors proposed

a two-stage sequential sampling approach combining

expected feasibility and one-step lookahead informa-

tion gain, where multi-fidelity modeling is handled by

Gaussian processes. Numerical study includes analytical

functions and the reliability analysis of an acoustic horn

Finally, sequential sampling techniques are very im-

portant for high-dimensional, computationally expen-

sive, and black-box problems. However, efficient imple-

mentation often finds challenges associated with the

curse of dimensionality, such as the relative distance

between the points, the need for large datasets, etc. Be-

sides, the Gaussian process itself suffers from problems

such as ill-conditioning of the covariance matrix and

convergence to mean prediction and saturation of un-

certainty estimates. These challenges have motivated

research in the field, and we refer the interested readers

to [131, 162, 216] for further details.

5.3 Software

Currently, there exists a number of commercial soft-

ware an dedicated packages (in many programming

languages) that implement a variety of surrogate mod-

eling techniques. Sometimes surrogate modeling is not

a final goal; but rather, it is a companion to optimiza-

tion and design exploration capabilities. Table 4 lists a

few software and packages that have implemented, in-

tegrated, or adapted, in one way or another, sequential

sampling using Gaussian process in the form discussed in

this paper. We do not claim this to be a comprehensive

list, although it shows the diversity in terms of commer-

cial/industrial software and open source packages.

6 Concluding Remarks and Future Research

In this paper, we have summarized four methodologies

that allow smarter use of the sampled data and surrogate

modeling. We discussed (i) screening and variable reduc-

tion, (ii) design of experiments, (iii) surrogate modeling

and ensembles, and (iv) sequential sampling. Based on

our understanding and experience we can say that:

-- Screening and variable reduction: is an efficient

step for reducing the cost of the surrogate’s construc-

tion, with drastic dimensionality reductions being

possible. Some approaches such as non-dimensional-

ization or principal component regression can at the

same time improve the accuracy of the approxima-

tions.

-- Design of experiments: is extremely useful to

optimally sample the design space such that we
maximize the quality of surrogate model using the

knowledge about the problem while working within

the budgetary constraints in gathering the data.

-- Surrogate modeling and ensembles: is attrac-

tive because no single surrogate works well for all

problems and the cost of constructing multiple sur-

rogates is often small compared to the cost of simu-

lations.

-- Sequential sampling: is an efficient way of making

use of limited computational budget. Techniques

make use of both the prediction and the uncertainty

estimates of the surrogate models to intelligently

sample the design space.

With this paper, we hope to have summarized prac-

tices that have endured the test of time. The research

in each of the topics we discussed has been very active

and we would like to contribute by mentioning potential

topics of future research regarding:

-- Screening and variable reduction:
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Table 4: Short list of software and openly available packages for sequential sampling.

Software Link

DAKOTA [2] https://dakota.sandia.gov

OpenMDAO [89] https://openmdao.org/

TOMLAB [53] https://tomopt.com/tomlab

GEBHM [124] Proprietary

Package Language Link

GPFlow [62] Python https://github.com/GPflow/GPflow

GPyTorch [63] Python https://github.com/cornellius-gp/gpytorch

SEPIA [67] Python https://github.com/lanl/SEPIA

GPyOpt [119] Python https://github.com/SheffieldML/GPyOpt

pyGPGO [100] Python https://pygpgo.readthedocs.io

SMT [21] Python https://smt.readthedocs.io/en/latest/

GPMSA [68] Matlab https://github.com/lanl/GPMSA

DACE [137] Matlab http://www.omicron.dk/dace

SURROGATES Toolbox [202] Matlab https://sites.google.com/site/srgtstoolbox

SUMO Toolbox [87] Matlab http://www.sumowiki.intec.ugent.be/Main_Page

DiceKriging and DiceOptim [170] R https://cran.r-project.org/web/packages/DiceOptim

laGP [88] R https://cran.r-project.org/web/packages/laGP

mlrMBO [18] R https://cran.r-project.org/web/packages/mlrMBO

Metrics Optimization Engine [37] C++ https://github.com/Yelp/MOE

a) automatic construction of most appropriate vari-

able transformation,

b) efficient construction of most relevant embedded
subspace for variable reduction or dimensionality

reduction, and

c) combination of dimensionality reduction, sensitiv-

ity analysis, and sequential sampling techniques

to enhance efficiency.

-- Design of experiments:

a) framework for the use of appropriate criteria for

the construction of DOEs,

b) optimal DOEs suitable to a large class of surro-

gate techniques, and

c) budget allocation in sequential DOE sampling.

-- Surrogate modeling and ensembles:

a) resource allocation of simulators with tunable

fidelity (unified framework as opposed to adapted

ideas from multi-fidelity modeling),

b) investigation of the benefits multiple surrogates

on sequential sampling and reliability-based op-

timization, and

c) visualization and design space exploration (since

different surrogates might be more accurate in

different regions of the design space).

-- Sequential sampling:

a) development of variable fidelity approaches,

b) measurement (and reduction) of the influence of

the surrogate accuracy on the method, and

c) combined use of space-filling and adapted strate-

gies for increased robustness.

Finally, complexity in terms of numerical implemen-

tation and optimization and, in some cases, the small

commercial software footprint may hinder these tech-

niques from popularity in the near term. Therefore, we

believe that the investment in packages and learning
tools together with ongoing scientific investigation can

continue to be very beneficial.
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ter É (2008) Global optimization based on noisy

evaluations: An empirical study of two statis-

tical approaches. Journal of Physics: Confer-

ence Series 135:012100, DOI 10.1088/1742-6596/

135/1/012100, URL https://doi.org/10.1088%

2F1742-6596%2F135%2F1%2F012100

201. Venter G, Haftka RT, Starnes JH (1998) Con-

struction of response surface approximations for

design optimization. AIAA Journal 36(12):2242--

2249, DOI 10.2514/2.333, URL https://doi.org/

10.2514/2.333

202. Viana FAC (2011) SURROGATES Toolbox

User’s Guide. Gainesville, FL, USA, version

3.0 edn, URL https://sites.google.com/site/

srgtstoolbox

203. Viana FAC (2016) A tutorial on Latin hy-

percube design of experiments. Quality

and Reliability Engineering International

32(5):1975--1985, DOI 10.1002/qre.1924, URL

https://onlinelibrary.wiley.com/doi/abs/

10.1002/qre.1924, https://onlinelibrary.

wiley.com/doi/pdf/10.1002/qre.1924

204. Viana FAC, Haftka RT (2009) Cross validation

can estimate how well prediction variance corre-

lates with error. AIAA Journal 47(9):2266--2270,

DOI 10.2514/1.42162, URL http://dx.doi.org/

10.2514/1.42162

205. Viana FAC, Haftka RT, Steffen V (2009) Mul-

tiple surrogates: how cross-validation errors can

help us to obtain the best predictor. Structural

and Multidisciplinary Optimization 39(4):439--

457, DOI 10.1007/s00158-008-0338-0, URL http:

//dx.doi.org/10.1007/s00158-008-0338-0

206. Viana FAC, Venter G, Balabanov V (2010) An al-

gorithm for fast optimal latin hypercube design of

experiments. International Journal for Numerical
Methods in Engineering 82(2):135--156, DOI 10.

1002/nme.2750, URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/nme.2750

207. Viana FAC, Haftka RT, Watson LT (2012) Se-

quential sampling for contour estimation with con-
current function evaluations. Structural and Mul-

tidisciplinary Optimization 45(4):615--618, DOI

10.1007/s00158-011-0733-9, URL http://dx.doi.

org/10.1007/s00158-011-0733-9

208. Viana FAC, Haftka RT, Watson LT (2013)

Efficient global optimization algorithm assisted

by multiple surrogate techniques. Journal of

Global Optimization 56(2):669--689, DOI 10.1007/

s10898-012-9892-5, URL https://doi.org/10.

1007/s10898-012-9892-5

209. Viana FAC, Simpson TW, Balabanov V, Toropov

V (2014) Metamodeling in multidisciplinary design

optimization: how far have we really come? AIAA

Journal 52(4):670--690, DOI 10.2514/1.J052375,

URL https://arc.aiaa.org/doi/abs/10.2514/

https://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476423
https://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476423
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1993.10476423
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1993.10476423
https://doi.org/10.1007/s00366-006-0051-9
https://doi.org/10.1007/s00366-006-0051-9
https://doi.org/10.2514/6.2004-4007
https://doi.org/10.2514/6.2004-4007
https://www.sciencedirect.com/science/article/pii/S0377221707002895
https://www.sciencedirect.com/science/article/pii/S0377221707002895
https://doi.org/10.1088%2F1742-6596%2F135%2F1%2F012100
https://doi.org/10.1088%2F1742-6596%2F135%2F1%2F012100
https://doi.org/10.2514/2.333
https://doi.org/10.2514/2.333
https://sites.google.com/site/srgtstoolbox
https://sites.google.com/site/srgtstoolbox
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.1924
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.1924
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.1924
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.1924
http://dx.doi.org/10.2514/1.42162
http://dx.doi.org/10.2514/1.42162
http://dx.doi.org/10.1007/s00158-008-0338-0
http://dx.doi.org/10.1007/s00158-008-0338-0
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2750
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2750
http://dx.doi.org/10.1007/s00158-011-0733-9
http://dx.doi.org/10.1007/s00158-011-0733-9
https://doi.org/10.1007/s10898-012-9892-5
https://doi.org/10.1007/s10898-012-9892-5
https://arc.aiaa.org/doi/abs/10.2514/1.J052375


30 Felipe A. C. Viana et al.

1.J052375

210. Vignaux GA, Scott JL (1999) Simplifying regres-

sion models using dimensional analysis. Austalia

& New Zealand Journal of Statistics 41(2):31–41

211. Villemonteix J, Vazquez E, Walter E (2008) An

informational approach to the global optimiza-

tion of expensive-to-evaluate functions. Journal

of Global Optimization 44(4):509--534, DOI 10.

1007/s10898-008-9354-2, URL https://doi.org/

10.1007/s10898-008-9354-2

212. Wang DQ (2011) Least squares-based recursive
and iterative estimation for output error mov-

ing average systems using data filtering. IET

Control Theory & Applications 5:1648--1657(9),

DOI 10.1049/iet-cta.2010.0416, URL https:

//digital-library.theiet.org/content/

journals/10.1049/iet-cta.2010.0416

213. Wang GG, Shan S (2004) Design space reduc-

tion for multi-objective optimization and ro-

bust design optimization problems. SAE Transac-

tions 113:101--110, URL http://www.jstor.org/

stable/44699911

214. Wang GG, Shan S (2006) Review of metamodeling

techniques in support of engineering design opti-

mization. Journal of Mechanical Design 129(4):370-

-380, DOI 10.1115/1.2429697, URL https://doi.

org/10.1115/1.2429697

215. Wang W, Huang Y, Wang Y, Wang L (2014) Gen-

eralized autoencoder: A neural network framework

for dimensionality reduction. In: Proceedings of the

IEEE conference on computer vision and pattern

recognition workshops, pp 490--497

216. Wang Z, Li C, Jegelka S, Kohli P (2017) Batched
high-dimensional Bayesian optimization via struc-

tural kernel learning. In: Precup D, Teh YW

(eds) Proceedings of the 34th International Con-

ference on Machine Learning, PMLR, Proceed-

ings of Machine Learning Research, vol 70,
pp 3656--3664, URL http://proceedings.mlr.

press/v70/wang17h.html

217. Welch WJ, Buck RJ, Sacks J, Wynn HP, Mitchell

TJ, Morris MD (1992) Screening, predicting, and

computer experiments. Technometrics 34(1):15--

25, DOI 10.1080/00401706.1992.10485229, URL

https://amstat.tandfonline.com/doi/abs/

10.1080/00401706.1992.10485229

218. Wold H (1983) Systems analysis by partial least

squares. Iiasa collaborative paper, IIASA, IIASA,

Laxenburg, Austria, URL http://pure.iiasa.

ac.at/id/eprint/2336/

219. Wolpert DH (1996) The lack of a priori distinc-

tions between learning algorithms. Neural Com-

putation 8(7):1341--1390, DOI 10.1162/neco.1996.

8.7.1341, URL https://doi.org/10.1162/neco.

1996.8.7.1341

220. Wu J, Toscano-Palmerin S, Frazier PI, Wilson AG

(2020) Practical multi-fidelity Bayesian optimiza-

tion for hyperparameter tuning. In: Adams RP,

Gogate V (eds) Proceedings of The 35th Uncer-

tainty in Artificial Intelligence Conference, PMLR,

Tel Aviv, Israel, Proceedings of Machine Learn-

ing Research, vol 115, pp 788--798, URL http:

//proceedings.mlr.press/v115/wu20a.html

221. Yang W, Wang K, Zuo W (2012) Neighborhood
component feature selection for high-dimensional

data. JCP 7(1):161--168

222. Yang Y (2003) Regression with multiple candi-

date models: selecting or mixing? Statistica Sinica

13(3):783--809, DOI 10.1.1.17.753

223. Yee TW (2000) Vector splines and other vector

smoothers. In: eds (ed) Proc. Computational Statis-

tics COMPSTAT 2000, Physica-Verlag HD, Beth-

lehem, J.G., Van der Heijden, P.G.M, pp 529--534,

DOI 10.1007/978-3-642-57678-2 75, URL https:

//doi.org/10.1007/978-3-642-57678-2_75

224. Yondo R, Andrés E, Valero E (2018) A review

on design of experiments and surrogate models in

aircraft real-time and many-query aerodynamic

analyses. Progress in Aerospace Sciences 96:23--

61, DOI https://doi.org/10.1016/j.paerosci.2017.

11.003, URL https://www.sciencedirect.com/

science/article/pii/S0376042117300611

225. Zaefferer M, Stork J, Friese M, Fischbach A,

Naujoks B, Bartz-Beielstein T (2014) Efficient

global optimization for combinatorial problems.

In: Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation, ACM,

DOI 10.1145/2576768.2598282, URL https://

doi.org/10.1145/2576768.2598282

226. Zahm O, Constantine PG, Prieur C, Marzouk YM

(2020) Gradient-based dimension reduction of mul-
tivariate vector-valued functions. SIAM Journal

on Scientific Computing 42(1):A534--A558, DOI

10.1137/18M1221837, URL https://doi.org/10.

1137/18M1221837

227. Zerpa LE, Queipo NV, Pintos S, Salager JL

(2005) An optimization methodology of alkaline-

surfactant-polymer flooding processes using field

scale numerical simulation and multiple surrogates.

Journal of Petroleum Science and Engineering 7(3-

-4):197--208, DOI 10.1016/j.petrol.2005.03.002

228. Zhang P (1993) Model selection via multifold cross

validation. The Annals of Statistics 21(1):299--313,

DOI 10.1214/aos/1176349027

229. Zhou Q, Wang Y, Choi SK, Jiang P, Shao

X, Hu J (2017) A sequential multi-fidelity

https://arc.aiaa.org/doi/abs/10.2514/1.J052375
https://arc.aiaa.org/doi/abs/10.2514/1.J052375
https://doi.org/10.1007/s10898-008-9354-2
https://doi.org/10.1007/s10898-008-9354-2
https://digital-library.theiet.org/content/journals/10.1049/iet-cta.2010.0416
https://digital-library.theiet.org/content/journals/10.1049/iet-cta.2010.0416
https://digital-library.theiet.org/content/journals/10.1049/iet-cta.2010.0416
http://www.jstor.org/stable/44699911
http://www.jstor.org/stable/44699911
https://doi.org/10.1115/1.2429697
https://doi.org/10.1115/1.2429697
http://proceedings.mlr.press/v70/wang17h.html
http://proceedings.mlr.press/v70/wang17h.html
https://amstat.tandfonline.com/doi/abs/10.1080/00401706.1992.10485229
https://amstat.tandfonline.com/doi/abs/10.1080/00401706.1992.10485229
http://pure.iiasa.ac.at/id/eprint/2336/
http://pure.iiasa.ac.at/id/eprint/2336/
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
http://proceedings.mlr.press/v115/wu20a.html
http://proceedings.mlr.press/v115/wu20a.html
https://doi.org/10.1007/978-3-642-57678-2_75
https://doi.org/10.1007/978-3-642-57678-2_75
https://www.sciencedirect.com/science/article/pii/S0376042117300611
https://www.sciencedirect.com/science/article/pii/S0376042117300611
https://doi.org/10.1145/2576768.2598282
https://doi.org/10.1145/2576768.2598282
https://doi.org/10.1137/18M1221837
https://doi.org/10.1137/18M1221837


Surrogate modeling: tricks that endured the test of time and some recent developments 31

metamodeling approach for data regression.

Knowledge-Based Systems 134:199--212, DOI

https://doi.org/10.1016/j.knosys.2017.07.033,

URL https://www.sciencedirect.com/

science/article/pii/S0950705117303556

https://www.sciencedirect.com/science/article/pii/S0950705117303556
https://www.sciencedirect.com/science/article/pii/S0950705117303556

	Introduction
	Reducing input and output dimensionality
	Design of experiments
	Surrogate modeling and ensembles
	Sequential sampling
	Concluding Remarks and Future Research

