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Introduction

Engineering systems are subject to numerous uncertainties that imply a probability that these systems can fail. Reliability analyses seek to determine this probability of failure in order to understand, certify or improve their design. Numerous reliability analysis techniques, i.e. techniques to estimate the probability of failure, can be found in the literature such as analytic approximations (FORM/SORM) [START_REF] Lemaire | Structural reliability[END_REF], sampling methods based on Monte Carlo Simulations techniques [START_REF] Melchers | Structural Reliability Analysis and Prediction[END_REF], surrogate-based reliability analysis methods [START_REF] Bucher | A comparison of approximate response functions in structural reliability analysis[END_REF], which can be adaptive or not. Adaptive approaches have been proposed in particular for Gaussian process surrogates [START_REF] Vazquez | A sequential Bayesian algorithm to estimate a probability of failure[END_REF][START_REF] Echard | A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF][START_REF] Bichon | Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions[END_REF][START_REF] Bichon | Efficient surrogate models for reliability analysis of systems with multiple failure modes[END_REF][START_REF] Fauriat | An adaptation of the AK-MCS method for system reliability[END_REF][START_REF] Li | Bayesian Subset Simulation: a kriging-based subset simulation algorithm for the estimation of small probabilities of failure[END_REF][START_REF] Bect | Sequential design of computer experiments for the estimation of a probability of failure[END_REF][START_REF] Dubourg | Metamodel-based importance sampling for structural reliability analysis[END_REF], support vector machines [START_REF] Basudhar | Reliability assessment using probabilistic support vector machines[END_REF][START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and Support Vector Machines[END_REF] and polynomial-chaos-based Kriging [START_REF] Schöbi | Rare Event Estimation Using Polynomial-Chaos Kriging[END_REF]. Considering any sampling technique, the probability of failure is obtained by a classification of the samples. The latter have to be evaluated first in order to be classified. This evaluation phase can be numerically very expensive for complex models. Gaussian process-based adaptive sampling methods for reliability analysis represent one of the promising ways for reducing this computational cost.

Gaussian process-based adaptive sampling methods consist in building a

Gaussian process surrogate model (or Kriging surrogate model) [START_REF] Rasmussen | Gaussian processes for machine learning, Adaptive computation and machine learning[END_REF][START_REF] Forrester | Recent advances in surrogate-based optimization[END_REF] of the performance function and using the uncertainty structure of the Gaussian process to enrich iteratively this surrogate model. For that purpose, a learning criterion is used to select enrichment points at each iteration of the learning phase in order to better learn the limit state. Then, the estimation of the probability of failure is typically obtained by a classification of a set of Monte Carlo samples evaluated on the final surrogate model. Several adaptive methods have been proposed along these lines, such as the efficient global reliability analysis (EGRA) by Bichon et. al [START_REF] Bichon | Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions[END_REF] or Active learning reliability method combining Kriging and Monte Carlo Simulations (AK-MCS) by Echard et. al [START_REF] Echard | An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF]. Other methods have also been presented to address specific problems such as small failure probabilities (rare events) estimations [START_REF] Echard | A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF][START_REF] Huang | Assessing small failure probabilities by AK-SS: An active learning method combining Kriging and Subset Simulation[END_REF][START_REF] Lelièvre | A Kriging-based method to deal with small failure probabilities and time-consuming models[END_REF][START_REF] Balesdent | Kriging-based adaptive Importance Sampling algorithms for rare event estimation[END_REF][START_REF] Dubourg | Metamodel-based importance sampling for structural reliability analysis[END_REF][START_REF] Li | Bayesian Subset Simulation: a kriging-based subset simulation algorithm for the estimation of small probabilities of failure[END_REF][START_REF] Cadini | A Bayesian Monte Carlo-based algorithm for the estimation of small failure probabilities of systems affected by uncer-tainties[END_REF], multiple failure regions problems [START_REF] Cadini | An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability[END_REF][START_REF] Lv | A new learning function for Kriging and its applications to solve reliability problems in engineering[END_REF][START_REF] Zhang | REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis[END_REF][START_REF] Wang | REAK: Reliability analysis through Error rate-based Adaptive Kriging[END_REF] or systems failure probabilities assessment [START_REF] Fauriat | An adaptation of the AK-MCS method for system reliability[END_REF][START_REF] Gaspar | Adaptive surrogate model with active refinement combining Kriging and a trust region method[END_REF][START_REF] Bichon | Efficient surrogate models for reliability analysis of systems with multiple failure modes[END_REF][START_REF] Vazquez | A sequential Bayesian algorithm to estimate a probability of failure[END_REF][START_REF] Bect | Sequential design of computer experiments for the estimation of a probability of failure[END_REF][START_REF] Perrin | Active learning surrogate models for the conception of systems with multiple failure modes[END_REF].

In adaptive surrogate based methods, the estimator of the probability of failure is affected by two different uncertainty sources related to the surrogate model approximation and to the Monte Carlo (MC) based integration technique. Some investigations have already been carried out to take into account the Gaussian process accuracy on the quantity of interest (failure probability estimator), instead of the Gaussian process local error in the vicinity of the limit state. In [START_REF] Schöbi | Rare Event Estimation Using Polynomial-Chaos Kriging[END_REF] some bounds of the estimator or in [START_REF] Wang | ESC: an efficient error-based stopping criterion for kriging-based reliability analysis methods[END_REF] an approximation of the estimation relative error are used. None of these works have however thought to specifically separate the two previously described sources of error.

In this paper, we propose to analyse both the Monte Carlo sampling and the surrogate model influence on the probability of failure estimator with variance based sensitivity indexes. We show that it is possible to estimate them numerically. It enables us to analyse quantitatively the source of uncertainty that has to be reduced to improve the accuracy of the failure probability estimate.

We finally propose a new reliability assessment algorithm that integrates this analysis to focus on the main source of uncertainty during the learning phase and also provides a stopping criterion based on the whole error associated to the failure probability estimate.

The rest of the paper is organized as following. First, we present estimators of the sensitivity indices of the probability of failure and also of the total variance. Then, we propose a reliability analysis algorithm that integrates this sensitivity analysis to adaptively improve the major source of uncertainty during the learning phase. A stopping criterion based on the total variance estimation is also proposed for this algorithm. Finally, we present an extension of the method adapted to tackle rare events probability estimation problems.

Reliability analysis

General setting of reliability analyses

Let x 1 , ..., x m be the m uncertain parameters that are input to the reliability problem. These parameters are modeled by an absolutely continuous random vector X of random variables X k , k = 1, . . . , m characterized by a joint probability distribution with probability density function f X . Note that the random vector X could be either in the physical or in the standard normal space. In the rest of the paper we will consider it in the physical space.

In the context of reliability, the output of interest is the performance function G : R m → R. This function characterizes the failure of a system. Hence the domain of failure reads D f = {x ∈ R m , G(x) ≤ 0}, the domain of safety reads {x ∈ R m , G(x) > 0} and the limit state is {x ∈ R m , G(x) = 0}. The failure probability P f is then defined as:

P f = E f X 1 G(X)≤0 = R m 1 G(x)≤0 f X (x)dx (1) 
where 1 G(x)≤0 is an indicator function. Several methods exist to evaluate this probability [START_REF] Morio | A survey of rare event simulation methods for static input-output models[END_REF]. One of the simplest methods is Monte Carlo Simulation (MCS). It consists in the generation of n M C random independent and identically distributed (i.i.d) samples X 1 , ..., X n M C with distribution f X and computing an estimation of the failure probability using these samples. As the failure probability can be expressed as a mathematical expectation (see Eq. ( 1)), the law of large numbers suggests to build its estimator as the empirical mean of 1 G(Xi)≤0 i=1,...,n M C .

An estimation P M C f of the failure probability P f is then given by:

P M C f = 1 n M C n M C i=1 1 G(x)≤0 (X i ) (2)
The variance of this estimator is defined by:

V ar P M C f = V ar 1 G(X1)≤0 (X 1 ) n M C (3) 
Hence, MCS based classification methods need a lot of simulations to estimate small failure probabilities. In order to avoid the evaluation of a complex performance function G(x) on a whole Monte Carlo population, an approximation by a surrogate model, denoted Ĝ(x), of this function can be used instead.

Reliability analysis using a Gaussian process

Reliability analysis with a surrogate model relies mainly on four elements:

• the type of surrogate model. Throughout the article, the surrogate model Ĝ(x) is assumed to be a Gaussian process and we will review its basics in Sec. 2.2.1.

• the sampling approach. In this article, we only consider Monte Carlo based sampling approaches such as MCS or importance sampling (see Sec. 2.1 and Sec. 5.1).

• the surrogate model enrichment criterion used to most appropriately enrich the surrogate model in order to achieve an accurate approximation of the limit state. (see Sec. 2.2.2)

• the algorithm stopping criterion, that is set to determine when the surrogate model learning is sufficient to obtain an accurate classification of the samples. (see Sec. 2.2.2)

In the introduction, many Gaussian process active learning methods were mentioned. Here, we are interested in methods that consider a population of candidate samples for the learning. This strategy has been first proposed in the AK-MCS [START_REF] Echard | An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF] method. Other methods have then been proposed in order to address more complex reliability problems as discussed in the introduction. In Sec. 2.2.2, some enrichment criteria and their corresponding stopping criteria used in these methods will be analyzed.

The Gaussian Process surrogate model

Gaussian process regression, introduced in geostatistics by Krige [START_REF] Krige | A statistical approach to some basic mine valuation problems on the Witwatersrand[END_REF] and formalized later by Matheron [START_REF] Matheron | Principles of geostatistics[END_REF], is a method of interpolation in which the interpolated function is modeled by a Gaussian process.

A Kriging or Gaussian process interpolation (GP) [START_REF] Rasmussen | Gaussian processes for machine learning, Adaptive computation and machine learning[END_REF], denoted by G, is fully characterized by its mean function m(x) and a kernel (or covariance function)

k(•, •).
Hence, the GP prior can be defined as:

G(x) = m(x) + Z(x) (4) 
where:

• m(x) = f (x) T β with f (x) a vector of basis functions and β the associated regression coefficients.

• Z(x) a stationary, zero mean, Gaussian process with the variance σ 2 Z such that the kernel defining the GP is Several kernel models are available to define the correlation function, such as the squared exponential, Matern 3 /2 or Matern 5 /2, the latter one being used in the rest of the paper.

k(x, x ) = CoVar(G(x), G(x )) = σ 2 Z r θ (x, x ) r θ (x,
The hyperparameters θ, σ Z and β of the GP must be estimated to approximate the response for any unknown point of the domain. For a fixed kernel type, several techniques exist to obtain the optimal values of these hyperparameters, for example by Maximum Likelihood Estimation [START_REF] Jones | A Taxonomy of Global Optimization Methods Based on Response Surfaces[END_REF] or cross-validation [START_REF] Rasmussen | Gaussian processes for machine learning, Adaptive computation and machine learning[END_REF].

The prior distribution of G is considered to be Gaussian. Hence, the pos-

terior distribution G n of G knowing the observations {x doe = (x 1 , ..., x n ), y = G(x doe )} is Gaussian G n = G|(x doe , y) ∼ GP (µ n (•), σ 2 n (•, •)).
The GP predictor Ĝ(x) associated to the response has its mean value µ n (x) and covariance σ 2 n (x, x ) given by:

µ n (x) = f (x) T β + k(x) T C -1 (y -F β) (5) 
σ 2 n (x, x ) = k(x, x ) -k(x) T f (x) T   C F T F 0   -1   k(x ) f (x )   (6) 
where k(x) = (k(x, x 1 ), . . . , k(x, x n )) T , F is the matrix with row i equals to

f (x i ) T , C := (k(x i , x j )) i,j
is the covariance matrix between the observations,

and β = (F T C -1 F ) -1 F T C -1 y.
Note that in the rest of the paper we will assume that m(x) is an unknown constant to be fitted with the other hyperparameters (also known as ordinary

Kriging assumption).

In the following section, the principle of adaptive sampling reliability analysis methods based on an active learning of a Gaussian process will be presented.

Gaussian process based reliability methods

Gaussian process based reliability methods consist in the learning of a GP of the performance function G(x). Therefore, the Gaussian process is iteratively enriched throughout a learning process in order to be sufficiently accurate in the vicinity of the limit state. The constructed surrogate model is thus well-suited for the classification of samples and allows to obtain an accurate estimation of the probability of failure.

The selection of the best enrichment point, with respect to the improvement of the GP approximation of the limit state, among all candidate samples, is based on a specific learning criterion. These learning criteria are built based on learning functions used to determine the most relevant point to evaluate the performance function at each iteration of the algorithm. Many learning functions exist but we will focus here on two classic learning functions that are the functions U and EF F . The function U proposed in [START_REF] Echard | An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF] is given by:

U (x) = |µ n (x)| σ n (x) (7) 
This criterion is evaluated on the Monte Carlo population and the next enrichment point is selected as the sample x that minimizes U . In AK-MCS [START_REF] Echard | An active learning reliability method combining Kriging and Monte Carlo Simulation[END_REF], the learning stopping condition for U is defined as min

x (U (x)) ≥ 2.
Another learning criterion is the expected feasibility function EF F (x), initially coming from the EGRA method [START_REF] Bichon | Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions[END_REF], and is given by the following expression:

EF F (x) = µ n (x) 2Φ - µ n (x) σ n (x) -Φ - + µ n (x) σ n (x) -Φ -µ n (x) σ n (x) -σ n (x) 2φ - µ n (x) σ n (x) -φ - + µ n (x) σ n (x) -φ -µ n (x) σ n (x) + Φ -µ n (x) σ n (x) -Φ - + µ n (x) σ n (x) (8) 
where Φ(•) is the standard normal cumulative distribution function and φ(•)

the standard normal density function. In EGRA and AK-MCS+EF F , the expected feasibility function is built with = 2σ n . At each iteration, the next best point to evaluate is then the candidate sample whose EF F value is maximum.

The learning stopping condition is based on a stopping value of the learning criterion and is defined as:

max x (EF F (x)) ≤ 0.001
The probability of failure estimation on a Monte Carlo population of

n M C samples X = (X i ) i=1,••• ,n M C with X i i.i.d.
with the same probability distribu-135 tion as X is then given by:

P M C f ( X) = 1 n M C n M C i=1 1 µn(Xi)≤0 (X i ) (9)
In the currently available methods, the part of failure probability variance due to the GP is neglected as the learning criteria are conceived to build a very confident GP model in terms of classification accuracy, which justifies the use of the mean µ n (X i ) of the GP predictor in the estimator's expression given by Eq. ( 9). In fact, learning stopping conditions are in general very conservative, which probably leads to an overquality of the GP when compared to the sampling variance.

In the next section, we provide new measures of the influence on the probability of failure of the use of numerical integration by MCS and surrogate model approximations based on a variance decomposition.

3. Measure of failure probability sensitivity to GP and MC estimation uncertainties Some investigations to take into account the GP accuracy on a quantity of interest have been carried out. For example, Le Gratiet proposed in [START_REF] Gratiet | A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes[END_REF] to provide confidence intervals of Sobol indices estimated by GP regression and Monte Carlo integration. Therefore, a quantification of the contribution of both uncertainty sources to the Sobol indices estimators variability is proposed in [START_REF] Gratiet | A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes[END_REF].

In [START_REF] Zhu | Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions[END_REF][START_REF] Haj | Improved active learning probabilistic approach for the computation of failure probability[END_REF], a learning function is proposed that is based on the contribution of a point of the MC population, considering the dependencies to other samples, to the error of the failure probability estimation. In [START_REF] Schöbi | Rare Event Estimation Using Polynomial-Chaos Kriging[END_REF], Schöbi proposed to use bounds of the probability of failure estimator Pf in an active learning algorithm for reliability analysis to define a learning stopping condition. In Schöbi's work, the bounds were computed by classifying the points of the population using their prediction bound values.

Variance decomposition

To consider the Gaussian process uncertainties, the failure probability can be rewritten in the following way :

P f = E Gn,f X 1 Gn(X)≤0 = Ω P R m 1 gn(x)≤0 f X (x)f Gn (g n )dxdg n (10)
where Ω P is the set of conditioned GP trajectories denoted by G n and f Gn is the conditioned GP distribution. The Monte Carlo probability of failure estimator P t f is then given by

P t f = 1 n t 1 n M C nt i=1 n M C j=1 1 Gi(Xi,j )≤0 (X i,j ) = 1 n t nt i=1 Pf (G i , Xi ) (11) 
where G i are i.i.d. random processes of the conditioned GP with the same distribution as G n and Xi are n M C -sized sample of X, that is Xi = (X i,j ) j=1,...,n M C .

The random variables Pf (G i , Xi ) are i.i.d. with the same distribution as Pf (G n , X), that is the failure probability estimator for a GP G n and an n M C -sized Monte Carlo sample X:

Pf (G n , X) = 1 n M C n M C i=1 1 Gn(Xi)≤0 (X i ) (12)
This rewriting of the probability of failure estimator allows to explicitly express it as depending on two random variables, X related to the Monte Carlo sampling uncertainty and G n related to the GP approximation uncertainty.
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In order to assess the contributions of each of both uncertainty sources X and G n on the variance of Pf separately, we can refer to the variance decomposition expression [START_REF] Iooss | A Review on Global Sensitivity Analysis Methods[END_REF] which is a classical tool in sensitivity analysis:

V ar Gn, X Pf (G n , X) = V X + V Gn + V Gn, X (13) 
where:

• V X = V ar X E Gn Pf | X measures the influence of the Monte Carlo
sampling on the variance of Pf ,

• V Gn = V ar Gn E X Pf |G n measures the influence of the GP uncertainty on the variance of Pf , 170 • V Gn, X = V ar Gn, X E Pf |G n , X -V Gn -V X measures the joint con-
tribution of both Monte Carlo and GP uncertainties on the variance of Pf .

Variance contributions estimation

As the GP enrichment points are chosen among the MC population, X and G n are theoretically not independent. However, as the samples of the MC population used to learn the GP only represent a small part of the population.

The estimators developed in the next sections are based on an independence hypothesis.

Variance estimator

Let us assume we have a random i.i.d sample of size n s (Z 1 , . . . , Z ns ) of a random variable Z following an unknown distribution. The mean of Z is approached by the empirical mean over the n s samples denoted by Z ns . The empirical variance of a random vector Z, denoted V ar(Z) throughout the paper, is defined by:

V ar(Z) = 1 n s -1 ns i=1 Z i -Z ns 2 (14) 
The estimated asymptotic confidence interval V ar inf (Z), V ar sup (Z) of the variance of level 1α is given according to the central limit theorem by:

    V ar(Z) -k n s V ar Z i -Z ns 2 n s -1 ; V ar(Z) + k n s V ar Z i -Z ns 2 n s -1     ( 15 
)
where k is the quantile of order 1-α of the reduced centred normal distribution.

Expression of V X estimator

First let us recall that the random variable

Y = 1 Gn(x)≤0 (x) is a Bernoulli random variable B(p(x)) with parameter p(x) = P [G n (x) ≤ 0] = Φ -µn(x)
σn(x) , the probability that x belongs to the failure domain according to the Gaussian process G n .

The expected value of Pf , given by Eq. ( 12), knowing a Monte Carlo population of n M C samples X = (X i ) i=1,..,n M C can be expressed as follows:

E Gn Pf | X = E Gn 1 n M C n M C i=1 1 Gn(Xi)≤0 (X i )|(X i ) i=1,..,n M C = 1 n M C n M C i=1 p(X i ) (16)
Using the analytical expression of E Gn Pf | X given by Eq. ( 16), the variance V X can then be obtained by simulating:

V X = V ar X 1 n M C n M C i=1 p(X i ) = V ar X (p(X)) n M C (17) 
The last equality is obtained as p(X) is a continuous random variable between 0 and 1 and p(X i ) are i.i.d replications of it.

In practice, Eq. ( 17) is estimated on the Monte Carlo population used for the estimation of the probability of failure. Hence the estimator of V X , denoted by V X , on a MC population realization is given by:

V X = V ar X (p( X)) n M C = 1 n M C (n M C -1) n M C i=1   p(X i ) - 1 n M C n M C j=1 p(X j )   2 (18)
and its 1α confidence interval estimated bounds can be expressed using Eq. ( 15) and are given by:

V inf X = V ar inf X (p( x)) n M C V sup X = V ar sup X (p( x)) n M C (19) 

Expression of V Gn estimator

The computation of the expected value of Pf knowing a realization of G n can be interpreted as a classical Monte Carlo simulation for a deterministic model.
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Hence it follows this equality:

E X Pf |G n = E X 1 n M C n M C i=1 1 Gn(Xi)≤0 (X i )|G n (20) = P f (G n ) (21) 
with P f (G n ) the probability of failure for a realization of G n . Classically, this probability of failure is approached by a Monte Carlo estimator Let (G i ) 1≤i≤nt be n t realizations of G n , then the V Gn estimate is the empirical variance of the sample

P M C f (G n ) = 1 n M C n M C i=1 1 Gn(Xi)≤0 (X i ), with (X i ) i=1,...,n M C a
P M C f (G i ) 1≤i≤nt : V Gn = V ar Gn ( P M C f (G n )) = 1 n t -1 nt i=1 P M C f (G i ) - 1 n t nt i=1 P M C f (G i ) 2 (22) 
Moreover its 1-α confidence interval estimated bounds, also expressed using Eq. ( 15), are given by:

V inf Gn = V ar inf Gn ( P M C f (G n )) V sup Gn = V ar sup Gn ( P M C f (G n )) (23) 
In practice, the computation of conditioned GP realizations is prone to numerical issues. In Appendix A, these numerical issues and their sources are exposed and an alternative method, presented in [START_REF] Gratiet | A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes[END_REF][START_REF] Villemonteix | An informational approach to the global optimization of expensive-to-evaluate functions[END_REF], based on the simulation of an unconditioned Gaussian process is detailed.

Expression of the total variance estimator

The total variance of Pf can then be estimated with:

V tot = V ar Gn, X Pf (G n , X) = 1 n t -1 nt i=1   Pf (G i , Xi ) - 1 n t nt j=1 Pf (G j , Xj )   2 (24)
where (G i , Xi ), i = 1, . . . , n t are n t realizations of G n and Monte Carlo population X and Pf (G i , Xi ) is the probability of failure estimation for the i th realization (G i , Xi ) of G n and X. V tot is the empirical variance of the sample

( Pf (G i , Xi )) 1≤i≤nt .
Moreover the 1α confidence interval estimated bounds of V tot , also expressed using the operators defined in Eq. ( 15), are given by:

V inf tot = V ar inf Gn, X ( Pf (G n , X)) V sup tot = V ar sup Gn, X ( Pf (G n , X)) (25)
In practice, the numerical cost of the

n t estimations of Pf (G i , Xi ) = Pf (G i ( Xi ))
can be quite high to get a sufficiently low variance of the estimator V tot . Hence, we propose to use a bootstrap procedure [START_REF] Archer | Sensitivity measures, ANOVA-like techniques and the use of bootstrap[END_REF] to simulate several MC populations Xi from the population X on which the n t GP trajectories are computed [START_REF] Gratiet | A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes[END_REF].
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Bootstrap is applicable here as we assume that the size n M C is sufficiently large to consider that sampling with the empirical distribution or with the true distribution is similar. The method proposed to estimate the

Pf (G i , Xi ) is presented in Algorithm 1. Algorithm 1 Evaluation process of Pf (G i , Xi ) via n t bootstrap samples Require: X, G n , n t 1: Simulation of i = 1, . . . , n t trajectories G i ( X) = (G i (X j )) j=1,...,n M C of G n at MC population samples X 2: for i = 1, . . . , n t do 3:
Sampling with replacement of a sample Z of size n M C from X

4:

Extract values of G i (Z) from G i ( X)

5:
Estimation of Pf (G i , Xi ) using Eq. ( 12) with Xi = Z and

G i ( Xi ) = G i (Z) 6: end for 7: return Estimation of Pf (G i , Xi ) i∈1,...,nt
Finally, the probability of failure is estimated by the mean over the ( Pf (G i , Xi )) 1≤i≤nt , 220 i.e. by:

P t f = 1 n t nt i=1 Pf (G i , Xi ) (26) 
Hence, estimated total COV, denoted by COV tot , of an estimation P M C f of the probability of failure Pf obtained on a MC realization is thus given by:

COV tot = V tot P t f (27) 
Its 1α confidence interval estimated bounds are then estimated by:

COV inf tot = V inf tot P t f COV sup tot = V sup tot P t f ( 28 
)
Finally notice that the joint contribution of the MC integration and the GP approximation uncertainties V Gn, X can then be estimated by computing the three previous estimators and applying the relation given by Eq. [START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and Support Vector Machines[END_REF]. By carrying out this calculation the independence hypothesis introduced at the beginning of Sec. 3.2 can be empirically verified.

Motivation for developing a new adaptive sampling approach illustrated on a benchmark case

The idea here is to explain our motivation to propose a new approach in order to perform a trade-off between improving the GP and adding points to the MCS. To illustrate this point, a well known benchmark example is chosen.

The application deals with the example of a series system with four branches limit state introduced in [START_REF] Borri | Structural reliability analysis using a standard deterministic finite element code[END_REF] and chosen for its high non-linearity and rather complex limit state. The random variables X 1 and X 2 follow standard normal distributions. The performance function is given by:

y = min x1,x2                  3 + 0.1(x 1 -x 2 ) 2 -(x1+x2) √ (2) 
;

3 + 0.1(x 1 -x 2 ) 2 + (x1+x2) √ (2) 
;

(x 1 -x 2 ) + 6 √ 2 ; (x 2 -x 1 ) + 6 √ 2                  (29) 
A run of the AK-MCS+EF F algorithm gives an estimation of P f and the corresponding MC coefficient of variation. In this example, this algorithm was run with an initial Monte Carlo population of size 10 4 and a maximum allowed coefficient of variation of 5%. At each iteration of the algorithm, the variability due to the GP G n and the Monte Carlo based integration X was estimated using respectively Eq. ( 22) and Eq. ( 18). To visualize the GP uncertainty, Fig. 1 shows three different trajectories of the limit state approximation drawn from a GP constructed from a DoE of 50 points. It can be seen that the three trajectories are relatively close to each other in areas that contribute a lot to the probability of failure but there is large variability among the three trajectories in areas (i.e.

the four corners), that contribute little to the probability of failure (cf. also to Fig. 5a to visualize the Monte Carlo samples). Our variance estimator of Eq. ( 22)

quantifies the variance of the Pf estimator associated with the different possible trajectories of the GP, while the variance estimator of Eq. ( 18) quantifies the variance of the Pf estimator associated with different possible samples for the MCS. The evolution of the probability of failure and the corresponding variance estimations throughout the algorithm are respectively illustrated on Fig. 2 and Fig. 3.

In particular, it can be seen on Fig. 3 that for the 18 first iterations the The variance comparison leads us to conclude that there is no need to learn the GP in a so accurate way and by avoiding this we can hope to save some unnecessary simulations of the performance function.

V X V G n
Hence, it could be interesting to integrate these measures of variance in the learning procedure to overcome the over-conservative learning of GP. The proposed method is detailed in the next section.

Proposed method

General concept

The new method consists in using the variance estimations obtained previously in the learning phase as decision criteria of a novel, adaptive enrichment process for probability of failure approximation. On the one hand, the contributions attributed to the Monte Carlo estimation and the GP to the variability of Pf can be used to decide whether to improve the GP or to increase the size of the sampling population. These contributions can be quantified using the variances estimators given by Eq. ( 18) for the MC integration contribution and by Eq. ( 22) for the GP approximation. On the other hand, the total variance on Pf , whose estimator is given by Eq. ( 24), can be used as a criterion to stop the learning phase.

Proposed algorithm

The proposed Variance based Active GP (Vb-AGP) learning procedure is summarized in Fig. 4 and the different stages are described below:

1. Generation of an initial Monte Carlo population X of n M C samples.

2. Initial Design of Experiments (DoE) of n samples defined using sampling methods such as Latin Hypercube Sampling (LHS). The performance function G(x) is then evaluated at the n samples.

3. Construction of a GP metamodel G n (x) of the performance function G(x) on the DoE.

4. Estimation of the failure probability P f on the Monte Carlo population X according to the following equation:

P M C f ( X) = 1 n M C n M C i=1 1 µn(Xi)≤0 (30) 
5. Interval estimation of variances V X and V Gn using respectively Eq. [START_REF] Lelièvre | A Kriging-based method to deal with small failure probabilities and time-consuming models[END_REF] and Eq. ( 23).

Note that we seek to obtain

V inf X , V sup X ∩ V inf Gn , V sup

Gn

= ∅, using the estimators given in Sec. 3.2, in order to compare both variance values.

Therefore new GP trajectories have to be simulated until the estimation of V Gn confidence interval is sufficiently narrow.

Compute COV

red = V sup Gn + V sup X P M C f .
If COV red < COV max , with COV max a user defined maximum allowed total coefficient of variation, the algorithm goes to step 7 to verify that the total COV is below the maximum allowed value.

Otherwise, the algorithm goes to step 8 in order to reduce the main source of uncertainty.

7. Interval estimation of the total coefficient of variation COV tot using Eq. ( 28):

increasing number of simulations until

COV max / ∈ COV inf tot , COV sup tot . If
COV sup tot ≤ COV max then the estimation P t f of P f with Eq. 26 is considered sufficiently accurate and the algorithm is stopped.

Otherwise, the algorithm goes to the next step.

8. If V Gn < V X , new samples are added to the Monte Carlo population and the method goes back to step 4 to update the estimation of P f . Else if V Gn > V X , the algorithm goes to step 9. 9. The learning function EF F (x) given by Eq. ( 8) is evaluated on the whole MC population to find the best candidate x * to evaluate for enriching the GP metamodel. The performance function is computed on the sample x * and the DoE is enriched with this new point x * . Then the method goes to step 3 to update the GP model.

The first stage of the stopping condition on learning consists in verifying the following equation:

COV red = V sup Gn + V sup X P M C f < COV max ( 31 
)
where COV max is a user defined maximum allowed total coefficient of variation,

The condition given by Eq. ( 31) corresponds to a condition on the approximation of the total variance of the Pf , under the independence assumption.

Indeed, throughout the learning, the joint contribution of both variables is never computed, since it would significantly increase the computational cost.

If Eq. ( 31) is verified, the total variance V tot including the joint contribution can be estimated (i.e. in step 7 of the algorithm) to make sure that it respects the maximum variance allowed.

Let us now make a few comments about the choices made for this algorithm. First we have found that the learning function EF F (x) appears better suited than U (x). Indeed, the learning function EF F (x) tends to explore more, whereas the function U (x) focuses on a very accurate learning of the currently known limit state before exploring the rest of the domain.

Finally, note that seeking to equalize the two variance contributions V X and V Gn is not guaranteed to be the most computationally cost efficient strategy.

The optimal strategy will be problem dependent, however seeking equal contributions of the two variances V X and V Gn appears as a good general guideline and, in most cases, the corresponding computational cost is expected to be quite close to the actual optimum. ill-conditioning [START_REF] Zimmermann | On the condition number anomaly of Gaussian correlation matrices[END_REF]. For this reason, in this paper the Matérn 5 /2 kernel will be used.

Moreover, as for the AK methods, a maximum allowed COV has to be set as a stopping criterion of the algorithm. However, the COV computed in the proposed algorithm includes all uncertainties (not only the MC ones) and the method is built to have balanced amount of variability due to both sources of uncertainty. This must be taken in consideration when choosing the value of

COV max .
The different active learning methods performances comparison can be based on different criterion or error measures such as:

• COV ( Pf ): the COV of Pf estimations obtained on n run independent runs of the estimation procedure of P f ;

• e r : the mean over the n run values of the absolute relative error between the estimations Pfi , i = 1, . . . , n run obtained and a reference value P f ref (obtained e.g. by MCS with a very large number of samples)

e r = 1 n run nrun i=1 | Pfi -P f ref | P f ref (32) 
• ν M C : a coefficient allowing to compare the numerical efficiency of the considered method to a classical MCS method, that is defined as follows:

ν M C = N M C call N call (33) 
where N call corresponds to the number of calls of the active learning method to the performance function to reach a COV equal to COV ( Pf )

and N M C call is the number of samples needed by a MCS method (estimated by Eq. (??)) to obtain the same COV of COV ( Pf ) on the probability of failure.

The efficiency ν M C actually corresponds to the factor dividing the MCS budget to reach the same level of accuracy on P f with the active learning based method considered.

Series system with four branches limit state

We have applied the classical AK-MCS and the proposed methods on the example of a series system with a four branches limit state already defined in Sec. The variations of both variance estimators V X and V Gn during a run are provided in Fig. 6.

As for the algorithm AK-MCS, the influence of the GP is predominant at the beginning of the run and the surrogate model has to be enriched. However, we can see that at the end of the run the values of V X and V Gn are more balanced and V Gn is not much lower than V X . Nonetheless, the estimated total COV at the end of the run is 2.9% and respects thus the allowed COV of 3%. Here, the quantity

V X Pf
corresponding to the MC COV, that is usually used as a variability measure, is equal to 2.1%. The results show that the method Vb-AGP allows to reduce the number of learning points needed to respect the same accuracy. Moreover, we can see that the variance (respectively COV) estimator proposed in this work is consistent with the empirical variance obtained on 100 runs of the algorithm. Indeed, the 10 -6 maximal imposed COV value is 3% and an empirical COV of 2.6% is obtained.

10 -5 V X V G n
The value of the numerical efficiency indicator ν M C of the proposed method is 3 times higher than for AK-MCS+EF F and 2.6 times higher than for AK-MCS+U .

Dynamic response of an oscillator

The example of an oscillator leading to a non-linear limit state function is also widely used in the litterature and concerns the dynamic response of the undamped single degree-of-freedom system illustrated in Fig. 7. This example is also studied in [START_REF] Echard | Kriging-based reliability assessment of structures submitted to fatigue[END_REF][START_REF] Echard | A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF][START_REF] Lelièvre | A Kriging-based method to deal with small failure probabilities and time-consuming models[END_REF].

The corresponding performance function is expressed as:

G(C 1 , C 2 , M, R, T 1 , F 1 ) = 3R - 2F 1 M ω 2 0 sin ω 0 T 1 2 (34) 
with ω 0 = (C1+C2) /M. Six random Variables listed in Tab. 2 are considered for this problem. Actually, two cases are proposed here with a change of the applied force F 1 probability distribution parameters which lead to different probability of failure orders of magnitude.

The proposed method and AK-MCS were applied on the first case with

F (t) z(t) C 1 C 2 M F (t) t F 1 T 1
Figure 7: Oscillator with non-linear limit state function.

Variable

Distribution Mean standard deviation The numerical efficiency indicator ν M C for the proposed method is 1.6 times higher than for AK-MCS + U and 1.8 times higher than for AK-MCS + EF F .

C 1 Gaussian 1 0.1 C 2 Gaussian 0.1 0.01 M Gaussian 1 0.05 R Gaussian 0.5 0.05 T 1 Gaussian 1 0.2 F 1 -Case 1 Gaussian 1 0.2 F 1 -Case 2 Gaussian 0.6 0.1
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In Tab. We can see that the COV of the number of calls N call is higher for the method Vb-AGP than for the other enrichment strategies. In this example the number of points added during the learning phase with the proposed method is of the same order of magnitude as the initial DoE. The results obtained are thus dependent on the initial DoE. We can suppose that the number of necessary enrichment points depends on the quality of the initial DoE, in terms of accuracy of the classification, and that is an underlying cause of the higher variance of

N call .
As presented previously, another case derived from the oscillator example with another distribution of the variable F 1 can be achieved (Case 2 of Tab. 2).

However, this test case corresponds to a very low probability of failure and can thus not be treated with the Vb-AGP + MCS method due to the limits of MCS use for rare events [START_REF] Morio | A survey of rare event simulation methods for static input-output models[END_REF]. Therefore, we propose another version of the method that involves Importance Sampling (IS) in order to address low probability of failure problems.

Improvement with IS

A way to highly decrease a Monte Carlo based estimator's variance is to use importance sampling instead of a classical Monte Carlo sampling. Moreover, the use of importance sampling allows to address rare event probabilities as the number of samples for the integration can be considerably reduced.

Importance Sampling

The main idea of Importance Sampling (IS) is to find an auxiliary density f aux , well-suited for the estimation of

P f = P [G(x) ≤ 0], to generate n IS n M C samples X 1 , .
.., X n IS ∼ f aux weighted for the estimation of the sought probability:

P IS f = 1 n IS n IS i=1 w(X i )1 G(Xi)≤0 (X i ) (35) 
with w(X i ) = f X (Xi) faux(Xi) the weight of the sample X i . The auxiliary density f aux appears in the computation of the variance of the estimator in the following way:

V ar P IS f = V ar w(X 1 )1 G(X1)≤0 (X 1 ) n IS (36) 
while the variance of the MC estimator is

V ar(1 G(X 1 )≤0 (X1)) n M C
. Hence, if well chosen, the auxiliary density f aux can considerably reduce the variance of the estimator and improve its convergence. The best possible auxiliary density f aux , denoted f opt aux , is the one that verifies V ar P IS f = 0. Using Eq. ( 36), its expression is then given by [START_REF] Bucklew | Introduction to rare event simulation[END_REF]:

f opt aux (x) = 1 G(x)≤0 f X (x) P f (37) 
Since it depends on the probability sought, P f itself, it cannot be used directly.

One of the difficulties of IS is then to compute an auxiliary density f aux as close as possible to f opt aux . Several methods have been developed such as [START_REF] Boer | A tutorial on the cross-entropy method[END_REF][START_REF] Zhang | Nonparametric importance sampling[END_REF][START_REF] Papaioannou | Sequential importance sampling for structural reliability analysis[END_REF]. In this paper, we consider the non parametric adaptive IS (NAIS) proposed in [START_REF] Morio | Extreme quantile estimation with nonparametric adaptive importance sampling[END_REF] and detailed in Appendix B. The principle of NAIS is to estimate iteratively the density f opt aux with a weighted Gaussian kernel density. The advantage of this approach is its applicability on relatively complex failure domain as long as the dimensionality of the input is reasonably small (m < 10).

The probability of failure estimator obtained when running a GP active learning method combined with IS is given by:

Pf (G n , X) = 1 n IS n IS i=1 w i 1 Gn(Xi)≤0 (X i ) (38) 
with G n the GP of G, w i = f X (Xi) faux(Xi) the weights of the samples generated by IS and f aux the auxiliary IS density.

The effect of the GP and the IS accuracy on the probability of failure estimate can be obtained by rewriting the indices of variances proposed in Sec. 3.2 adapted for IS.

Variance based sensitivity index estimations

The expected value of Pf knowing a population of n IS samples X = (X i ) i=1,..,n IS generated by IS auxiliary density function f aux can be expressed by rewriting Eq. ( 16) as follows:

E Gn Pf | X = E Gn 1 n IS n IS i=1 w i 1 Gn(Xi)≤0 (X i )|(X i ) i=1,..,n IS = 1 n IS n IS i=1 w i p(X i ) (39) 
Hence, the variance V X estimator is then obtained by adapting Eq. ( 18) for IS:

V X = V ar X ((w( X)p( X)) n IS = 1 n IS (n IS -1) n IS i=1   w(X i )p(X i ) - 1 n IS n IS j=1 w(X j )p(X j )   2 (40) 
and its 1α confidence interval estimated bounds can be expressed similarly to the ones defined in Sec. 3.2.1.

The computation of the expected value of Pf knowing a realization of G n can here be interpreted as a classical IS estimation for a deterministic model.

Hence it follows this equality:

E X Pf |G n = E X 1 n IS n IS i=1 w i 1 Gn(Xi)≤0 (X i )|G n (41) = P f (G n ) (42) 
The probability of failure P f (G n ) is here approached by an estimation by IS

P IS f (G n ) = 1 n IS n IS i=1 w i 1 Gn(Xi)≤0 (X i ),
with (X i ) i=1,...,n IS the samples of the IS population realization. Hence, as for MCS V Gn can be numerically obtained by computing the IS estimator of P f for different trajectories of G n . The expression of the V Gn estimator given by Eq. ( 22) for MCS becomes:

V Gn = 1 n t -1 nt i=1   P IS f (G i ) - 1 n t nt j=1 P IS f (G j )   2 (43) 
where n t is the number of G n realizations.

We can compute n t values Pf for n t realizations (G i , Xi ), i = 1, . . . , n t of G n and IS population X. The probability of failure can be estimated with P t f as the mean of these n t values Pf and the total variance can be estimated using the estimator given by Eq. [START_REF] Zhang | REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis[END_REF].

Then the estimated total COV of an estimation P IS f of the probability of failure Pf obtained on an IS realization is given by Eq. ( 27).

Extended method to Importance Sampling

In order to address low probability of failure estimation problems, we propose to integrate IS to Vb-AGP. The main idea is to replace the Monte Carlo population by an IS population for the probability of failure estimation. Thus, the variances V X and V Gn are obviously computed on the samples X generated by IS only and their estimations are obtained by applying Eq. ( 40) and Eq. [START_REF] Boer | A tutorial on the cross-entropy method[END_REF].

However, the learning point candidates for GP improvement correspond to all samples generated throughout the run of the NAIS algorithm X aux for the current auxiliary density function construction.

At the beginning of the algorithm, the initial learning point candidates are simply the samples of a classic Monte Carlo population generated with the distribution f X . Hence, the first probability of failure estimation is obtained using the MC estimator. Naturally, as soon as an IS population is used instead of the MC, the probability of failure estimator Pf is replaced by the one corresponding to IS given by Eq. [START_REF] Archer | Sensitivity measures, ANOVA-like techniques and the use of bootstrap[END_REF].

Then, steps 8 and 9 described in Sec. 4 for MCS are thus modified accordingly: Else if V Gn > V X , the algorithm goes to step 9. 9. The learning function EF F (x) is evaluated on the whole candidate samples population X aux to find the best candidate x * to evaluate for enriching the GP metamodel. The performance function is evaluated on the sample x * and the DoE is enriched with this new observation. Then the method goes to step 3 to update the GP model.

8. If V Gn < V X then:
The extended method procedure is summarized in Fig. 8. Moreover, as the extended method with IS may address low probability problems, there are great chances that the probability estimated with the initial DoE and MC population is equal to zero. In order to address this problem, NAIS is run one time on the GP built with the initial DoE. That allows to estimate The Vb-AGP + IS method was applied on a test case derived from the series system with four branches limit state function G(x) defined by Eq. ( 29).

The failure is defined here by G(x) ≤ 1.5 and the related reliability problem corresponds to a probability of failure of 5.29×10 Here, we do not compare the method to AK-MCS because this type of reliability problem with low probabilities of failure is difficult to address with this method and neither to AK-IS [START_REF] Echard | A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF] as the method is based on FORM and thus not suited for multimodal failure domains. Nonetheless, it can be noted that the efficiency indicator ν M C of the method in comparison to MCS is very high.

Dynamic response of an oscillator

The variance based GP+IS method was then applied on the second case derived from the example dealing with the dynamic response of an oscillator with a non-linear limit state function, described in Sec. 4.3.3, with F 1 ∼ N (0.6, 0.01) corresponding to an estimated probability of failure of 9.08 × 10 -6 (COV = 2.47%) with MCS. The method was run 50 times for initial DoEs of 12 samples and a maximum coefficient of variation of 3%.

Obviously, this reliability problem is intractable with the AK-MCS method but has been handled by the method AK-IS [START_REF] Echard | A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF]. Hence, we compare the mean results of the Vb-AGP + IS approach with the results of AK-IS presented in the paper [START_REF] Echard | A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF]. These results are given in Tab. 5.

On this example, the method Vb-AGP divides on average the number of calls Method . In this section, the proposed method is applied to a finite element based reliability analysis, involving the heat transfer through the combustion chamber wall of a regeneratively cooled rocket engine [START_REF] Riccius | Influence of Time Dependent Effects on the Estimated Life Time of Liquid Rocket Combustion Chamber Walls[END_REF][START_REF] Riccius | LRE Chamber Wall Optimization Using Plane Strain and Generalized Plane Strain Models[END_REF][START_REF] Gogu | How Adaptively Constructed Reduced Order Models Can Benefit Sampling-Based Methodsfor Reliability Analyses[END_REF]. In such an engine, liquid hydrogen (LH2) flowing through cooling channels in the combustion chamber wall at a temperature of 40K is used for cooling the engine. We consider that failure occurs when the maximum temperature of the inner wall of the combustion chamber exceeds a critical value T allow , which corresponds to the cooling channel walls rupture, due to thermally induced stresses.

N call COV (N call ) Pf COV ( 
A schematic of the combustion chamber of a typical regeneratively cooled liquid hydrogen (LH2) liquid oxygen (LOX) rocket engine is shown in Fig. 10.

As illustrated, two different parts made of two different materials form the com- bustion chamber wall: an internal side made of a copper alloy and an external jacket made of a Ni alloy. Heat exchanges may happen through convection between the combustion chamber wall and the sources of heat (combustion chamber gases) and cooling (liquid hydrogen) and also with the exterior. Considering these boundary conditions, the resulting thermal transfer depends on the following parameters: the conductivity of the inner side of the wall (k Cu ), the conductivity of the jacket (k N i ), the temperature of the gases on the inner side of the combustion chamber (T hot ), the film convection coefficient on the inner side of the combustion chamber (h hot ), the temperature on the outer side of the combustion chamber (T out ), the film convection coefficient on the outer side of the combustion chamber (h out ), the temperature of the cooling fluid (T cool ) and the film convection coefficient on the cooling channel side (h cool ).

Here the thermal field is computed using an in-house finite element solver coded in Python. Thus we have access to the maximum temperature in order to deduce the value of the performance function, defined here as G(x) = T allow (x) -T max (x).

Then the failure probability can be estimated using sampling methods or enhanced methods such as active learning strategies. These results show that the two methods converge to the same probability of failure estimation which allows to be confident in this estimation. Moreover, for both approaches, this estimation is reached with a coefficient of variation close to 3%. It is recall that, for the proposed Vb-AGP + IS approach, this coefficient of variation takes into account the uncertainty due to the IS and the uncertainty due to the use of the GP surrogate model. This example hence confirms that the estimator of the total coefficient of variation proposed in Section 5.1 can be trusted. Finally it is notable that the proposed Vb-AGP + IS method needs on this problem about two times less calls to the performance function than the AK-MCS + U method (the numerical efficiency metric ν N call M C is about two times larger for Vb-AGP + IS than for AK-MCS + U ).

Conclusions

In this paper, we showed that the effect of both the Monte Carlo sampling and the GP surrogate model on the probability of failure estimator can be analyzed by a sensitivity analysis based on variance decomposition. Then we have proposed estimators of the variances related to each of these two uncertainty sources and also an estimator of the total variance in order to compute them numerically. This analysis enables us to quantify the source of uncertainty that has the most impact on the variability of the probability of failure estimation.

Then we proposed a Variance based Active GP (Vb-AGP) learning procedure that integrates this analysis to improve the major source of uncertainty during the learning phase and a stopping criterion based on the total variance of the probability of failure estimation. The method was applied to two examples and showed great potential to reduce the number of learning points while satisfying the maximum COV constraint imposed by the user. Moreover, the method gives an estimation of the total COV that has been validated on the various examples.

An extension of this method to IS, in order to make it more suitable to probability of rare events estimation, was then presented. In this work, the adaptive IS algorithm NAIS was used in order to tackle multimodal failure domains without any a priori knowledge of the domain. The approach was applied to three examples and was shown effective in terms of the accuracy of the probability of failure total COV estimations and also in terms of potential number of simulations reduction. However, it should be noted that the application of Vb-AGP + MCS is limited to problems with a relatively low stochastic dimension because of the memory cost of accurate trajectory simulations with the Karhunen-Loeve expansion for large MC populations. Hence, a potential improvement of the method could be thought by looking to improve the efficiency of the trajectory simulations technique while taking care that the trajectories approximations are sufficiently accurate.

Note also that the use of the Vb-AGP + IS method is a good way to reduce the sampling population size, but as the NAIS algorithm is only efficient for problems with relatively low input dimensionality (m < 10) it is also not suited for problems with high stochastic dimensions. In this work, an extension to rare events problems with NAIS was chosen as we considered that there is no a priori knowledge of the limit state. However, in case some hypothesis about the limit state form are available by experience for example, other IS or Subset Sampling Y k ← G n ( Xk )

13:

S * ← ρ-quantile of Y k 14:

γ k ← max(S * , 0)

15:

w j i ← 1 Y j i ≤γ k f X (X j i ) ĝj opt (X j i )
, for i, j ∈ [1, n IS ] × [1, k] x -X j i 18: end while

19: P N AIS f ← 1 n IS n IS i=1 I Y k ≤0 f X (X k i ) ĝk opt (X k i )
In Algorithm 2 line 8, B N is a diagonal covariance matrix.

In practice the GP prediction mean is used to evaluate the samples. However in the proposed method, the NAIS algorithm is used in intermediate steps were the GP approximation of the limit state may not be accurate. Hence, it is more appropriate to use an auxiliary density suited to estimate the probability

P N AIS f = 1 n IS n IS i=1 p(X i ) f X (Xi)
ĝk opt (Xi) . Therefore in our method, the NAIS

  x ) being a correlation function defined by the hyperparameter set θ and CoVar(•, •) being the covariance function between two points. In this paper, only stationary kernels are used, which means that kernels are functions of d = |xx | (i.e. r θ (x, x ) = r θ (d)).

  Monte Carlo population realization. Hence, V Gn can be numerically estimated by simulating different trajectories of G n and computing the Monte Carlo estimator of P f for each simulated trajectory.

Figure 1 :

 1 Figure 1: Four branches test case: true limit state function G(x) = 0 and three trajectories approximating it, drawn from the GP constructed based on 50 DoE points.

Figure 2 :

 2 Figure 2: Evolution of the probability of failure estimation as a function of the number of iterations throughout a run of the algorithm AK-MCS+EF F ( P M C f = 4.46 × 10 -3 (COV =

Figure 3 :

 3 Figure 3: Evolution of the variances V X and V Gn estimations as a function of the number of iterations throughout a run of the algorithm AK-MCS+EF F on the four branches test case.
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 34314 Figure 4: Flowchart of the learning algorithm Vb-AGP + MCS.
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 33 The proposed method was run for an initial DoE of 16 samples, an initial MC population of 5 × 10 4 and a maximum coefficient of variation of 3%. The final DoE resulting from a run of AK-MCS+EF F and the final DoE obtained with a run of the proposed variance based algorithm on the same initial DoE and MC population are illustrated respectively on Fig. 5a and Fig. 5b. It can already be observed on these figures that the proposed variance based algorithm adds less points to the DoE to fulfill the learning stopping criterion.

  (a) AK-MCS+EF F result (b) Vb-AGP + MCS approach result

Figure 5 :

 5 Figure 5: Comparisons of two DoEs: a) resulting from a run of AK-MCS+EF F and b) one obtained with a run of the proposed method for the same inital DoE and MC population withCOVmax set to 3% on the series system with four branches example.

Figure 6 :

 6 Figure 6: Evolution of the variance V X and V Gn estimations as a function of the number of iterations throughout a run of the proposed algorithm on the four branches test case.

F 1 ∼ 2 (

 12 N (1, 0.04) corresponding to a reference probability of failure of 2.86×10 -obtained with 100 runs of MCS with n M C = 1 × 10 5 ). The methods were run 405 100 times for an initial DoEs of 12 samples, initial MC populations of 1 × 10 4 and a maximum coefficient of variation of 3%. The mean results are given in Tab. 3.
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 182 If it is the first time the algorithm passes through this loop or when G n has been updated, then a new auxiliary density function f aux is built with the GP G n . IS population and candidate samples for the learning X aux are also replaced by the most recent ones generated.Then the algorithm goes back to step 4.Otherwise the algorithm goes to step 8.2. New samples are added to the IS population and the method goes back to step 4.

Figure 8 :

 8 Figure 8: Flowchart of the learning algorithm improved with IS

Figure 9 :

 9 Figure 9: Vb-AGP + IS (NAIS) method

  to the performance function by AK-IS by a factor 1.16. This reduction is less important than the ones obtained on the previous examples with AK-MCS. Note that the COV of N call is relatively high for the method Vb-AGP+IS. That can be explained by the influence of the initial DoE, that has an important impact on the performances of NAIS. Moreover, six random variables are considered on this example and thus the efficiency of NAIS is considerably reduced as the stochastic dimension is quite high for the applicability of this method. 5.4.3. Reliability analysis on a thermal problem 5.4.3.1. Description of the problem

Figure 10 :

 10 Figure 10: Schematic of a regeneratively cooled rocket engine combustion chamber.

Algorithm 2 2 : 1 Nx -X 0 i 9 :k ← k + 1 11 :

 221911 techniques might be considered to circumvent the curse of dimensionality. auxiliary density function of the initial sought probabilityP f = P[G n (X) ≤ 0].The probability is then estimated with the IS formula (line 19 Algorithm 2).690 Non parametric Adaptive Importance Sampling (NAIS)Require: ρ, n IS , f X , G n 1: k ← 0 X0 ← population generated from f X of cardinal n IS 3: Y 0 ← G n ( X0 ) 4: S * ← ρ-quantile of Y 0 5: γ 0 ← max(S * , 0) 6: w 0 ← I Y 0 ≤γ0 7: I 0 ← 1 n IS n IS i=1 w 0 i 8: ĝ1 opt (x) ← 1 n IS det(B N )I0 n IS i=1 w 0 i K d B -while γ k > 0 do 10:Xk ← population generated from ĝk opt of cardinal n IS 12:

1 kn

 1 IS det(B N )I k k j=1 n IS i=1 w j i K d B -1 N

  

Table 1 :

 1 Series system with four branches-100 run mean results -Adaptive method parameters: n init M C = 5 × 10 4 , n init DoE = 16, COVmax = 0.03.

	Method	N call COV (N call )	Pf	COV ( Pf )	e r	ν M C
	MCS	10 6	-	4.46 × 10 -3	1.6%	-	-
	AK-MCS + U	128	6.6%	4.48 × 10 -3	3%	2.4% 1976
	AK-MCS + EF F	144	6.6%	4.46 × 10 -3	3%	2.5% 1690
	Vb-AGP + MCS	68	9.0%	4.46 × 10 -3	2.6%	2.0% 5146

Then the algorithm was run 100 times with different initial DoEs of 16 points and initial Monte Carlo populations of 5 × 10 4 . A maximum coefficient of variation of 3% was set. The reference result obtained, on average, by 100 runs of MCS (n M C = 10 6 ) and the mean results of all methods are presented in Tab. 1.

Table 2 :

 2 Random variables for the oscillator test case.

Table 3 :

 3 3, the COV of Pf estimation is 3.2% on the 100 runs of Vb-AGP and its 99% confidence interval is given by [0.022, 0.041]. Result for the oscillator test case (µ F 1 = 1, σ F 1 = 0.2) -100 run mean results Adaptive method parameters: n init M C = 10 4 , n init DoE = 12, COVmax = 0.03.

	Method	N call	COV (N call )	Pf	COV ( Pf )	e r	ν M C
	MCS	1 × 10 5	-	2.86 × 10 -2	2%	-	-
	AK-MCS +U	59.8	6.4%	2.85 × 10 -2	2.7%	2.2% 792
	AK-MCS +EF F	52.5	7.1%	2.87 × 10 -2	2.8%	2.4% 890
	Vb-AGP + MCS	22.5	14.4%	2.84 × 10 -2	3.2%	2.6% 1436

Table 4 :

 4 -5 with a COV 2.1% estimated by MCS (100 runs for n M C = 5×10 7 ). The proposed variance based method Vb-AGP with the adaptive IS method NAIS applied on this test case is illustrated on Fig. 9. On this Figure, the intermediate population used as GP learning samples and the IS population used to compute the probability are represented. Series system with four branches low probability of failure problem -100 run mean results -Adaptive method parameters: n init DoE = 12, COVmax = 0.03.

	The mean results over 100 runs of the algorithm on this test case are given
	in Tab. 4. They show that the Vb-AGP + IS method allows to respect the
	maximal COV set to 3% on the 100 runs of the algorithm.		
	Method	N call	COV (N call )	Pf	COV ( Pf )	e r	ν M C
	MCS	5 × 10 7	-	5.29 × 10 -5	2.1%	-	-
	Vb-AGP + IS	104	16.2%	5.33 × 10 -5	3.0%	2.4% 201437

Table 5 :

 5 Result for the oscillator test case (µ F 1 = 0.6, σ F 1 = 0.1) -100 run mean resultsAdaptive method parameters: n init DoE = 12, COVmax = 0.03.

	Pf )	e r	ν M C

Table 7 :

 7 5.4.3.2. Results. As this example involved a costly numerical resolution only the Ak-MCS + U and the proposed Vb-AGP + IS methods are compared. For both approaches the targeted maximum coefficient of variation is set to 3% and the initial DoEs count 10 samples. In order to assess the robustness of the approaches, 50 runs on different initial DoEs are performed. The results are given in the table 7. Result for the combustion chamber test case -50 run mean results Adaptive method parameters: n init DoE = 10, COVmax = 0.03.

	Method	N call COV (N call )	Pf	COV ( Pf ) ν N call M C
	AK-MCS + U 30.36	6.61%	7.15 × 10 -4	3.21%	44707
	Vb-AGP + IS 15.04	1.30%	7.04 × 10 -4	3.12%	97022
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A reliability-based sensitivity analysis was carried out on this problem and the parameters h out and k Cu were shown to have negligible influence on the 590 failure. Other parameters and the maximum temperature allowable T allow are supposed to be uncertain and are modeled by independent random variables following probability distributions given in Table 6. The thermal field at stationary equilibrium is obtained by resolution of a convection-diffusion equation by a finite element approach.

The finite element mesh of the combustion 595 chamber wall and the boundary conditions are illustrated in Fig. 11. Appendix A. Gaussian process trajectories computations by simulating an unconditioned Gaussian process

The objective here is to explain how to avoid numerical issues experienced when simulating GP trajectories with large population.

We saw in Sec. 3.2 that the estimation of V Gn can be assessed from realizations of the Gaussian process G n at each point of the sampled population.

Let G n be a conditioned GP with mean function µ n (•) and covariance matrix

A trajectory (or realization) of the GP G n at the Monte Carlo population X can actually be expressed as follows:

However for large populations, the computation of G n ( X) realizations present huge numerical costs or encounter numerical issues like ill-conditioned covariance matrix, making it impossible to compute the Cholesky decomposition and thus the GP realizations by this method. These numerical problems can be avoided by simulating an unconditioned Gaussian process [START_REF] Rasmussen | Gaussian processes for machine learning, Adaptive computation and machine learning[END_REF][START_REF] Villemonteix | An informational approach to the global optimization of expensive-to-evaluate functions[END_REF][START_REF] Gratiet | A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes[END_REF].

Let G(x) be a centered Gaussian process with the same covariance function as G(x):

and let μ(x) be its prediction mean based on the random variables G(x doe ).

Then, let us define the Gaussian process Gn (x):

with µ n (x) the mean of the prediction by G n (x) at point x and:

Then, Gn (x) has the same distribution as G n (x) conditionally to past observations (x doe , y). In other words, we have:

Hence, a simulation of G n (x) can be obtained by adding to its mean µ n (x)

the prediction error G(x)μ(x) of G(x). It allows to simulate the centered Gaussian process G(x) instead of G n (x). Contrary to the conditioned Gaussian process, the unconditioned Gaussian process variance values at points in the vicinity of the DOE are not close to zero. It allows a better conditioning of the covariance matrix and thus avoids the related numerical issues.

Moreover, it allows to use computationaly efficient representations of random fields such as the Karhunen-Loève (KL) expansion. The numerical approximation of the KL expansion can be obtained by using the Nyström procedure or Galerkin methods as presented in [START_REF] Betz | Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion[END_REF]. Hence, once the KL decomposition of the Gaussian process G(x) is estimated it can be used to easily obtain realizations at any point x using Eq. (A.3).

Appendix B. Non parametric adaptive importance sampling (NAIS)

The goal of the non parametric adaptive importance sampling (NAIS) algorithm is to compute an estimator of the optimal auxiliary density function f opt aux , given by Eq. ( 37), with standard Gaussian kernel density functions K d (•) weighted with weights w, starting from the input density function f X . This method is well adapted to complex failure region D f . The different steps of the algorithm are described in Algorithm 2.

The successive NAIS iterations allow to update the estimator of the optimal auxiliary density function ĝk opt . In the end we obtain the estimator of the optimal algorithm is run with weights computed as follows:

Moreover, in case of very low probability of failure the run of NAIS with the first built GPs can fail as the mean predicted values become quasi constant as the NAIS intermediate populations expand outward the known points. This is due to the initial large uncertainty on the failure domain. Therefore, a maximum relative residual between two consecutive intermediate thresholds γ k must be set. On our test cases, a relative residual of 10 -3 has been set.