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Explanations for Monotonic Classifiers

Joao Marques-Silva 1 Thomas Gerspacher 1 Martin Cooper 1 Alexey Ignatiev 2 Nina Narodytska 3

Abstract
In many classification tasks there is a require-
ment of monotonicity. Concretely, if all else re-
mains constant, increasing (resp. decreasing) the
value of one or more features must not decrease
(resp. increase) the value of the prediction. De-
spite comprehensive efforts on learning mono-
tonic classifiers, dedicated approaches for explain-
ing monotonic classifiers are scarce and classifier-
specific. This paper describes novel algorithms
for the computation of one formal explanation of
a (black-box) monotonic classifier. These novel
algorithms are polynomial in the run time com-
plexity of the classifier and the number of features.
Furthermore, the paper presents a practically effi-
cient model-agnostic algorithm for enumerating
formal explanations.

1 Introduction
Monotonicity is an often required constraint in practical
applications of machine learning. Broadly, a monotonic-
ity constraint requires that increasing (resp. decreasing) the
value of one or more features, while keep the other fea-
tures constant, will not cause the prediction to decrease
(resp. increase). Monotonicity has been investigated in
the context of classification (Cano et al., 2019), including
neural networks (Sill, 1997; Magdon-Ismail & Sill, 2008;
Bonakdarpour et al., 2018; Sivaraman et al., 2020; Liu et al.,
2020), random forests (Bartley et al., 2019) and rule en-
sembles (Bartley et al., 2018), decision trees (Ben-David
et al., 1989; Ben-David, 1995), decision lists (Potharst &
Bioch, 2000) and decision rules (Verbeke et al., 2017),
support vector machines (Bartley et al., 2016), nearest-
neighbor classifiers (Duivesteijn & Feelders, 2008), among
others (Fard et al., 2016; Gupta et al., 2016; You et al., 2017;
Bonakdarpour et al., 2018). Monotonicity has been studied
in bayesian networks (van der Gaag et al., 2004; Shih et al.,
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2018), active learning (Barile & Feelders, 2012) and, more
recently, in fairness (Wang & Gupta, 2020).

To a much lesser extent, monotonicity has also been stud-
ied from the perspective of explainability, with one recent
example being the study of the explainability of mono-
tonic bayesian networks (Shih et al., 2018). This work
proposes to compile different families of bayesian networks,
including naive bayes and monotonic networks, into a de-
cision diagram, which can then be used for computing PI-
explanations2. Approaches based on an intermediate (knowl-
edge) compilation step are characterized by two main draw-
backs, namely their worst-case complexity, which is expo-
nential both in time and in the size of the representation, but
also the fact that these approaches are not model-agnostic,
i.e. some formal logic representation of the model must be
known and reasoned about. Clearly, model-agnostic heuris-
tic approaches, which include LIME (Ribeiro et al., 2016),
SHAP (Lundberg & Lee, 2017), or Anchor (Lundberg &
Lee, 2017), can also be applied to explaining monotonic
classifiers. However, these approaches do not readily ex-
ploit monotonicity, and both the theoretical and practical
performance may be discouraging3. Furthermore, heuristic
approaches offer no formal guarantees of rigor, e.g. an An-
chor explanation may be consistent with points in feature
space for which the model’s prediction differ from the target
prediction (Ignatiev, 2020).

On a more positive note, recent work proposed polynomial-
time exact algorithms for computing PI-explanations expla-
nations of different classes of classifiers (Marques-Silva
et al., 2020), namely linear and naive bayes classifiers.
These results were complemented by the observation that,
for ML models related with some classes of knowledge
representation languages, PI-explanations can also be com-
puted in polynomial time (Audemard et al., 2020).

This paper extends these initial results to the case of mono-
tonic classifiers, in a number of ways. First, the pa-
per proposes model-agnostic algorithms for computing PI-
explanations and contrastive explanations (Miller, 2019) for

2Given some feature space point v, a PI-explanation is a subset-
minimal subset of features which, the assignment of the corre-
sponding coordinate value in v, is sufficient for the prediction.

3In fact, there are recent negative results on the tractability of
exact SHAP learning (Van den Broeck et al., 2020).
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any monotonic ML model. Second, the complexity of the
proposed algorithms is shown to be polynomial on the time
required to run the (black-box) monotonic classifier and the
number of features. Third, the paper proposes an algorithm
for the iterative enumeration of formal explanations4. (This
algorithm is worst-case exponential, but it is shown to be
remarkably efficient in practice.)

The paper is organized as follows. Section 2 introduces the
notation and definitions used in the rest of the paper. Sec-
tion 3 details algorithms for computing one or more formal
explanations of monotonic classifiers. Section 4 summa-
rizes initial experiments, which confirm the scalability of
the proposed algorithms. The paper concludes in Section 5.

2 Preliminaries
Classification problems. A classification problem is de-
fined on a set of features (or attributes) F = {1, . . . , N}
and a set of classes K = {c1, c2, . . . , cM}. Each feature
i ∈ F takes values from a domain Di. Domains are bounded
and ordered, and each domain can be defined on boolean,
integer or real values. If xi ∈ Di, then λ(i) and µ(i) de-
note respectively the smallest and largest values that xi can
take, i.e. λ(i) ≤ xi ≤ µ(i). Feature space is defined as
F = D1 ×D2 × . . .×DN . The notation x = (x1, . . . , xN )
denotes an arbitrary point in feature space, where each xi
is a variable taking values from Di. Moreover, the nota-
tion v = (v1, . . . , vN ) represents a specific point in feature
space, where each vi is a constant representing one concrete
value from Di. An instance (or example) denotes a pair
(v, c), where v ∈ F and c ∈ K. (We also use the term
instance to refer to v, leaving c implicit.) An ML classifier
C is characterized by a classification function κ that maps
feature space F into the set of classes K, i.e. κ : F→ K.

Monotonic classification. Given two points in feature
space a and b, a ≤ b if ai ≤ bi, for all i ∈ {1, . . . , N}. A
set of classes K = {c1, . . . , cM} is ordered if it respects a
total order 4, with c1 4 c2 4 . . . 4 cM . An ML classifier
C is fully monotonic if the associated classification function
is monotonic, i.e. a ≤ b⇒ κ(a) 4 κ(b)5. Throughout the
paper, when referring to a monotonic classifier, this signifies
a fully monotonic classifier. In addition, the interaction with
a classifier is restricted to computing the value of κ(v), for
some point v ∈ F, i.e. the classifier will be viewed as a
black-box.

Example 1 (Running example). Let us consider a classifier
for predicting student grades. We assume that the classifier

4The term formal explanation is used in contrast with heuristic
explanation (Ribeiro et al., 2016; Lundberg & Lee, 2017; Ribeiro
et al., 2018) and it will be defined precisely in Section 2.

5The paper adopts the classification of monotonic classifiers
proposed in earlier work (Daniels & Velikova, 2010).

has learned the following formula (after being trained with
grades of students from different cohorts):

S = max [0.3×Q+ 0.6×X + 0.1×H,R]

M = ite(S ≥ 9, A, ite(S ≥ 7, B, ite(S ≥ 5, C,

ite(S ≥ 4, D, ite(S ≥ 2, E, F )))))

S, Q, X , H and R denote, respectively, the final score,
the marks on the quiz, the exam, the homework, and the
mark of an optional research project. Each mark ranges
from 0 to 10. (For the optional mark R, the final mark
is 0 if the student opts out.) The final score is the largest
of the two marks, as shown above. Moreover, the final
grade M is defined using an ite (if-then-else) operator, and
ranges from A to F . As a result, Q, X , H and R rep-
resent the features of the classification problem, respec-
tively numbered 1, 2, 3 and 4, and so F = {1, 2, 3, 4}.
Each feature takes values from [0, 10], i.e. λ(i) = 0 and
µ(i) = 10. The set of classes is K = {A,B,C,D,E, F},
with F 4 E 4 D 4 C 4 B 4 A. Clearly, the com-
plete classifier (that given the different marks computes a
final grade) is monotonic. Moreover, we will we consider
a specific point of feature space representing student s1,
(Q,X,H,R) = (10, 10, 5, 0), with a predicted grade of A,
i.e. κ(10, 10, 5, 0) = A.

Abductive and contrastive explanations. We now de-
fine formal explanations. Prime implicant (PI) explana-
tions (Shih et al., 2018) denote a minimal set of literals (re-
lating a feature value xi and a constant vi from its domain
Di) that are sufficient for the prediction6. Formally, given
v = (v1, . . . , vN ) ∈ F with κ(v) = c, a PI-explanation
(AXp) is any minimal subset X ⊆ F such that,

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c) (1)

AXp’s can be viewed as answering a ’Why?’ question, i.e.
why is some prediction made given some point in feature
space. A different view of explanations is a contrastive
explanation (Miller, 2019), which answers a ’Why Not?’
question, i.e. which features can be changed to change the
prediction. A formal definition of contrastive explanation is
proposed in recent work (Ignatiev et al., 2020). Given v =
(v1, . . . , vN ) ∈ F with κ(v) = c, a CXp is any minimal
subset Y ⊆ F such that,

∃(x ∈ F).
∧

j∈F\Y
(xj = vj) ∧ (κ(x) 6= c) (2)

Building on the results of R. Reiter in model-based diag-
nosis (Reiter, 1987), (Ignatiev et al., 2020) proves a mini-
mal hitting set (MHS) duality relation between AXp’s and
CXp’s, i.e. AXp’s are MHSes of CXp’s and vice-versa.

6PI-explanations are related with abduction, and so are also
referred to as abductive explanations (AXp) (Ignatiev et al., 2019).
More recently, PI-explanations have been studied from a knowl-
edge compilation perspective (Audemard et al., 2020).
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Example 2 (AXp’s & CXp’s). As can be readily observed
(from the expression for M in Example 1), as long as Q
and X take value 10, the prediction will be A, indepen-
dently of the values given to H and R. Hence, given
(Q,X,H,R) = (10, 10, 5, 0), one AXp is {1, 2}. More-
over, to obtain a different prediction, it suffices to allow a
suitable change of value inQ (or alternatively inX). Hence,
given (Q,X,H,R) = (10, 10, 5, 0), one CXp is {1} (and
another is {2}). As can be observed, {1, 2} is the only MHS
of {{1}, {2}} and vice-versa. These are the only AXp’s and
CXp’s for the example instance.

Despite being characterized by a formal guarantee of rigor,
abductive and contrastive explanations also exhibit a num-
ber of drawbacks7. First, scalability can be an issue, and
that explains recent efforts on identifying classes of classi-
fiers for which explanations can be computed in polynomial
time (Marques-Silva et al., 2020; Izza et al., 2020; Shi et al.,
2020; Audemard et al., 2020; 2021; Huang et al., 2021),
or classes of classifiers that can be explained efficiently in
practice (Ignatiev, 2020; Choi et al., 2020; Izza & Marques-
Silva, 2021; Ignatiev & Marques-Silva, 2021). Second,
in some settings, the guarantee of rigor that characterizes
model-accurate approaches, may in fact be unnecessary. Un-
til recently, explanations exhibiting probabilistic guarantees
of rigor were largely non-existing. However, there is recent
work on computing explanations with probabilistic guar-
antees (Wäldchen et al., 2021; Izza et al., 2021). Third,
whereas heuristic explanation approaches are distribution-
aware (Ribeiro et al., 2016; Lundberg & Lee, 2017; Ribeiro
et al., 2018), model-accurate explanation approaches are not.
Nevertheless, recent work proposed to exploit input con-
straints as a mechanism to address input distributions (Gorji
& Rubin, 2021). Fourth, in some settings users may prefer
explanations that relate groups of features. This paper ad-
dresses the first drawback, and proposes efficient algorithms
for explaining monotonic classifiers.

Boolean satisfiability (SAT). SAT is the decision prob-
lem for propositional logic. The paper uses standard nota-
tion and definitions e.g. (Biere et al., 2009). A propositional
formula is defined on a set U of boolean variables, where
the domain of each variable ui ∈ U is {0, 1}. We consider
conjunctive normal form (CNF) formulas, where a formula
is a conjunction of clauses, each clause is a disjunction of
literals, and a literal is a variable ui or its negation ¬ui.
CNF formulas and SAT reasoners are used in Section 3.2.

3 Explanations for Monotonic Classifiers
This section describes three algorithms. The first algorithm
serves to compute one AXp (and is referred to as findAXp).

7In some settings, these drawbacks justify why model-agnostic
explanations may be a viable alternative.

Algorithm 1 Finding one AXp – findAXp(F ,S,v)

1: vL ← (v1, . . . , vN )
2: vU ← (v1, . . . , vN ) // Ensures: κ(vL) = κ(vU)
3: (C,D,P)← (F , ∅, ∅)
4: for all i ∈ S do
5: (vL,vU, C,D)← FreeAttr(i,v,vL,vU, C,D)
6: end for // Require: κ(vL) = κ(vU), given S
7: for all i ∈ F \ S do // Loop inv.: κ(vL) = κ(vU)
8: (vL,vU, C,D)← FreeAttr(i,v,vL,vU, C,D)
9: if κ(vL) 6= κ(vU) then // If invariant broken, fix it

10: (vL,vU,D,P)← FixAttr(i,v,vL,vU,D,P)
11: end if
12: end for
13: return P

Its complexity is polynomial in the run time complexity of
the classifier. The second algorithm serves to compute one
CXp (and is referred to as findCXp). It has the same poly-
nomial complexity as findAXp. The third algorithm shows
how to use SAT reasoners for iteratively enumerating AXp’s
or CXp’s. This algorithm is inspired by earlier work (Lif-
fiton et al., 2016), but with key observations that minimize
the number of times a SAT reasoner is called. This algo-
rithm is based on the other two algorithms, and is described
in Section 3.2.

One key property of the three algorithms is that, besides
knowing that the classifier is monotonic, no additional in-
formation about the classifier is required. Indeed, the al-
gorithms described in this section only require running the
classifier for specific points in feature space. Thus, and sim-
ilarly to LIME (Ribeiro et al., 2016), SHAP (Lundberg &
Lee, 2017) or Anchor (Ribeiro et al., 2018), the algorithms
proposed in this section are model-agnostic. However, and
in contrast also with LIME, SHAP or Anchor, the proposed
algorithms compute rigorously defined AXp’s, CXp’s, and
also serve for the enumeration of explanations.

3.1 Finding One AXp and One CXp

The two algorithms findAXp and findCXp (shown as Al-
gorithm 1 and Algorithm 2) share a number of common
concepts, while solving different problems. These concepts
are summarized next. The two algorithms iteratively up-
date three sets of features (C, D and P) and two points in
feature space (vL and vU). Using these variables, the two
algorithms maintain two invariants. The first invariant is that
C,D and P form a partition of F , and represent respectively
the candidate, dropped and picked sets of features (with the
picked features denoting those that are included either in
an AXp or an CXp). The second invariant serves to ensure
that the selected set of features satisfies (1) (for findAXp)
or (2) (for findCXp). Maintaining this invariant, requires
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Algorithm 2 Finding one CXp – findCXp(F ,S,v)

1: vL ← (λ(1), . . . , λ(N))
2: vU ← (µ(1), . . . , µ(N)) // Ensures: κ(vL) 6= κ(vU)
3: (C,D,P)← (F , ∅, ∅)
4: for all i ∈ S do
5: (vL,vU, C,D)← FixAttr(i,v,vL,vU, C,D)
6: end for // Require: κ(vL) 6= κ(vU), given S
7: for all i ∈ F \ S do // Loop inv.: κ(vL) 6= κ(vU)
8: (vL,vU, C,D)← FixAttr(i,v,vL,vU, C,D)
9: if κ(vL) = κ(vU) then // If invariant broken, fix it

10: (vL,vU,D,P)← FreeAttr(i,v,vL,vU,D,P)
11: end if
12: end for
13: return P

iteratively updating two points vL = (vL1
, . . . , vLN

) and
vU = (vU1 , . . . , vUN

), denoting respectively lower and up-
per bounds on the class values that can be obtained given the
features that are allowed to take any value in their domain.

Finding one AXp. We detail below the main steps of
algorithm findAXp (see Algorithm 1). (Lines 4 to 5 are used
for enumerating explanations, and so we assume S = ∅ for
now.) The main goal of findAXp is to find a maximal set of
features D which are allowed to take any value, i.e. that are
free. For such a set D, the set of features that remain fixed
to the value specified in v, i.e. P = F \ D, is a minimal
set of (picked) features that is sufficient for the prediction,
as intended. The different sets used by the algorithm are
initialized in line 3. (As noted earlier, the sets C, D and P
form a partition of F , and C = ∅ upon termination.)

For findAXp, the second invariant of the algorithm is that
κ(vL) = κ(vU), i.e. by allowing the features in P ∪ C to
take the corresponding value in v, the value of the prediction
is guaranteed not to change.

The use of the second invariant κ(vL) = κ(vU) is justified
by the following result.

Proposition 1. If κ(vL) = κ(vU), then it holds that, ∀(x ∈
F).[vL ≤ x ≤ vU]→ [κ(x) = κ(v)].

The algorithm starts by enforcing the second invariant as
the result of executing lines 1 and 2.

Moreover, findAXp analyzes one feature at a time. Starting
from the set C of candidate features (in line 7), the algorithm
iteratively picks a feature i from C and makes a decision
about whether to drop the feature from the explanation.
The first step is to assume that the feature i can indeed be
allowed to take any value. This is done in line 8, by calling
the following function FreeAttr:

vL ← (vL1 , . . . , λ(i), . . . , vLN
)

vU ← (vU1 , . . . , µ(i), . . . , vUN
)

(A,B)← (A \ {i},B ∪ {i})
return (vL,vU,A,B)

where A is replaced by C and B is replaced by D, and so
feature i is moved from C to D. In addition, the value of i is
now allowed to range from λ(i) (in vL) to µ(i) (in vU),

The next step of the algorithm (in line 9) is to decide whether
allowing i to take any value breaks the invariant κ(vL) =
κ(vU). If the invariant is not broken, then the algorithm
moves to analyze the next feature (in line 7). However, if
the invariant is broken, then the the feature cannot take any
value, and so it must be fixed to the corresponding value in
v. This is done by calling (in line 10) the following function
FixAttr:

vL ← (vL1 , . . . , vi, . . . , vLN
)

vU ← (vU1
, . . . , vi, . . . , vUN

)
(A,B)← (A \ {i},B ∪ {i})
return (vL,vU,A,B)

where A is replaced by D and B is replaced by P , and so
feature i is moved from D to P . In addition, the value of i
is once again fixed to the corresponding value in v. After
analyzing all features, the algorithm findAXp terminates
(in line 13) by return the (minimal) set of features P that
are fixed to their value in v. It is immediate to conclude that
each feature is analyzed once, and that for each feature, the
classifier is invoked twice. Given the discussion above, we
conclude that,
Theorem 1. Given a monotonic classifier, an instance v
with prediction c = κ(v), Algorithm 1 computes one AXp in
linear time in the running time complexity of the classifier.

We illustrate the operation of findAXp, with an example.
Example 3. Given the monotonic classifier from Example 1,
and the concrete case of student s1, with (Q,X,H,R) =
(10, 10, 5, 0) and predicted mark A, we show how one PI-
explanation can computed. (In settings with more than
one AXp, changing the order of how features are analyzed,
may results in a different explanation being obtained.) For
each feature i, 1 ≤ i ≤ 4, λ(i) = 0 and µ(i) = 10.
Moreover, features are analyzed in order: 〈1, 2, 3, 4〉; the
order is arbitrary. The algorithm’s execution is summarized
in Table 1. As can be observed, features 1 and 2 are kept
as part of the PI-explanation (decision is !in line 9, i.e.
invariant is broken and features are kept), whereas features
3 and 4 are dropped from the PI-explanation (decision is%,
i.e. invariant holds). As a result, the PI-explanation for the
grade of student s1 is {1, 2}, which denotes that as long as
(Q = 10) ∧ (X = 10), the prediction will be A.

Finding one CXp. The two algorithms findAXp and
findCXp are organized in a similar way. (This in part results
from the fact that AXps are minimal hitting sets of CXps
and vice-versa (Ignatiev et al., 2020).) We briefly explain
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Feat. Initial values Changed values Predictions Dec. Resulting values
vL vU vL vU κ(vL) κ(vU) vL vU

1 (10,10,5,0) (10,10,5,0) (0,10,5,0) (10,10,5,0) C A ! (10,10,5,0) (10,10,5,0)

2 (10,10,5,0) (10,10,5,0) (10,0,5,0) (10,10,5,0) E A ! (10,10,5,0) (10,10,5,0)

3 (10,10,5,0) (10,10,5,0) (10,10,0,0) (10,10,5,0) A A % (10,10,0,0) (10,10,10,0)

4 (10,10,0,0) (10,10,10,0) (10,10,0,0) (10,10,10,10) A A % (10,10,0,0) (10,10,10,10)

Table 1: Execution of algorithm for finding one AXp

Feat. Initial values Changed values Predictions Dec. Resulting values
vL vU vL vU κ(vL) κ(vU) vL vU

1 (0,0,0,0) (10,10,10,10) (10,0,0,0) (10,10,10,10) E A % (10,0,0,0) (10,10,10,10)

2 (10,0,0,0) (10,10,10,10) (10,10,0,0) (10,10,10,10) A A ! (10,0,10,0) (10,10,10,10)

3 (10,0,0,0) (10,10,10,10) (10,0,5,0) (10,10,5,10) E A % (10,0,5,0) (10,0,5,10)

4 (10,0,5,0) (10,10,5,10) (10,0,5,0) (10,10,5,0) E A % (10,0,5,0) (10,10,5,0)

Table 2: Execution of algorithm for finding one CXp

the differences when computing a CXp (see Algorithm 2).
(Lines 4 to 5 are used for enumerating explanations, and so
we assume S = ∅ for now.)

The main goal of findCXp is to find a maximal set of features
D that are only allowed to take the value specified in v,
i.e. that are fixed. For such a set D, the set of features
that are allowed to take any value, i.e. P = F \ D, is a
minimal set that, by being allowed to take any value in
their domain, suffices for allowing the prediction to change,
as intended. The different sets used by the algorithm are
initialized in line 3.

For findCXp, the second invariant of the algorithm is that
κ(vL) 6= κ(vU), i.e. by allowing the features in P ∪ C to
take any value, the value of the prediction does not change.
The algorithm starts by enforcing the second invariant as
the result of executing lines 1 and 2.

The use of the second invariant κ(vL) 6= κ(vU) is justified
by the following result.

Proposition 2. If κ(vL) 6= κ(vU), then it holds that, ∃(x ∈
F).[vL ≤ x ≤ vU] ∧ [κ(x) 6= κ(v)].

Similarly to findAXp, findCXp analyzes one feature at a
time. Starting from the set C of candidate features (in line 7),
the algorithm iteratively picks a feature i from C and makes
a decision about whether to drop the feature from the ex-
planation. The first step is to assume that the feature i can
indeed be fixed to the corresponding value in v. This is
done in line 8, by calling the following function FixAttr,
where A is replaced by C, and B is replaced by D, and so

feature i is moved from C to D. In addition, the value of i is
now fixed to its value in v.

The next step of the algorithm (in line 9) is to decide whether
fixing the value of i breaks the invariant κ(vL) 6= κ(vU).
If the invariant is not broken, then the algorithm moves to
analyze the next feature (in line 7). However, if the invariant
is broken, then the feature cannot be fixed, and so it must
be allowed to take any value from its domain. This is done
by calling (in line 10) the following function FreeAttr, with
A replaced by D and B replaced by P , and so feature i is
moved from D to P . In addition, the value of i is once
again allowed to take any value from its domain. After
analyzing all features, the algorithm findCXp terminates
(in line 13) by returning the (minimal) set of features P
that are allowed to take any value from their domain. It is
immediate to conclude that each feature is analyzed once,
and that for each feature, the classifier is invoked twice.
Given the discussion above, we conclude that,
Theorem 2. Given a monotonic classifier, an instance v
with prediction c = κ(v), Algorithm 2 computes one CXp in
linear time in the running time complexity of the classifier.

We illustrate the operation of findCXp, with an example.
Example 4. For the running example (see Examples 1, 2
and 3), for instance v0 = (10, 10, 5, 0) with prediction A,
we illustrate the computation of one CXp. The algorithm’s
execution is summarized in Table 2. (When computing one
CXp, a feature is kept (decision is!) if it is declared free,
and it is dropped (decision is%) if it must be fixed.) As can
be observed, a contrastive explanation is: {2}, i.e. there is
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an assignment to feature 2 (i.e. to X), which guarantees a
change of prediction when the other features are kept to their
values. For example, by setting X = 0 (and keeping the
remaining values fixed), the value of the prediction changes.

Complexity. As can be readily concluded from Algo-
rithm 1 and Algorithm 2, the algorithms execute in linear
time in the number of features. However, in each iteration
of the algorithm, the classifier is invoked twice, for finding
the predicted classes for vL and for vU. We will represent
the time required by the classifier as TC, and so the overall
run time of each algorithm is O(|F| × TC).

3.2 Enumerating Explanations

We first show that for monotonic classifiers, the enumeration
of explanations with polynomial-time delay is computation-
ally hard.
Theorem 3. Determining the existence of bN/2c+1 AXp’s
(or CXp’s) of a monotonic N -feature classifier is NP-
complete.

(The proof is included in the supplementary material.) Since
the enumeration of AXp’s and CXp’s with polynomial delay
is unlikely, we describe in this section how to use SAT
reasoners for the enumeration of AXp’s and CXp’s of a
monotonic classifier. (Although we prove the algorithm
to be sound and complete, the algorithm necessarily has
leeway in selecting the order in which AXp’s and CXp’s
are listed.) The algorithm uses the following propositional
representation:

1. The algorithm will iteratively add clauses to a CNF
formula H. The clauses in H account for the AXp’s
and CXp’s already computed, and serve to prevent their
repetition.

2. Formula H is defined on a set of variables ui, 1 ≤
i ≤ n, where each ui denotes whether feature i is
declared free (ui = 1) or is alternatively declared fixed
(ui = 0).

The algorithm proposed in this section requires exactly one
call to a SAT reasoner before computing one explanation
(either AXp/CXp), and one additional call to decide that all
explanations have been computed. As a result, the number
of calls to a SAT reasoner is |AXp|+|CXp|+1. Furthermore,
the size of the formula grows by one clause after each AXp
or CXp is computed. In practice, for a wide range of ML
settings, both the number of variables and the number of
clauses are well within the reach of modern SAT reasoners.
Proposition 3. Let v be a point in feature space, let κ(v) =
c ∈ K, and let Z ⊆ F . Then, either (1) (on page 2) holds,
with X = Z , or (2) (also on page 2) holds, with Y = F \Z ,
but not both.

Proposition 3 essentially states that, given a set Z of fea-

Algorithm 3 Enumeration of AXp’s and CXp’s

1: H ← ∅ //H defined on set U
2: repeat
3: (outc,u)← SAT(H)
4: if outc = true then
5: vL ← (vL1

, . . . , vLN
), s.t. vLi

← ite(ui, λ(i), vi)
6: vU ← (vU1

, . . . , vUN
), s.t.vUi

← ite(ui, µ(i), vi)
7: if κ(vL) = κ(vU) then
8: S ← {i ∈ F |ui = 1} // F \ S ⊇ some AXp
9: P ← findAXp(F ,S,u)

10: reportAXp(P)
11: H ← H∪ {(∨i∈Pui)}
12: else
13: S ← {i ∈ F |ui = 0} // F \ S ⊇ some CXp
14: P ← findCXp(F ,S,u)
15: reportCXp(P)
16: H ← H∪ {(∨i∈P¬ui)}
17: end if
18: end if
19: until outc = false

tures, if these are fixed, and the others are allowed to take
any value from their domains, then either the prediction
never changes, or there exists an assignment to the non-
fixed features, which causes the prediction to change. The
approach for enumerating AXp’s and CXp’s is shown in Al-
gorithm 3. The algorithm starts in line 1 by initializing
the CNF formula H without clauses (these will be added
as the algorithm executes). The main loop (from line 2
to line 19) is executed while the formula H is satisfiable.
This is decided with a call to a SAT reasoner (in line 3).
Any satisfying assignment to the formulaH partitions the
features into two sets: one denoting the features that can
take any value (with ui = 1) and another denoting the fea-
tures that take the corresponding value in v (with ui = 0).
(The assignment effectively identifies a set Z ⊆ F , of fixed
features, and thus we can invoke Proposition 3.) In line 5
and line 6, the algorithm creates vL and vU. For a fixed
feature i, both vL and vU are assigned value vi. For a free
feature i, vL and vU are respectively assigned to λ(i) and
µ(i). Let Z denote the set of fixed features. In line 7, we
check in which case of Proposition 3 applies.

If κ(vL) = κ(vU), then we know that the invariant of Al-
gorithm 1 holds. Moreover, F \ Z is a subset of an AXp.
Hence, we set S = F \ Z as the seed for findAXp. This is
shown in lines 8 and 9. After reporting the computed AXp,
represented by the set of features P , we prevent the same
AXp from being computed again by requiring that at least
one of the fixed features must be free in future satisfying
assignments ofH. This is represented as a positive clause.

Proposition 4. In the case κ(vL) = κ(vU), set S is such
that, for any previously computed AXp, at least one feature
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will be included in S (as a free literal). Since findAXp only
grows S, then the Algorithm 3 does not repeat AXp’s.

Moreover, if κ(vL) 6= κ(vU), then we know that the in-
variant of Algorithm 2 holds. Moreover, Z is a subset of a
CXp. Hence, we set S = Z as the seed for findCXp. This
is shown in lines 13 and 14. After reporting the computed
CXp, represented by the set of features P , we prevent the
same CXp from being computed by requiring that at least
one of the free features must be free in future satisfying
assignments ofH. This is represented as negative clause.

Proposition 5. In the case κ(vL) 6= κ(vU), set S is such
that, for any previously computed CXp, at least one feature
will be included in S (as a fixed literal). Since findCXp only
grows S, then the Algorithm 3 does not repeat CXp’s.

Given the above, and since the number of AXp’s and CXp’s
(being subsets of F) is finite, then we have,

Theorem 4. Algorithm 3 is sound and complete for the
enumeration of AXp’s and CXp’s.

Example 5. Building on earlier examples, we summarize
the main steps of the SAT oracle-based algorithm for enu-
merating AXp and CXp explanations. Table 3 illustrates
one execution of the proposed algorithm. There are 1 AXp’s
and 2 CXp’s. (Regarding the call to the SAT oracle, the sat-
isfying assignments shown are intended to be as arbitrary
as possible, given the existing constraints; other satisfying
assignments could have been picked.) For each computed
AXp, we add toH one positive clause. In this example, we
add the clause (u1∨u2), since the AXp is {1, 2}. By adding
this clause, we guarantee that features 1 and 2 will not both
be deemed fixed by subsequent satisfying assignments of
H. Similarly, for each computed CXp, we add to H one
negative clause. For the example, the clauses added are
(¬u1) for CXp {1}, and (¬u2) for CXp {2}. In both cases,
the added clause guarantees that feature 1 (resp. 2) will
not be deemed free by subsequent satisfying assignments of
H. One additional observation is that the number of SAT
oracle calls matches the number of AXp’s plus the number
of CXp’s and plus one final call to terminate the algorithm’s
execution. For step 4 of the algorithm, it is easy to conclude
thatH is unsatisfiable, as intended.

3.3 Related Work

The algorithms for computing one AXp or one CXp for
a monotonic classifier are novel. However, the insight of
analyzing elements of a set (i.e. features in our case) to
find a minimal set respecting some property has been stud-
ied in a vast number of settings (e.g. (Chinneck, 2008) for
an overview). The proposed solution for reasoning about
features that can take boolean, integer or real values, repre-
sents another aspect of novelty. In the case of monotonic
classifiers, we obtain a running time that is linear in the

running time complexity of the classifier. This result applies
in the case of any monotonic classifier, and so it improves
significantly over the worst-case exponential time and space
approach proposed in earlier work (Shih et al., 2018), for
the concrete case of monotonic bayesian networks. The
algorithm for enumerating AXp’s and CXp’s for a mono-
tonic classifier is also novel. However, it is inspired by the
MARCO algorithm for the analysis of inconsistent logic
theories (Liffiton et al., 2016). Although MARCO can be
optimized in different ways, Algorithm 3 can be related with
its most basic formulation. Since computing one AXp or
one CXp can be achieved in polynomial time (conditioned
by the classifier run time complexity), then our approach
guarantees that exactly one SAT reasoner call is required for
each computed minimal set (i.e. AXp or CXp in our case).

4 Experiments
The objective of this section is to illustrate the scalability of
both the algorithms for finding one explanation, but also the
algorithm for enumerating explanations. The tool XMono
implements the algorithms 1, 2 and 38. As observed in
recent work, most monotonic classifiers are not publicly
available (Cano et al., 2019)9. We analyze two publicly
available classifiers, and describe two experiments. The
first experiment evaluates XMono for explaining two re-
cently proposed tools, COMET (Sivaraman et al., 2020)
and monoboost10 (Bartley et al., 2018). COMET is run on
the Auto-MPG11 dataset studied in earlier work (Sivaraman
et al., 2020), with the choice justified by the time the classi-
fier takes to run. monoboost is run on a monotonic dataset
with two classes (as required by the tool) (Bartley et al.,
2018). We use a monotonic subset (PimaMono) of the Pima
dataset12. A second experiment compares XMono with An-
chor (Ribeiro et al., 2018), both in terms of the number of
calls to the classifier and running time, but also in terms of
the quality of the computed explanations13, namely accu-
racy and size. This second experiment also considers two
datasets. The first dataset is BankruptcyRisk (Greco et al.,
1998) (which is monotonic if one instance is dropped). For
this dataset, the monotonic decision tree classifier proposed
in earlier work is used (Potharst & Bioch, 2000). The sec-
ond dataset is PimaMono, and the classifier used is the one
obtained with monoboost (as in the first experiment). All

8XMono is available from https://git.io/JZZBX.
9One exception is TensorFlow (Abadi et al., 2016). Its integra-

tion with XMono is the subject of future work.
10Available from https://git.io/JZZBx.
11http://tiny.cc/k3qytz.
12http://tiny.cc/l3qytz.
13It should be underlined that neither Anchor (Ribeiro et al.,

2018), LIME (Ribeiro et al., 2016) nor SHAP (Lundberg & Lee,
2017) can enumerate explanations, neither can these tools compute
heuristic contrastive explanations.

https://git.io/JZZBX
https://git.io/JZZBx
http://tiny.cc/k3qytz
http://tiny.cc/l3qytz
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Step H u / out vL vU κ(vL) κ(vU) AXp CXp Clause added

1 ∅ (0, 0, 1, 0) (10, 10, 0, 0) (10, 10, 10, 0) A A {1, 2} – (u1 ∨ u2)

2 (u1 ∨ u2) (1, 0, 0, 1) (0, 10, 5, 0) (10, 10, 5, 10) C A – {1} (¬u1)

3
(u1 ∨ u2)
(¬u1)

(0, 1, 1, 0) (10, 0, 0, 0) (10, 10, 10, 0) E A – {2} (¬u2)

4
(u1 ∨ u2)
(¬u1), (¬u2)

UNSAT – – – – – – –

Table 3: Execution of enumeration algorithm

experiments were run on a MacBook Pro, with a 2.4GHz
quad-core i5 processor, and 16 GByte of RAM, running Ma-
cOS Big Sur. For each dataset, we either pick 100 instances,
randomly selected, or the total number of instances in the
dataset, in case this number does not exceed 100.

4.1 Cost of Computing Explanations

We run XMono on a neural network classifier envelope im-
plemented with COMET for the Auto-MPG dataset, and
on a tree ensemble obtained with monoboost for the Pima-
Mono dataset. (Since the running times of COMET can be
significant, this experiment does not consider a comparison
with the heuristic explainer Anchor (Ribeiro et al., 2018).
As shown below, Anchor calls the classifier a large number
of times, and that would imply unwieldy running times.)

Table 4a shows the results of running XMono using COMET
as a monotonic envelope on the Auto-MPG dataset, and
monoboost on the PimaMono dataset. As can be observed,
the explanation sizes are in general small, which confirms
the interpretability of computed AXp’s and CXp’s. As a
general trend, CXp’s are on average smaller than AXp’s for
Auto-MPG, but larger than AXp’s for PimaMono. More-
over, the classification time completely dominates the total
running time (i.e. resp. 99.99% and 99.54% of the time is
spent running the classifier, independently of the classifier
used). These results offer evidence that the time spent on
computing explanations is in general negligible for mono-
tonic classifiers. For both datasets, and for the instances
considered, it was possible to enumerate all AXp and CXp
explanations, with negligible computational overhead.

4.2 Comparison with Anchor

This section compares XMono with Anchor, using two pairs
of classifiers and datasets, i.e. a monotonic decision tree for
BankruptcyRisk and monoboost for PimaMono.

Table 4b shows the results of running Anchor and XMono
on the BankruptcyRisk and the PimaMono datasets. XMono
is significantly faster than Anchor (more than 1 order mag-
nitude in the first case, and more than a factor of 5 in the

second case). The justification is the much smaller number
of calls to the classifier required by XMono than by Anchor.
(While for Anchor the number of calls to the classifier can be
significant, for XMono, each AXp is computed with at most
a linear number of calls to the classifier. Thus, unless the
number of features is very substantial, XMono has a clear
performance edge over Anchor.) Somewhat surprisingly,
over all instances, the average size of AXp’s computed by
XMono is smaller than that of Anchor for the Bankrupt-
cyRisk dataset. For the PimaMono dataset, the average size
is almost the same. These results suggest that formally de-
fined explanations need not be significantly larger than the
ones computed with heuristic approaches. Furthermore, for
64.1% (resp. 18.8%) of the instances, Anchor identifies an
explanation that does not hold across all points of feature
space, i.e. there are points in feature space for which the
explanation of Anchor holds, but the ML model makes a
different prediction14. Observe that since XMono computes
all AXp’s, we can be certain about whether the explanation
of Anchor is a correct explanation.

5 Conclusions & Discussion
This paper proposes novel algorithms for computing a single
PI or contrastive explanation for a monotonic classifier. In
contrast with earlier work (Shih et al., 2018), the complexity
of the proposed algorithms is polynomial on the number
of features and the time it takes the monotonic classifier to
compute its predictions. As the experiments demonstrate,
for simple ML models, the algorithm achieves one order
of magnitude speed up when compared with a well-known
heuristic explainer (Ribeiro et al., 2018), achieving better
quality explanations of similar size. In contrast, for com-
plex ML models, the experiments confirm that the running
time is almost entirely spent on the classifier. Furthermore,
the paper proposes a SAT-based algorithm for enumerating
PI and contrastive explanations. As the experimental re-
sults show, the use of a SAT solver for enumerating PI and

14Similar observations have been reported elsewhere (Ignatiev,
2020).
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Dataset/Tool #Inst. Avg. # expl. Avg. AXp sz Avg. CXp sz Avg. classif. time Avg. run time % classif. time

AutoMPG/CMT 100 2.35 1.49 1.02 105.90s 105.92s 99.99%

PimaMono/MBT 69 9.09 1.27 3.36 16.285s 16.360s 99.54%

(a) Assessing XMono on the Auto-MPG and PimaMono datasets, using resp. COMET or monoboost as the classifier

Dataset #Inst. Anchor XMono (AXp) % diffAvg. Xp sz Avg. time # Cls calls Avg. # Xp Avg. Xp sz Avg. Xp time # Cls calls

B. Risk 39 2.18 0.11s 1217 1.03 2.0 0.009s 24 64.1

PimaMono 69 1.26 11.2s 2967 5.64 1.27 1.8s 16 18.8

(b) Assessing XMono and Anchor on the Bankruptcy Risk and Pima Mono datasets

Table 4: Results of running XMono

contrastive explanations incurs a negligible overhead.

One possible criticism of the work is that SAT solvers are
used for guiding the enumeration of explanations. This in-
volves solving an NP-complete decision problem for each
computed explanation, and so it might pose a scalability
concern. (One alternative would be to consider explicit enu-
meration of candidate explanations, as proposed in the ear-
lier works on model based diagnosis (Reiter, 1987; Greiner
et al., 1989; Wotawa, 2001).) However, for classification
problems with tens to hundreds of features and targeting
thousands to tens of thousands explanations (and this far
exceeds currently foreseen scenarios), the use of modern
SAT reasoners (capable of solving problems with hundreds
of thousands of variable and millions of clauses) can hardly
be considered a limitation. Another possible criticism of this
work is that full monotonicity is required. We conjecture
that full monotonicity is necessary for tractable explanations
(conditioned by the classifier run time complexity). Ad-
dressing partial monotonicity (Daniels & Velikova, 2010)
is a subject of future research.
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A Additional Proofs
In the case of AXp’s, Theorem 3 follows from a result on
boolean monotone functions (Babin & Kuznetsov, 2011),
but for clarity of exposition we opt to give a direct proof.

Theorem 3. Determining the existence of bN/2c+1 AXp’s
(or CXp’s) of a monotonic N -feature classifier is NP-

complete.

Proof. We say that a CNF is trivially satisfiable if some
literal occurs in all clauses. Clearly, SAT restricted to non-
trivial CNFs is still NP-complete. Let Φ be a not trivially-
satisfiable CNF on variables x1, . . . , xk. Let N = 2k. Let
Φ̃ be identical to Φ except that each occurrence of a negative
literal xi (1 ≤ i ≤ k) is replaced by xi+k. Thus Φ̃ is a CNF
on N variables each of which occur only positively. De-
fine the boolean classifier κ by κ(x1, . . . , xN ) = 1 if xi =
xi+k = 1 for some i ∈ {1, . . . , k} or Φ̃(x1, . . . , xN ) = 1
(and 0 otherwise). To show that κ is monotonic we need to
show that a ≤ b ⇒ κ(a) ≤ κ(b). This follows by exam-
ining the two cases in which κ(a) = 1: if ai=ai+k ∧ a≤b,
then bi=bi+k, whereas, if Φ̃(a)=1 ∧ a≤b, then Φ̃(b) = 1
(by positivity of Φ̃), so in both cases κ(b) = 1≥κ(a).

We first consider AXp’s. Clearly κ(1) = 1. There are N/2
obvious AXp’s of this prediction, namely (i, i+k) (1≤i≤k).
These are minimal by the assumption that Φ is not trivially
satisfiable. Suppose that Φ(u)=1. Let Xu be {i | 1≤i≤k ∧
ui=1} ∪ {i+k | 1≤i≤k ∧ ui=0}. Then (some subset of)
Xu is an AXp of the prediction κ(1)=1. The converse
also holds. Thus, determining whether κ(1)=1 has more
than N/2 AXp’s is equivalent to testing the satisfiability of
Φ. NP-completeness follows from the fact that bN/2c+1
AXp’s are a polytime verifiable certificate.

The proof for CXp’s is similar. Clearly κ(0) = 0. Again,
there are N/2 obvious CXp’s of this prediction, namely
(i, i+k) (1≤i≤k) and (some subset of) Xu is a CXp iff
Φ(u)=1. Thus, determining whether κ(0)=0 has more
than N/2 CXp’s is equivalent to testing the satisfiability of
Φ, from which NP-completeness again follows.
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