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Abstract

Running a reliability analysis on engineering problems involving complex

numerical models can be computationally very expensive, requiring advanced

simulation methods to reduce the overall numerical cost. Gaussian process based

active learning methods for reliability analysis have emerged as a promising way

for reducing this computational cost. In this paper, we propose a methodology

to quantify the sensitivity of the failure probability estimator to uncertainties

generated by the Gaussian process and the sampling strategy. This quantifica-

tion also enables to control the whole error associated to the failure probability

estimate and thus provides an accuracy criterion on the estimation. Thus, an

active learning approach integrating this analysis to reduce the main source of

error and stopping when the global variability is sufficiently low is introduced.

The approach is proposed for both a Monte Carlo based method as well as an

importance sampling based method, seeking to improve the estimation of rare

event probabilities. Performance of the proposed strategy is then assessed on

several examples.
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1. Introduction

Engineering systems are subject to numerous uncertainties that imply a

probability that these systems can fail. Reliability analyses seek to determine

this probability of failure in order to understand, certify or improve their design.

Numerous reliability analysis techniques, i.e. techniques to estimate the proba-5

bility of failure, can be found in the literature such as analytic approximations

(FORM/SORM) [1], sampling methods based on Monte Carlo Simulations tech-

niques [2], surrogate-based reliability analysis methods [3], which can be adap-

tive or not. Adaptive approaches have been proposed in particular for Gaussian

process surrogates [4, 5, 6, 7, 8, 9, 10, 11], support vector machines [12, 13] and10

polynomial-chaos-based Kriging [14]. Considering any sampling technique, the

probability of failure is obtained by a classification of the samples. The latter

have to be evaluated first in order to be classified. This evaluation phase can be

numerically very expensive for complex models. Gaussian process-based adap-

tive sampling methods for reliability analysis represent one of the promising15

ways for reducing this computational cost.

Gaussian process-based adaptive sampling methods consist in building a

Gaussian process surrogate model (or Kriging surrogate model) [15, 16] of the

performance function and using the uncertainty structure of the Gaussian pro-

cess to enrich iteratively this surrogate model. For that purpose, a learning20

criterion is used to select enrichment points at each iteration of the learning

phase in order to better learn the limit state. Then, the estimation of the prob-

ability of failure is typically obtained by a classification of a set of Monte Carlo

samples evaluated on the final surrogate model.

Several adaptive methods have been proposed along these lines, such as the25

efficient global reliability analysis (EGRA) by Bichon et. al [6] or Active learning

reliability method combining Kriging and Monte Carlo Simulations (AK-MCS)

by Echard et. al [17]. Other methods have also been presented to address

specific problems such as small failure probabilities (rare events) estimations [5,

18, 19, 20, 11, 9, 21], multiple failure regions problems [22, 23, 24, 25] or systems30
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failure probabilities assessment [8, 26, 7, 4, 10, 27].

In adaptive surrogate based methods, the estimator of the probability of

failure is affected by two different uncertainty sources related to the surrogate

model approximation and to the Monte Carlo (MC) based integration tech-

nique. Some investigations have already been carried out to take into account35

the Gaussian process accuracy on the quantity of interest (failure probability

estimator), instead of the Gaussian process local error in the vicinity of the limit

state. In [14] some bounds of the estimator or in [28] an approximation of the

estimation relative error are used. None of these works have however thought

to specifically separate the two previously described sources of error.40

In this paper, we propose to analyse both the Monte Carlo sampling and the

surrogate model influence on the probability of failure estimator with variance

based sensitivity indexes. We show that it is possible to estimate them numer-

ically. It enables us to analyse quantitatively the source of uncertainty that

has to be reduced to improve the accuracy of the failure probability estimate.45

We finally propose a new reliability assessment algorithm that integrates this

analysis to focus on the main source of uncertainty during the learning phase

and also provides a stopping criterion based on the whole error associated to

the failure probability estimate.

The rest of the paper is organized as following. First, we present estima-50

tors of the sensitivity indices of the probability of failure and also of the total

variance. Then, we propose a reliability analysis algorithm that integrates this

sensitivity analysis to adaptively improve the major source of uncertainty during

the learning phase. A stopping criterion based on the total variance estimation

is also proposed for this algorithm. Finally, we present an extension of the55

method adapted to tackle rare events probability estimation problems.
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2. Reliability analysis

2.1. General setting of reliability analyses

Let x1, ..., xm be the m uncertain parameters that are input to the reliability

problem. These parameters are modeled by an absolutely continuous random60

vector X of random variables Xk, k = 1, . . . ,m characterized by a joint proba-

bility distribution with probability density function fX . Note that the random

vector X could be either in the physical or in the standard normal space. In

the rest of the paper we will consider it in the physical space.

In the context of reliability, the output of interest is the performance function

G : Rm → R. This function characterizes the failure of a system. Hence the

domain of failure reads Df = {x ∈ Rm, G(x) ≤ 0}, the domain of safety reads

{x ∈ Rm, G(x) > 0} and the limit state is {x ∈ Rm, G(x) = 0}. The failure

probability Pf is then defined as:

Pf = EfX

[
1G(X)≤0

]
=

∫
Rm

1G(x)≤0fX(x)dx (1)

where 1G(x)≤0 is an indicator function. Several methods exist to evaluate65

this probability [29]. One of the simplest methods is Monte Carlo Simula-

tion (MCS). It consists in the generation of nMC random independent and

identically distributed (i.i.d) samples X1, ...,XnMC with distribution fX and

computing an estimation of the failure probability using these samples. As the

failure probability can be expressed as a mathematical expectation (see Eq. (1)),70

the law of large numbers suggests to build its estimator as the empirical mean

of
(
1G(Xi)≤0

)
i=1,...,nMC

.

An estimation P̂MC
f of the failure probability Pf is then given by:

P̂MC
f =

1

nMC

nMC∑
i=1

1G(x)≤0(Xi) (2)

The variance of this estimator is defined by:

V ar
(
P̂MC
f

)
=
V ar

(
1G(X1)≤0(X1)

)
nMC

(3)
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Hence, MCS based classification methods need a lot of simulations to estimate

small failure probabilities. In order to avoid the evaluation of a complex per-

formance function G(x) on a whole Monte Carlo population, an approximation75

by a surrogate model, denoted Ĝ(x), of this function can be used instead.

2.2. Reliability analysis using a Gaussian process

Reliability analysis with a surrogate model relies mainly on four elements:

• the type of surrogate model. Throughout the article, the surrogate model

Ĝ(x) is assumed to be a Gaussian process and we will review its basics in80

Sec. 2.2.1.

• the sampling approach. In this article, we only consider Monte Carlo based

sampling approaches such as MCS or importance sampling (see Sec. 2.1

and Sec. 5.1).

• the surrogate model enrichment criterion used to most appropriately en-85

rich the surrogate model in order to achieve an accurate approximation of

the limit state. (see Sec. 2.2.2)

• the algorithm stopping criterion, that is set to determine when the surro-

gate model learning is sufficient to obtain an accurate classification of the

samples. (see Sec. 2.2.2)90

In the introduction, many Gaussian process active learning methods were

mentioned. Here, we are interested in methods that consider a population of

candidate samples for the learning. This strategy has been first proposed in

the AK-MCS [17] method. Other methods have then been proposed in order to

address more complex reliability problems as discussed in the introduction. In95

Sec. 2.2.2, some enrichment criteria and their corresponding stopping criteria

used in these methods will be analyzed.
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2.2.1. The Gaussian Process surrogate model

Gaussian process regression, introduced in geostatistics by Krige [30] and

formalized later by Matheron [31], is a method of interpolation in which the100

interpolated function is modeled by a Gaussian process.

A Kriging or Gaussian process interpolation (GP) [15], denoted by G, is fully
characterized by its mean function m(x) and a kernel (or covariance function)

k(·, ·). Hence, the GP prior can be defined as:

G(x) = m(x) + Z(x) (4)

where:

• m(x) = f(x)Tβ with f(x) a vector of basis functions and β the associated

regression coefficients.

• Z(x) a stationary, zero mean, Gaussian process with the variance σ2
Z such

that the kernel defining the GP is

k(x,x′) = CoVar(G(x),G(x′)) = σ2
Zrθ(x,x

′)

rθ(x,x
′) being a correlation function defined by the hyperparameter set105

θ and CoVar(·, ·) being the covariance function between two points. In

this paper, only stationary kernels are used, which means that kernels are

functions of d = |x− x′| (i.e. rθ(x,x′) = rθ(d)).

Several kernel models are available to define the correlation function, such

as the squared exponential, Matern 3/2 or Matern 5/2, the latter one being used110

in the rest of the paper.

The hyperparameters θ, σZ and β of the GP must be estimated to approxi-

mate the response for any unknown point of the domain. For a fixed kernel type,

several techniques exist to obtain the optimal values of these hyperparameters,

for example by Maximum Likelihood Estimation [32] or cross-validation [15].115

The prior distribution of G is considered to be Gaussian. Hence, the pos-

terior distribution Gn of G knowing the observations {xdoe = (x1, ...,xn),y =
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G(xdoe)} is Gaussian Gn = G|(xdoe, y) ∼ GP (µn(·), σ2
n(·, ·)). The GP predic-

tor Ĝ(x) associated to the response has its mean value µn(x) and covariance

σ2
n(x,x′) given by:

µn(x) = f(x)T β̂ + k(x)TC−1(y − F β̂) (5)

σ2
n(x,x′) = k(x,x′)−

(
k(x)T f(x)T

)C F T

F 0

−1k(x′)

f(x′)

 (6)

where k(x) = (k(x,x1), . . . , k(x,xn))T , F is the matrix with row i equals to

f(xi)
T , C := (k(xi,xj))i,j is the covariance matrix between the observations,

and β̂ = (F TC−1F )−1F TC−1y.

Note that in the rest of the paper we will assume that m(x) is an unknown

constant to be fitted with the other hyperparameters (also known as ordinary120

Kriging assumption).

In the following section, the principle of adaptive sampling reliability analysis

methods based on an active learning of a Gaussian process will be presented.

2.2.2. Gaussian process based reliability methods

Gaussian process based reliability methods consist in the learning of a GP of125

the performance function G(x). Therefore, the Gaussian process is iteratively

enriched throughout a learning process in order to be sufficiently accurate in the

vicinity of the limit state. The constructed surrogate model is thus well-suited

for the classification of samples and allows to obtain an accurate estimation of

the probability of failure.130

The selection of the best enrichment point, with respect to the improvement

of the GP approximation of the limit state, among all candidate samples, is

based on a specific learning criterion. These learning criteria are built based

on learning functions used to determine the most relevant point to evaluate

the performance function at each iteration of the algorithm. Many learning

functions exist but we will focus here on two classic learning functions that are
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the functions U and EFF . The function U proposed in [17] is given by:

U(x) =
|µn(x)|
σn(x)

(7)

This criterion is evaluated on the Monte Carlo population and the next enrich-

ment point is selected as the sample x that minimizes U . In AK-MCS [17], the

learning stopping condition for U is defined as min
x

(U(x)) ≥ 2.

Another learning criterion is the expected feasibility function EFF (x), ini-

tially coming from the EGRA method [6], and is given by the following expres-

sion:

EFF (x) = µn(x)

[
2Φ

(
−µn(x)

σn(x)

)
− Φ

(
−ε+ µn(x)

σn(x)

)
− Φ

(
ε− µn(x)

σn(x)

)]
− σn(x)

[
2φ

(
−µn(x)

σn(x)

)
− φ

(
−ε+ µn(x)

σn(x)

)
− φ

(
ε− µn(x)

σn(x)

)]
+ ε

[
Φ

(
ε− µn(x)

σn(x)

)
− Φ

(
−ε+ µn(x)

σn(x)

)]
(8)

where Φ(·) is the standard normal cumulative distribution function and φ(·)
the standard normal density function. In EGRA and AK-MCS+EFF , the ex-

pected feasibility function is built with ε = 2σn. At each iteration, the next best

point to evaluate is then the candidate sample whose EFF value is maximum.

The learning stopping condition is based on a stopping value of the learning

criterion and is defined as:

max
x

(EFF (x)) ≤ 0.001

The probability of failure estimation on a Monte Carlo population of nMC

samples X̃ = (Xi)i=1,··· ,nMC with Xi i.i.d. with the same probability distribu-135

tion as X is then given by:

P̂MC
f (X̃) =

1

nMC

nMC∑
i=1

1µn(Xi)≤0(Xi) (9)

In the currently available methods, the part of failure probability variance

due to the GP is neglected as the learning criteria are conceived to build a very
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confident GP model in terms of classification accuracy, which justifies the use

of the mean µn(Xi) of the GP predictor in the estimator’s expression given140

by Eq. (9). In fact, learning stopping conditions are in general very conserva-

tive, which probably leads to an overquality of the GP when compared to the

sampling variance.

In the next section, we provide new measures of the influence on the proba-

bility of failure of the use of numerical integration by MCS and surrogate model145

approximations based on a variance decomposition.

3. Measure of failure probability sensitivity to GP and MC estimation

uncertainties

Some investigations to take into account the GP accuracy on a quantity of

interest have been carried out. For example, Le Gratiet proposed in [33] to150

provide confidence intervals of Sobol indices estimated by GP regression and

Monte Carlo integration. Therefore, a quantification of the contribution of both

uncertainty sources to the Sobol indices estimators variability is proposed in [33].

In [34, 35], a learning function is proposed that is based on the contribution of a

point of the MC population, considering the dependencies to other samples, to155

the error of the failure probability estimation. In [14], Schöbi proposed to use

bounds of the probability of failure estimator P̂f in an active learning algorithm

for reliability analysis to define a learning stopping condition. In Schöbi’s work,

the bounds were computed by classifying the points of the population using

their prediction bound values.160

3.1. Variance decomposition

To consider the Gaussian process uncertainties, the failure probability can

be rewritten in the following way :

Pf = EGn,fX
[
1Gn(X)≤0

]
=

∫
ΩP

∫
Rm
1gn(x)≤0fX(x)fGn(gn)dxdgn

(10)
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where ΩP is the set of conditioned GP trajectories denoted by Gn and fGn is the

conditioned GP distribution. The Monte Carlo probability of failure estimator

P̂ tf is then given by

P̂ tf =
1

nt

1

nMC

nt∑
i=1

nMC∑
j=1

1Gi(Xi,j)≤0(Xi,j) =
1

nt

nt∑
i=1

P̂f (Gi, X̃i) (11)

where Gi are i.i.d. random processes of the conditioned GP with the same distri-

bution as Gn and X̃i are nMC-sized sample ofX, that is X̃i = (Xi,j)j=1,...,nMC .

The random variables P̂f (Gi, X̃i) are i.i.d. with the same distribution as P̂f (Gn, X̃),

that is the failure probability estimator for a GP Gn and an nMC-sized Monte

Carlo sample X̃:

P̂f (Gn, X̃) =
1

nMC

nMC∑
i=1

1Gn(Xi)≤0(Xi) (12)

This rewriting of the probability of failure estimator allows to explicitly

express it as depending on two random variables, X̃ related to the Monte Carlo

sampling uncertainty and Gn related to the GP approximation uncertainty.165

In order to assess the contributions of each of both uncertainty sources X̃ and

Gn on the variance of P̂f separately, we can refer to the variance decomposition

expression [36] which is a classical tool in sensitivity analysis:

V arGn,X̃

(
P̂f (Gn, X̃)

)
= VX̃ + VGn + VGn,X̃ (13)

where:

• VX̃ = V arX̃

(
EGn

[
P̂f |X̃

])
measures the influence of the Monte Carlo

sampling on the variance of P̂f ,

• VGn = V arGn

(
EX̃

[
P̂f |Gn

])
measures the influence of the GP uncertainty

on the variance of P̂f ,170

• VGn,X̃ = V arGn,X̃

(
E
[
P̂f |Gn, X̃

])
− VGn − VX̃ measures the joint con-

tribution of both Monte Carlo and GP uncertainties on the variance of

P̂f .
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3.2. Variance contributions estimation

As the GP enrichment points are chosen among the MC population, X̃175

and Gn are theoretically not independent. However, as the samples of the MC

population used to learn the GP only represent a small part of the population.

The estimators developed in the next sections are based on an independence

hypothesis.

3.2.1. Variance estimator180

Let us assume we have a random i.i.d sample of size ns (Z1, . . . , Zns) of

a random variable Z following an unknown distribution. The mean of Z is

approached by the empirical mean over the ns samples denoted by Zns . The

empirical variance of a random vector Z, denoted V̂ ar(Z) throughout the paper,

is defined by:

V̂ ar(Z) =
1

ns − 1

ns∑
i=1

(
Zi − Zns

)2
(14)

The estimated asymptotic confidence interval
[
V̂ arinf (Z), V̂ arsup(Z)

]
of the

variance of level 1− α is given according to the central limit theorem by:

V̂ ar(Z)− k

√
nsV̂ ar

((
Zi − Zns

)2)
ns − 1

; V̂ ar(Z) + k

√
nsV̂ ar

((
Zi − Zns

)2)
ns − 1


(15)

where k is the quantile of order 1−α of the reduced centred normal distribution.

3.2.2. Expression of VX̃ estimator

First let us recall that the random variable Y = 1Gn(x)≤0(x) is a Bernoulli185

random variable B(p(x)) with parameter p(x) = P [Gn(x) ≤ 0] = Φ
(
−µn(x)
σn(x)

)
,

the probability that x belongs to the failure domain according to the Gaussian

process Gn.
The expected value of P̂f , given by Eq. (12), knowing a Monte Carlo popu-

lation of nMC samples X̃ = (Xi)i=1,..,nMC can be expressed as follows:190
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EGn
[
P̂f |X̃

]
= EGn

[
1

nMC

nMC∑
i=1

1Gn(Xi)≤0(Xi)|(Xi)i=1,..,nMC

]

=
1

nMC

nMC∑
i=1

p(Xi)

(16)

Using the analytical expression of EGn
[
P̂f |X̃

]
given by Eq. (16), the variance

VX̃ can then be obtained by simulating:

VX̃ = V arX̃

(
1

nMC

nMC∑
i=1

p(Xi)

)
=
V arX̃(p(X))

nMC
(17)

The last equality is obtained as p(X) is a continuous random variable between

0 and 1 and p(Xi) are i.i.d replications of it.

In practice, Eq. (17) is estimated on the Monte Carlo population used for

the estimation of the probability of failure. Hence the estimator of VX̃ , denoted

by V̂X̃ , on a MC population realization is given by:

V̂X̃ =
V̂ arX̃(p(X̃))

nMC
=

1

nMC(nMC − 1)

nMC∑
i=1

p(Xi)−
1

nMC

nMC∑
j=1

p(Xj)

2

(18)

and its 1 − α confidence interval estimated bounds can be expressed using

Eq. (15) and are given by:

V̂ inf
X̃

=
V̂ arinf

X̃
(p(x̃))

nMC

V̂ sup
X̃

=
̂V arsup

X̃
(p(x̃))

nMC

(19)

3.2.3. Expression of VGn estimator

The computation of the expected value of P̂f knowing a realization of Gn can

be interpreted as a classical Monte Carlo simulation for a deterministic model.195

Hence it follows this equality:

EX̃

[
P̂f |Gn

]
= EX̃

[
1

nMC

nMC∑
i=1

1Gn(Xi)≤0(Xi)|Gn
]

(20)

= Pf (Gn) (21)
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with Pf (Gn) the probability of failure for a realization of Gn. Classically, this

probability of failure is approached by a Monte Carlo estimator P̂MC
f (Gn) =

1
nMC

∑nMC
i=1 1Gn(Xi)≤0(Xi), with (Xi)i=1,...,nMC a Monte Carlo population real-

ization. Hence, VGn can be numerically estimated by simulating different trajec-200

tories of Gn and computing the Monte Carlo estimator of Pf for each simulated

trajectory.

Let (Gi)1≤i≤nt be nt realizations of Gn, then the VGn estimate is the empirical

variance of the sample P̂MC
f (Gi)1≤i≤nt :

V̂Gn = V̂ arGn(P̂MC
f (Gn)) =

1

nt − 1

nt∑
i=1

(
P̂MC
f (Gi)−

1

nt

nt∑
i=1

P̂MC
f (Gi)

)2

(22)

Moreover its 1−α confidence interval estimated bounds, also expressed using

Eq. (15), are given by:

V̂ infGn = V̂ arinfGn (P̂MC
f (Gn))

V̂ supGn = V̂ arsupGn (P̂MC
f (Gn))

(23)

In practice, the computation of conditioned GP realizations is prone to nu-

merical issues. In Appendix A, these numerical issues and their sources are

exposed and an alternative method, presented in [33, 37], based on the simula-205

tion of an unconditioned Gaussian process is detailed.

3.2.4. Expression of the total variance estimator

The total variance of P̂f can then be estimated with:

V̂tot = ̂V arGn,X̃
(
P̂f (Gn, X̃)

)
=

1

nt − 1

nt∑
i=1

P̂f (Gi, X̃i)−
1

nt

nt∑
j=1

P̂f (Gj , X̃j)

2

(24)

where (Gi, X̃i), i = 1, . . . , nt are nt realizations of Gn and Monte Carlo

population X̃ and P̂f (Gi, X̃i) is the probability of failure estimation for the ith

realization (Gi, X̃i) of Gn and X̃. V̂tot is the empirical variance of the sample210

(P̂f (Gi, X̃i))1≤i≤nt .
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Moreover the 1 − α confidence interval estimated bounds of V̂tot, also ex-

pressed using the operators defined in Eq. (15), are given by:

V̂ inftot =
̂

V arinfGn,X̃
(P̂f (Gn, X̃))

V̂ suptot = ̂V arsupGn,X̃(P̂f (Gn, X̃))
(25)

In practice, the numerical cost of the nt estimations of P̂f (Gi, X̃i) = P̂f (Gi(X̃i))

can be quite high to get a sufficiently low variance of the estimator V̂tot. Hence,

we propose to use a bootstrap procedure [38] to simulate several MC populations

X̃i from the population X̃ on which the nt GP trajectories are computed [33].215

Bootstrap is applicable here as we assume that the size nMC is sufficiently large

to consider that sampling with the empirical distribution or with the true distri-

bution is similar. The method proposed to estimate the P̂f (Gi, X̃i) is presented

in Algorithm 1.

Algorithm 1 Evaluation process of P̂f (Gi, X̃i) via nt bootstrap samples

Require: X̃,Gn, nt
1: Simulation of i = 1, . . . , nt trajectories Gi(X̃) = (Gi(Xj))j=1,...,nMC of Gn

at MC population samples X̃

2: for i = 1, . . . , nt do

3: Sampling with replacement of a sample Z of size nMC from X̃

4: Extract values of Gi(Z) from Gi(X̃)

5: Estimation of P̂f (Gi, X̃i) using Eq. (12) with X̃i = Z and

Gi(X̃i) = Gi(Z)

6: end for

7: return Estimation of
(
P̂f (Gi, X̃i)

)
i∈1,...,nt

Finally, the probability of failure is estimated by the mean over the (P̂f (Gi, X̃i))1≤i≤nt ,220

i.e. by:

P̂ tf =
1

nt

nt∑
i=1

P̂f (Gi, X̃i) (26)
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Hence, estimated total COV, denoted by COVtot, of an estimation P̂MC
f of

the probability of failure P̂f obtained on a MC realization is thus given by:

ĈOVtot =

√
V̂tot

P̂ tf
(27)

Its 1− α confidence interval estimated bounds are then estimated by:

ĈOV
inf

tot =

√
V̂ inftot

P̂ tf

ĈOV
sup

tot =

√
V̂ suptot

P̂ tf

(28)

Finally notice that the joint contribution of the MC integration and the

GP approximation uncertainties VGn,X̃ can then be estimated by computing

the three previous estimators and applying the relation given by Eq. (13). By

carrying out this calculation the independence hypothesis introduced at the225

beginning of Sec. 3.2 can be empirically verified.

3.3. Motivation for developing a new adaptive sampling approach illustrated on

a benchmark case

The idea here is to explain our motivation to propose a new approach in

order to perform a trade-off between improving the GP and adding points to230

the MCS. To illustrate this point, a well known benchmark example is chosen.

The application deals with the example of a series system with four branches

limit state introduced in [39] and chosen for its high non-linearity and rather

complex limit state. The random variables X1 and X2 follow standard normal

distributions. The performance function is given by:235

y = min
x1,x2



3 + 0.1(x1 − x2)2 − (x1+x2)√
(2)

;

3 + 0.1(x1 − x2)2 + (x1+x2)√
(2)

;

(x1 − x2) + 6√
2
;

(x2 − x1) + 6√
2


(29)

A run of the AK-MCS+EFF algorithm gives an estimation of Pf and the

corresponding MC coefficient of variation. In this example, this algorithm was
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run with an initial Monte Carlo population of size 104 and a maximum allowed

coefficient of variation of 5%. At each iteration of the algorithm, the variability

due to the GP Gn and the Monte Carlo based integration X̃ was estimated using240

respectively Eq. (22) and Eq. (18). To visualize the GP uncertainty, Fig. 1 shows

three different trajectories of the limit state approximation drawn from a GP

constructed from a DoE of 50 points. It can be seen that the three trajectories

are relatively close to each other in areas that contribute a lot to the probability

of failure but there is large variability among the three trajectories in areas (i.e.245

the four corners), that contribute little to the probability of failure (cf. also to

Fig. 5a to visualize the Monte Carlo samples). Our variance estimator of Eq. (22)

quantifies the variance of the P̂f estimator associated with the different possible

trajectories of the GP, while the variance estimator of Eq. (18) quantifies the

variance of the P̂f estimator associated with different possible samples for the250

MCS.

Figure 1: Four branches test case: true limit state function G(x) = 0 and three trajectories

approximating it, drawn from the GP constructed based on 50 DoE points.

The evolution of the probability of failure and the corresponding variance

estimations throughout the algorithm are respectively illustrated on Fig. 2 and

Fig. 3.

In particular, it can be seen on Fig. 3 that for the 18 first iterations the255
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Figure 2: Evolution of the probability of failure estimation as a function of the number of

iterations throughout a run of the algorithm AK-MCS+EFF (P̂MC
f = 4.46× 10−3(COV =

1.6%)) on the four branches test case.

0 20 40 60 80 100

Number of iterations

10−14

10−12

10−10

10−8

10−6

10−4

VX̃
VGn

Figure 3: Evolution of the variances VX̃ and VGn estimations as a function of the number of

iterations throughout a run of the algorithm AK-MCS+EFF on the four branches test case.

main contributor to the failure probability variance is the GP Gn. Then, until

the end of the run the principal source of variability is the Monte Carlo integra-

tion. However, the GP is still enriched after the 18th iteration of this algorithm

reaching 99 enrichment points when the algorithm converges. Moreover, it can

be seen on Fig. 2 that the spread of P̂f estimation values stops around the 15th260
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iteration and progresses then in the vicinity of the true value of the probabil-

ity of failure. At the end of the run, the part of variability on P̂f due to the

Monte Carlo integration is 1.1× 104 higher than the one attributed to the GP

approximation.

The variance comparison leads us to conclude that there is no need to learn265

the GP in a so accurate way and by avoiding this we can hope to save some

unnecessary simulations of the performance function.

Hence, it could be interesting to integrate these measures of variance in

the learning procedure to overcome the over-conservative learning of GP. The

proposed method is detailed in the next section.270

4. Proposed method

4.1. General concept

The new method consists in using the variance estimations obtained previ-

ously in the learning phase as decision criteria of a novel, adaptive enrichment

process for probability of failure approximation. On the one hand, the contri-275

butions attributed to the Monte Carlo estimation and the GP to the variability

of P̂f can be used to decide whether to improve the GP or to increase the size

of the sampling population. These contributions can be quantified using the

variances estimators given by Eq. (18) for the MC integration contribution and

by Eq. (22) for the GP approximation. On the other hand, the total variance280

on P̂f , whose estimator is given by Eq. (24), can be used as a criterion to stop

the learning phase.

4.2. Proposed algorithm

The proposed Variance based Active GP (Vb-AGP) learning procedure is

summarized in Fig. 4 and the different stages are described below:285

1. Generation of an initial Monte Carlo population X̃ of nMC samples.

2. Initial Design of Experiments (DoE) of n samples defined using sampling

methods such as Latin Hypercube Sampling (LHS). The performance func-

tion G(x) is then evaluated at the n samples.
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3. Construction of a GP metamodel Gn(x) of the performance function G(x)290

on the DoE.

4. Estimation of the failure probability Pf on the Monte Carlo population

X̃ according to the following equation:

P̂MC
f (X̃) =

1

nMC

nMC∑
i=1

1µn(Xi)≤0 (30)

5. Interval estimation of variances VX̃ and VGn using respectively Eq. (19)

and Eq. (23).

Note that we seek to obtain
[
V̂ inf
X̃

, V̂ sup
X̃

]
∩
[
V̂ infGn , V̂ supGn

]
= ∅, using the295

estimators given in Sec. 3.2, in order to compare both variance values.

Therefore new GP trajectories have to be simulated until the estimation

of VGn confidence interval is sufficiently narrow.

6. Compute ĈOVred =

√
V̂ supGn +V̂ sup

X̃

P̂MCf

.

If ĈOVred < COVmax, with COVmax a user defined maximum allowed300

total coefficient of variation, the algorithm goes to step 7 to verify that

the total COV is below the maximum allowed value.

Otherwise, the algorithm goes to step 8 in order to reduce the main source

of uncertainty.

7. Interval estimation of the total coefficient of variation COVtot using Eq. (28):305

increasing number of simulations until COVmax /∈
[
ĈOV

inf

tot , ĈOV
sup

tot

]
. If

COV suptot ≤ COVmax then the estimation P̂ tf of Pf with Eq. 26 is consid-

ered sufficiently accurate and the algorithm is stopped.

Otherwise, the algorithm goes to the next step.

8. If V̂Gn < V̂X̃ , new samples are added to the Monte Carlo population and310

the method goes back to step 4 to update the estimation of Pf .

Else if V̂Gn > V̂X̃ , the algorithm goes to step 9.

9. The learning function EFF (x) given by Eq. (8) is evaluated on the whole

MC population to find the best candidate x∗ to evaluate for enriching the

GP metamodel. The performance function is computed on the sample x∗315
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and the DoE is enriched with this new point x∗. Then the method goes

to step 3 to update the GP model.

The first stage of the stopping condition on learning consists in verifying the

following equation:

ĈOVred =

√
V̂ supGn + V̂ supX

P̂MC
f

< COVmax (31)

where COVmax is a user defined maximum allowed total coefficient of variation,

The condition given by Eq. (31) corresponds to a condition on the approx-

imation of the total variance of the P̂f , under the independence assumption.320

Indeed, throughout the learning, the joint contribution of both variables is

never computed, since it would significantly increase the computational cost.

If Eq. (31) is verified, the total variance Vtot including the joint contribution

can be estimated (i.e. in step 7 of the algorithm) to make sure that it respects

the maximum variance allowed.325

Let us now make a few comments about the choices made for this algo-

rithm. First we have found that the learning function EFF (x) appears better

suited than U(x). Indeed, the learning function EFF (x) tends to explore more,

whereas the function U(x) focuses on a very accurate learning of the currently

known limit state before exploring the rest of the domain.330

Finally, note that seeking to equalize the two variance contributions VX̃ and

VGn is not guaranteed to be the most computationally cost efficient strategy.

The optimal strategy will be problem dependent, however seeking equal contri-

butions of the two variances VX̃ and VGn appears as a good general guideline

and, in most cases, the corresponding computational cost is expected to be quite335

close to the actual optimum.

4.3. Applications

4.3.1. Methodology settings and comparison measures

It has been observed in many numerical applications that the squared-

exponential kernel, also called Gaussian correlation model, is likely to undergo340
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Figure 4: Flowchart of the learning algorithm Vb-AGP + MCS.

ill-conditioning [40]. For this reason, in this paper the Matérn 5/2 kernel will

be used.

Moreover, as for the AK methods, a maximum allowed COV has to be set

as a stopping criterion of the algorithm. However, the COV computed in the

proposed algorithm includes all uncertainties (not only the MC ones) and the345

method is built to have balanced amount of variability due to both sources of

uncertainty. This must be taken in consideration when choosing the value of

COVmax.

The different active learning methods performances comparison can be based
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on different criterion or error measures such as:350

• COV (P̂f ): the COV of P̂f estimations obtained on nrun independent runs

of the estimation procedure of Pf ;

• er: the mean over the nrun values of the absolute relative error between

the estimations P̂fi , i = 1, . . . , nrun obtained and a reference value Pfref
(obtained e.g. by MCS with a very large number of samples)

er =
1

nrun

nrun∑
i=1

|P̂fi − Pfref |
Pfref

(32)

• νMC : a coefficient allowing to compare the numerical efficiency of the

considered method to a classical MCS method, that is defined as follows:

νMC =
NMC
call

Ncall
(33)

where Ncall corresponds to the number of calls of the active learning

method to the performance function to reach a COV equal to COV (P̂f )

and NMC
call is the number of samples needed by a MCS method (estimated355

by Eq. (??)) to obtain the same COV of COV (P̂f ) on the probability of

failure.

The efficiency νMC actually corresponds to the factor dividing the MCS

budget to reach the same level of accuracy on Pf with the active learning

based method considered.360

4.3.2. Series system with four branches limit state

We have applied the classical AK-MCS and the proposed methods on the

example of a series system with a four branches limit state already defined in

Sec. 3.3.

The proposed method was run for an initial DoE of 16 samples, an initial365

MC population of 5 × 104 and a maximum coefficient of variation of 3%. The

final DoE resulting from a run of AK-MCS+EFF and the final DoE obtained

with a run of the proposed variance based algorithm on the same initial DoE
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and MC population are illustrated respectively on Fig. 5a and Fig. 5b. It can

already be observed on these figures that the proposed variance based algorithm370

adds less points to the DoE to fulfill the learning stopping criterion.

The variations of both variance estimators VX̃ and VGn during a run are

provided in Fig. 6.

As for the algorithm AK-MCS, the influence of the GP is predominant at the

beginning of the run and the surrogate model has to be enriched. However, we375

can see that at the end of the run the values of VX̃ and VGn are more balanced

and VGn is not much lower than VX̃ . Nonetheless, the estimated total COV at

the end of the run is 2.9% and respects thus the allowed COV of 3%. Here,

the quantity
√
V̂X̃

P̂f
corresponding to the MC COV, that is usually used as a

variability measure, is equal to 2.1%.380

Then the algorithm was run 100 times with different initial DoEs of 16

points and initial Monte Carlo populations of 5 × 104. A maximum coefficient

of variation of 3% was set. The reference result obtained, on average, by 100

runs of MCS (nMC = 106) and the mean results of all methods are presented

in Tab. 1.385

Method Ncall COV (Ncall) P̂f COV (P̂f ) er νMC

MCS 106 - 4.46× 10−3 1.6% - -

AK-MCS + U 128 6.6% 4.48× 10−3 3% 2.4% 1976

AK-MCS + EFF 144 6.6% 4.46× 10−3 3% 2.5% 1690

Vb-AGP + MCS 68 9.0% 4.46× 10−3 2.6% 2.0% 5146

Table 1: Series system with four branches— 100 run mean results - Adaptive method param-

eters: ninit
MC = 5× 104, ninit

DoE = 16, COVmax = 0.03.

The results show that the method Vb-AGP allows to reduce the number of

learning points needed to respect the same accuracy. Moreover, we can see that

the variance (respectively COV) estimator proposed in this work is consistent

with the empirical variance obtained on 100 runs of the algorithm. Indeed, the
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(a) AK-MCS+EFF result

(b) Vb-AGP + MCS approach result

Figure 5: Comparisons of two DoEs: a) resulting from a run of AK-MCS+EFF and b) one

obtained with a run of the proposed method for the same inital DoE and MC population with

COVmax set to 3% on the series system with four branches example.
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Figure 6: Evolution of the variance VX̃ and VGn estimations as a function of the number of

iterations throughout a run of the proposed algorithm on the four branches test case.

maximal imposed COV value is 3% and an empirical COV of 2.6% is obtained.390

The value of the numerical efficiency indicator νMC of the proposed method

is 3 times higher than for AK-MCS+EFF and 2.6 times higher than for AK-

MCS+U .

4.3.3. Dynamic response of an oscillator

The example of an oscillator leading to a non-linear limit state function is395

also widely used in the litterature and concerns the dynamic response of the

undamped single degree-of-freedom system illustrated in Fig. 7. This example

is also studied in [41, 5, 19].

The corresponding performance function is expressed as:

G(C1, C2,M,R, T1, F1) = 3R−
∣∣∣∣ 2F1

Mω2
0

sin

(
ω0T1

2

)∣∣∣∣ (34)

with ω0 =
√

(C1+C2)/M. Six random Variables listed in Tab. 2 are considered for

this problem. Actually, two cases are proposed here with a change of the applied400

force F1 probability distribution parameters which lead to different probability

of failure orders of magnitude.

The proposed method and AK-MCS were applied on the first case with
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Figure 7: Oscillator with non-linear limit state function.

Variable Distribution Mean standard deviation

C1 Gaussian 1 0.1

C2 Gaussian 0.1 0.01

M Gaussian 1 0.05

R Gaussian 0.5 0.05

T1 Gaussian 1 0.2

F1 – Case 1 Gaussian 1 0.2

F1 – Case 2 Gaussian 0.6 0.1

Table 2: Random variables for the oscillator test case.

F1 ∼ N (1, 0.04) corresponding to a reference probability of failure of 2.86×10−2

(obtained with 100 runs of MCS with nMC = 1× 105). The methods were run405

100 times for an initial DoEs of 12 samples, initial MC populations of 1 × 104

and a maximum coefficient of variation of 3%. The mean results are given in

Tab. 3.

The numerical efficiency indicator νMC for the proposed method is 1.6 times

higher than for AK-MCS + U and 1.8 times higher than for AK-MCS + EFF .410

In Tab. 3, the COV of P̂f estimation is 3.2% on the 100 runs of Vb-AGP

and its 99% confidence interval is given by [0.022, 0.041].
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Method Ncall COV (Ncall) P̂f COV (P̂f ) er νMC

MCS 1× 105 - 2.86× 10−2 2% - -

AK-MCS +U 59.8 6.4% 2.85× 10−2 2.7% 2.2% 792

AK-MCS +EFF 52.5 7.1% 2.87× 10−2 2.8% 2.4% 890

Vb-AGP + MCS 22.5 14.4% 2.84× 10−2 3.2% 2.6% 1436

Table 3: Result for the oscillator test case (µF1
= 1, σF1

= 0.2) — 100 run mean results

Adaptive method parameters: ninit
MC = 104, ninit

DoE = 12, COVmax = 0.03.

We can see that the COV of the number of calls Ncall is higher for the

method Vb-AGP than for the other enrichment strategies. In this example the

number of points added during the learning phase with the proposed method415

is of the same order of magnitude as the initial DoE. The results obtained are

thus dependent on the initial DoE. We can suppose that the number of necessary

enrichment points depends on the quality of the initial DoE, in terms of accuracy

of the classification, and that is an underlying cause of the higher variance of

Ncall.420

As presented previously, another case derived from the oscillator example

with another distribution of the variable F1 can be achieved (Case 2 of Tab. 2).

However, this test case corresponds to a very low probability of failure and can

thus not be treated with the Vb-AGP + MCS method due to the limits of MCS

use for rare events [29]. Therefore, we propose another version of the method425

that involves Importance Sampling (IS) in order to address low probability of

failure problems.

5. Improvement with IS

A way to highly decrease a Monte Carlo based estimator’s variance is to use

importance sampling instead of a classical Monte Carlo sampling. Moreover,430

the use of importance sampling allows to address rare event probabilities as the

27



number of samples for the integration can be considerably reduced.

5.1. Importance Sampling

The main idea of Importance Sampling (IS) is to find an auxiliary den-

sity faux, well-suited for the estimation of Pf = P [G(x) ≤ 0], to generate

nIS � nMC samples X1, ...,XnIS ∼ faux weighted for the estimation of the

sought probability:

P̂ ISf =
1

nIS

nIS∑
i=1

w(Xi)1G(Xi)≤0(Xi) (35)

with w(Xi) = fX(Xi)
faux(Xi)

the weight of the sample Xi. The auxiliary density faux

appears in the computation of the variance of the estimator in the following

way:

V ar
(
P̂ ISf

)
=
V ar

(
w(X1)1G(X1)≤0(X1)

)
nIS

(36)

while the variance of the MC estimator is
V ar(1G(X1)≤0(X1))

nMC
. Hence, if well

chosen, the auxiliary density faux can considerably reduce the variance of the435

estimator and improve its convergence. The best possible auxiliary density

faux, denoted foptaux, is the one that verifies V ar
(
P̂ ISf

)
= 0. Using Eq. (36), its

expression is then given by [42]:

foptaux(x) =
1G(x)≤0fX(x)

Pf
(37)

Since it depends on the probability sought, Pf itself, it cannot be used directly.

One of the difficulties of IS is then to compute an auxiliary density faux as close440

as possible to foptaux. Several methods have been developed such as [43, 44, 45]. In

this paper, we consider the non parametric adaptive IS (NAIS) proposed in [46]

and detailed in Appendix B. The principle of NAIS is to estimate iteratively

the density foptaux with a weighted Gaussian kernel density. The advantage of this

approach is its applicability on relatively complex failure domain as long as the445

dimensionality of the input is reasonably small (m < 10).
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The probability of failure estimator obtained when running a GP active

learning method combined with IS is given by:

P̂f (Gn,X) =
1

nIS

nIS∑
i=1

wi1Gn(Xi)≤0(Xi) (38)

with Gn the GP of G, wi = fX(Xi)
faux(Xi)

the weights of the samples generated by IS

and faux the auxiliary IS density.450

The effect of the GP and the IS accuracy on the probability of failure esti-

mate can be obtained by rewriting the indices of variances proposed in Sec. 3.2

adapted for IS.

5.2. Variance based sensitivity index estimations

The expected value of P̂f knowing a population of nIS samples X̃ = (Xi)i=1,..,nIS455

generated by IS auxiliary density function faux can be expressed by rewriting

Eq. (16) as follows:

EGn
[
P̂f |X̃

]
= EGn

[
1

nIS

nIS∑
i=1

wi1Gn(Xi)≤0(Xi)|(Xi)i=1,..,nIS

]

=
1

nIS

nIS∑
i=1

wip(Xi)

(39)

Hence, the variance VX̃ estimator is then obtained by adapting Eq. (18) for

IS:

V̂X̃ =
V̂ arX̃((w(X̃)p(X̃))

nIS

=
1

nIS(nIS − 1)

nIS∑
i=1

w(Xi)p(Xi)−
1

nIS

nIS∑
j=1

w(Xj)p(Xj)

2 (40)

and its 1 − α confidence interval estimated bounds can be expressed similarly460

to the ones defined in Sec. 3.2.1.

The computation of the expected value of P̂f knowing a realization of Gn
can here be interpreted as a classical IS estimation for a deterministic model.

Hence it follows this equality:
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EX̃

[
P̂f |Gn

]
= EX̃

[
1

nIS

nIS∑
i=1

wi1Gn(Xi)≤0(Xi)|Gn
]

(41)

= Pf (Gn) (42)

The probability of failure Pf (Gn) is here approached by an estimation by IS

P̂ ISf (Gn) =
1

nIS

nIS∑
i=1

wi1Gn(Xi)≤0(Xi),

with (Xi)i=1,...,nIS the samples of the IS population realization. Hence, as for

MCS VGn can be numerically obtained by computing the IS estimator of Pf

for different trajectories of Gn. The expression of the VGn estimator given by

Eq. (22) for MCS becomes:

V̂Gn =
1

nt − 1

nt∑
i=1

P̂ ISf (Gi)−
1

nt

nt∑
j=1

P̂ ISf (Gj)

2

(43)

where nt is the number of Gn realizations.465

We can compute nt values P̂f for nt realizations (Gi, X̃i), i = 1, . . . , nt of Gn
and IS population X̃. The probability of failure can be estimated with P̂ tf as

the mean of these nt values P̂f and the total variance can be estimated using

the estimator given by Eq. (24).

Then the estimated total COV of an estimation P̂ ISf of the probability of470

failure P̂f obtained on an IS realization is given by Eq. (27).

5.3. Extended method to Importance Sampling

In order to address low probability of failure estimation problems, we pro-

pose to integrate IS to Vb-AGP. The main idea is to replace the Monte Carlo

population by an IS population for the probability of failure estimation. Thus,475

the variances VX̃ and VGn are obviously computed on the samples X̃ generated

by IS only and their estimations are obtained by applying Eq. (40) and Eq. (43).

However, the learning point candidates for GP improvement correspond to all

samples generated throughout the run of the NAIS algorithm Xaux for the

current auxiliary density function construction.480
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At the beginning of the algorithm, the initial learning point candidates are

simply the samples of a classic Monte Carlo population generated with the dis-

tribution fX . Hence, the first probability of failure estimation is obtained using

the MC estimator. Naturally, as soon as an IS population is used instead of the

MC, the probability of failure estimator P̂f is replaced by the one corresponding485

to IS given by Eq. (38).

Then, steps 8 and 9 described in Sec. 4 for MCS are thus modified accord-

ingly:

8. If V̂Gn < V̂X̃ then:

8.1. If it is the first time the algorithm passes through this loop or when490

Gn has been updated, then a new auxiliary density function faux is

built with the GP Gn. IS population and candidate samples for the

learning Xaux are also replaced by the most recent ones generated.

Then the algorithm goes back to step 4.

Otherwise the algorithm goes to step 8.2.495

8.2. New samples are added to the IS population and the method goes

back to step 4.

Else if V̂Gn > V̂X̃ , the algorithm goes to step 9.

9. The learning function EFF (x) is evaluated on the whole candidate samples

population Xaux to find the best candidate x∗ to evaluate for enriching500

the GP metamodel. The performance function is evaluated on the sample

x∗ and the DoE is enriched with this new observation. Then the method

goes to step 3 to update the GP model.

The extended method procedure is summarized in Fig. 8.

Moreover, as the extended method with IS may address low probability505

problems, there are great chances that the probability estimated with the initial

DoE and MC population is equal to zero. In order to address this problem, NAIS

is run one time on the GP built with the initial DoE. That allows to estimate
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Figure 8: Flowchart of the learning algorithm improved with IS

a first auxiliary density function but also more appropriate candidate samples

for the GP learning.510

Indeed, for very low probability of failure, a suited initial DoE to have an

appropriate initial GP approximation to allow the learning should be sampled

in a certain vicinity of the limit state. However, due to the lack of information
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on the failure domain at the algorithm initialisation the first estimated auxiliary

density function for IS may not actually correspond to the optimal one. There-515

fore, a second initial DoE of size 2m more relevant for the learning is generated

after the run of NAIS. The points of the DoE are chosen by an iterative selec-

tion by using the EFF learning criterion on all intermediate samples generated

throughout the NAIS run, with an update of the GP after each point added to

the DoE.520

5.4. Applications

5.4.1. Low probability series system with four branches limit state

The Vb-AGP + IS method was applied on a test case derived from the

series system with four branches limit state function G(x) defined by Eq. (29).

The failure is defined here by G(x) ≤ 1.5 and the related reliability problem525

corresponds to a probability of failure of 5.29×10−5 with a COV 2.1% estimated

by MCS (100 runs for nMC = 5×107). The proposed variance based method Vb-

AGP with the adaptive IS method NAIS applied on this test case is illustrated

on Fig. 9. On this Figure, the intermediate population used as GP learning

samples and the IS population used to compute the probability are represented.530

The mean results over 100 runs of the algorithm on this test case are given

in Tab. 4. They show that the Vb-AGP + IS method allows to respect the

maximal COV set to 3% on the 100 runs of the algorithm.

Method Ncall COV (Ncall) P̂f COV (P̂f ) er νMC

MCS 5× 107 - 5.29× 10−5 2.1% - -

Vb-AGP + IS 104 16.2% 5.33× 10−5 3.0% 2.4% 201437

Table 4: Series system with four branches low probability of failure problem - 100 run mean

results - Adaptive method parameters: ninit
DoE = 12, COVmax = 0.03.

Here, we do not compare the method to AK-MCS because this type of

reliability problem with low probabilities of failure is difficult to address with535
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Figure 9: Vb-AGP + IS (NAIS) method

this method and neither to AK-IS [5] as the method is based on FORM and

thus not suited for multimodal failure domains. Nonetheless, it can be noted

that the efficiency indicator νMC of the method in comparison to MCS is very

high.

5.4.2. Dynamic response of an oscillator540

The variance based GP+IS method was then applied on the second case

derived from the example dealing with the dynamic response of an oscillator with

a non-linear limit state function, described in Sec. 4.3.3, with F1 ∼ N (0.6, 0.01)

corresponding to an estimated probability of failure of 9.08 × 10−6 (COV =

2.47%) with MCS. The method was run 50 times for initial DoEs of 12 samples545

and a maximum coefficient of variation of 3%.

Obviously, this reliability problem is intractable with the AK-MCS method

but has been handled by the method AK-IS [5]. Hence, we compare the mean

results of the Vb-AGP + IS approach with the results of AK-IS presented in

the paper [5]. These results are given in Tab. 5.550

On this example, the method Vb-AGP divides on average the number of calls
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Method Ncall COV (Ncall) P̂f COV (P̂f ) er νMC

MCS 1.8× 109 - 9.08× 10−6 2.47% - -

FORM+ IS 29 + 104 - 9.13× 10−6 2.29% - -

AK-IS [5] 29 + 38 - 9.13× 10−6 2.29% - 1943812

Vb-AGP + IS 58 20% 9.09× 10−6 2.9% 2.3% 2240946

Table 5: Result for the oscillator test case (µF1
= 0.6, σF1

= 0.1) — 100 run mean results

Adaptive method parameters: ninit
DoE = 12, COVmax = 0.03.

to the performance function by AK-IS by a factor 1.16. This reduction is less

important than the ones obtained on the previous examples with AK-MCS. Note

that the COV of Ncall is relatively high for the method Vb-AGP+IS. That can

be explained by the influence of the initial DoE, that has an important impact555

on the performances of NAIS. Moreover, six random variables are considered

on this example and thus the efficiency of NAIS is considerably reduced as the

stochastic dimension is quite high for the applicability of this method.

5.4.3. Reliability analysis on a thermal problem

5.4.3.1. Description of the problem560

. In this section, the proposed method is applied to a finite element based relia-

bility analysis, involving the heat transfer through the combustion chamber wall

of a regeneratively cooled rocket engine [47, 48, 49]. In such an engine, liquid

hydrogen (LH2) flowing through cooling channels in the combustion chamber

wall at a temperature of 40K is used for cooling the engine. We consider that565

failure occurs when the maximum temperature of the inner wall of the combus-

tion chamber exceeds a critical value Tallow, which corresponds to the cooling

channel walls rupture, due to thermally induced stresses.

A schematic of the combustion chamber of a typical regeneratively cooled

liquid hydrogen (LH2) liquid oxygen (LOX) rocket engine is shown in Fig. 10.570

As illustrated, two different parts made of two different materials form the com-
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Figure 10: Schematic of a regeneratively cooled rocket engine combustion chamber.

bustion chamber wall: an internal side made of a copper alloy and an external

jacket made of a Ni alloy. Heat exchanges may happen through convection be-

tween the combustion chamber wall and the sources of heat (combustion cham-

ber gases) and cooling (liquid hydrogen) and also with the exterior. Considering575

these boundary conditions, the resulting thermal transfer depends on the fol-

lowing parameters: the conductivity of the inner side of the wall (kCu), the

conductivity of the jacket (kNi), the temperature of the gases on the inner side

of the combustion chamber (Thot), the film convection coefficient on the inner

side of the combustion chamber (hhot), the temperature on the outer side of the580

combustion chamber (Tout), the film convection coefficient on the outer side of

the combustion chamber (hout), the temperature of the cooling fluid (Tcool) and

the film convection coefficient on the cooling channel side (hcool).

Here the thermal field is computed using an in-house finite element solver

coded in Python. Thus we have access to the maximum temperature in order to585

deduce the value of the performance function, defined here asG(x) = Tallow(x)− Tmax(x).

Then the failure probability can be estimated using sampling methods or en-

hanced methods such as active learning strategies.
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A reliability-based sensitivity analysis was carried out on this problem and

the parameters hout and kCu were shown to have negligible influence on the590

failure. Other parameters and the maximum temperature allowable Tallow are

supposed to be uncertain and are modeled by independent random variables

following probability distributions given in Table 6. The thermal field at sta-

tionary equilibrium is obtained by resolution of a convection-diffusion equation

by a finite element approach. The finite element mesh of the combustion595

chamber wall and the boundary conditions are illustrated in Fig. 11.

Figure 11: Finite element mesh of the combustion chamber wall and the boundary conditions

of the thermal problem.

Input kNi Thot hhot Tout Tcool hcool Tallow

Unit W/mK K kW/m2K K K kW/m2K K

Probability law Gaussian Uniform Uniform Uniform Uniform Uniform Uniform

Mean 75 880 31 293 40 250 730

COV 2% - - - - - -

Half-range - 10% 10% 5% 5% 10% 7.5%

Table 6: Probability distributions of the thermal problem parameters.
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5.4.3.2. Results

. As this example involved a costly numerical resolution only the Ak-MCS + U

and the proposed Vb-AGP + IS methods are compared. For both approaches

the targeted maximum coefficient of variation is set to 3% and the initial DoEs600

count 10 samples. In order to assess the robustness of the approaches, 50 runs

on different initial DoEs are performed. The results are given in the table 7.

Method Ncall COV (Ncall) P̂f COV (P̂f ) νNcallMC

AK-MCS + U 30.36 6.61% 7.15× 10−4 3.21% 44707

Vb-AGP + IS 15.04 1.30% 7.04× 10−4 3.12% 97022

Table 7: Result for the combustion chamber test case — 50 run mean results

Adaptive method parameters: ninit
DoE = 10, COVmax = 0.03.

These results show that the two methods converge to the same probability of

failure estimation which allows to be confident in this estimation. Moreover, for

both approaches, this estimation is reached with a coefficient of variation close605

to 3%. It is recall that, for the proposed Vb-AGP + IS approach, this coefficient

of variation takes into account the uncertainty due to the IS and the uncertainty

due to the use of the GP surrogate model. This example hence confirms that

the estimator of the total coefficient of variation proposed in Section 5.1 can be

trusted. Finally it is notable that the proposed Vb-AGP + IS method needs610

on this problem about two times less calls to the performance function than

the AK-MCS + U method (the numerical efficiency metric νNcallMC is about two

times larger for Vb-AGP + IS than for AK-MCS + U).

6. Conclusions

In this paper, we showed that the effect of both the Monte Carlo sampling615

and the GP surrogate model on the probability of failure estimator can be ana-

lyzed by a sensitivity analysis based on variance decomposition. Then we have
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proposed estimators of the variances related to each of these two uncertainty

sources and also an estimator of the total variance in order to compute them

numerically. This analysis enables us to quantify the source of uncertainty that620

has the most impact on the variability of the probability of failure estimation.

Then we proposed a Variance based Active GP (Vb-AGP) learning procedure

that integrates this analysis to improve the major source of uncertainty during

the learning phase and a stopping criterion based on the total variance of the

probability of failure estimation. The method was applied to two examples and625

showed great potential to reduce the number of learning points while satisfying

the maximum COV constraint imposed by the user. Moreover, the method gives

an estimation of the total COV that has been validated on the various examples.

An extension of this method to IS, in order to make it more suitable to prob-

ability of rare events estimation, was then presented. In this work, the adaptive630

IS algorithm NAIS was used in order to tackle multimodal failure domains with-

out any a priori knowledge of the domain. The approach was applied to three

examples and was shown effective in terms of the accuracy of the probability of

failure total COV estimations and also in terms of potential number of simula-

tions reduction. However, it should be noted that the application of Vb-AGP +635

MCS is limited to problems with a relatively low stochastic dimension because

of the memory cost of accurate trajectory simulations with the Karhunen-Loeve

expansion for large MC populations. Hence, a potential improvement of the

method could be thought by looking to improve the efficiency of the trajectory

simulations technique while taking care that the trajectories approximations are640

sufficiently accurate.

Note also that the use of the Vb-AGP + IS method is a good way to reduce

the sampling population size, but as the NAIS algorithm is only efficient for

problems with relatively low input dimensionality (m < 10) it is also not suited

for problems with high stochastic dimensions. In this work, an extension to rare645

events problems with NAIS was chosen as we considered that there is no a priori

knowledge of the limit state. However, in case some hypothesis about the limit

state form are available by experience for example, other IS or Subset Sampling
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techniques might be considered to circumvent the curse of dimensionality.
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Appendix A. Gaussian process trajectories computations by simu-

lating an unconditioned Gaussian process

The objective here is to explain how to avoid numerical issues experienced655

when simulating GP trajectories with large population.

We saw in Sec. 3.2 that the estimation of VGn can be assessed from realiza-

tions of the Gaussian process Gn at each point of the sampled population.

Let Gn be a conditioned GP with mean function µn(·) and covariance matrix

Cn(·). A trajectory (or realization) of the GP Gn at the Monte Carlo population

X̃ can actually be expressed as follows:

Gn(X̃) = µn(X̃) +Ln(X̃)ξ (A.1)

with ξ ∼ N (0n, In) and Ln(X̃) ∈MnMC (R) the Cholesky factorization matrix

of Cn(X̃), i.e. Cn(X̃) = Ln(X̃)Ln(X̃)T .660

However for large populations, the computation of Gn(X̃) realizations present

huge numerical costs or encounter numerical issues like ill-conditioned covari-

ance matrix, making it impossible to compute the Cholesky decomposition and

thus the GP realizations by this method. These numerical problems can be

avoided by simulating an unconditioned Gaussian process [15, 37, 33].665

Let G̃(x) be a centered Gaussian process with the same covariance function

as G(x):

G̃(x) ∼ GP (0, σ2
Zr(x,x

′)) (A.2)

and let µ̃(x) be its prediction mean based on the random variables G̃(xdoe).

Then, let us define the Gaussian process G̃n(x):

G̃n(x) = µn(x)− µ̃(x) + G̃(x) (A.3)
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with µn(x) the mean of the prediction by Gn(x) at point x and:

µ̃(x) = f(x)T β̃ + k(x)TC−1(y − F β̃) (A.4)

with β̃ = (F TC−1F )−1F TC−1G̃(xdoe).

Then, G̃n(x) has the same distribution as Gn(x) conditionally to past obser-

vations (xdoe,y). In other words, we have:

G̃n(x)
L
= Gn(x) (A.5)

Hence, a simulation of Gn(x) can be obtained by adding to its mean µn(x)

the prediction error G̃(x) − µ̃(x) of G̃(x). It allows to simulate the centered

Gaussian process G̃(x) instead of Gn(x). Contrary to the conditioned Gaussian670

process, the unconditioned Gaussian process variance values at points in the

vicinity of the DOE are not close to zero. It allows a better conditioning of the

covariance matrix and thus avoids the related numerical issues.

Moreover, it allows to use computationaly efficient representations of random

fields such as the Karhunen-Loève (KL) expansion. The numerical approxima-675

tion of the KL expansion can be obtained by using the Nyström procedure or

Galerkin methods as presented in [50]. Hence, once the KL decomposition of the

Gaussian process G̃(x) is estimated it can be used to easily obtain realizations

at any point x using Eq. (A.3).

Appendix B. Non parametric adaptive importance sampling (NAIS)680

The goal of the non parametric adaptive importance sampling (NAIS) al-

gorithm is to compute an estimator of the optimal auxiliary density function

foptaux, given by Eq. (37), with standard Gaussian kernel density functions Kd(·)
weighted with weights w, starting from the input density function fX . This

method is well adapted to complex failure region Df .685

The different steps of the algorithm are described in Algorithm 2.

The successive NAIS iterations allow to update the estimator of the optimal

auxiliary density function ĝkopt. In the end we obtain the estimator of the optimal
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auxiliary density function of the initial sought probability Pf = P[Gn(X) ≤ 0].

The probability is then estimated with the IS formula (line 19 Algorithm 2).690

Algorithm 2 Non parametric Adaptive Importance Sampling (NAIS)

Require: ρ, nIS , fX ,Gn
1: k ← 0

2: X̃0 ← population generated from fX of cardinal nIS

3: Y0 ← Gn(X̃0)

4: S∗ ← ρ-quantile of Y0

5: γ0 ← max(S∗, 0)

6: w0 ← IY0≤γ0

7: I0 ← 1
nIS

∑nIS
i=1 w

0
i

8: ĝ1
opt(x)← 1

nISdet(BN )I0

∑nIS
i=1 w

0
iKd

(
B−1
N

(
x−X0

i

))
9: while γk > 0 do

10: k ← k + 1

11: X̃k ← population generated from ĝkopt of cardinal nIS

12: Yk ← Gn(X̃k)

13: S∗ ← ρ-quantile of Yk

14: γk ← max(S∗, 0)

15: wji ←
1
Yj
i
≤γk

fX(Xj
i )

ĝjopt(X
j
i )

, for i, j ∈ [1, nIS ]× [1, k]

16: Ik ← 1
knIS

∑k
j=1

∑nIS
i=1 w

j
i

17: ĝk+1
opt (x)← 1

knISdet(BN )Ik

∑k
j=1

∑nIS
i=1 w

j
iKd

(
B−1
N

(
x−Xj

i

))
18: end while

19: P̂NAISf ← 1
nIS

∑nIS
i=1

IYk≤0
fX(Xk

i )

ĝkopt(X
k
i )

In Algorithm 2 line 8, BN is a diagonal covariance matrix.

In practice the GP prediction mean is used to evaluate the samples. How-

ever in the proposed method, the NAIS algorithm is used in intermediate steps

were the GP approximation of the limit state may not be accurate. Hence, it

is more appropriate to use an auxiliary density suited to estimate the proba-

bility P̂NAISf = 1
nIS

∑nIS
i=1 p(Xi)

fX(Xi)

ĝkopt(Xi)
. Therefore in our method, the NAIS
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algorithm is run with weights computed as follows:

wji =
P[Gn(Xj

i ) ≤ γk]fX(Xj
i )

ĝjopt(X
j
i )

, for i, j ∈ [1, nIS ]× [1, k] (B.1)

with P[Gn(X) ≤ γk] = Φ
(
γk−µn(x)
σn(x)

)
Moreover, in case of very low probability of failure the run of NAIS with the

first built GPs can fail as the mean predicted values become quasi constant as

the NAIS intermediate populations expand outward the known points. This is695

due to the initial large uncertainty on the failure domain. Therefore, a maximum

relative residual between two consecutive intermediate thresholds γk must be

set. On our test cases, a relative residual of 10−3 has been set.
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