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Abstract

Recent work proposed the computation of so-called PI-explanations of Naive Bayes
Classifiers (NBCs) [35]. PI-explanations are subset-minimal sets of feature-value
pairs that are sufficient for the prediction, and have been computed with state-
of-the-art exact algorithms that are worst-case exponential in time and space. In
contrast, we show that the computation of one PI-explanation for an NBC can
be achieved in log-linear time, and that the same result also applies to the more
general class of linear classifiers. Furthermore, we show that the enumeration
of PI-explanations can be obtained with polynomial delay. Experimental results
demonstrate the performance gains of the new algorithms when compared with
earlier work. The experimental results also investigate ways to measure the quality
of heuristic explanations.

1 Introduction

Approaches proposed in recent years for computing explanations of Machine Learning (ML) models
can be broadly characterized as heuristic or non-heuristic1. Heuristic approaches denote those
providing no formal guarantees on their results. In contrast, non-heuristic approaches do provide
some sort of formal guarantee(s) on their results, usually at the cost of increased computational
complexity. Among the heuristic approaches for finding explanations, two have been studied in greater
detail. One line of work focuses on devising model-agnostic linear approximations of the underlying
model [29, 18]. Another line of work is exemplified by Anchor [30], and targets the computation of
a set of feature-value pairs associated with a given instance as a way of explaining the prediction.
To date, all non-heuristic methods have focused on computing sets of feature-value pairs that are
sufficient for the prediction [35, 10, 36, 6]2. Moreover, in terms of formal guarantees, [35] studies
two distinct definitions of explanations. A PI-explanation represents a subset-minimal set of feature
values that entails the outcome of the decision function for the predicted class whatever the values
of the other features (i.e. it represents a prime implicant of the outcome of the decision function).
PI-explanations have also been studied under the name of abductive explanations [10]. In contrast,
and assuming binary features, an MC-explanation is a cardinality-minimal set of equal-valued features
that entails the outcome of the decision function. Non-heuristic approaches are model-based, and

1There is a growing body of work on explaining ML models. Example recent overviews include [9, 31, 32,
23, 22, 1, 24, 41, 25].

2Earlier work imposed the additional restriction of considering boolean-valued features. Clearly, non-boolean
features can be binarized, e.g. with the one hot encoding, at the cost of adding additional features.
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so earlier work specifically considered Naive-Bayes Classifiers (NBCs) and Latent-Tree Classifiers
(LTCs) [35, 6], Bayesian Network Classifiers [36, 6], and Neural Networks [10, 34].

In the concrete case of computing (non-heuristic) PI-explanations for NBCs, earlier work [35]
proposed algorithms that are worst-case exponential in both time and space. In contrast, in this paper
we propose a novel non-heuristic solution for computing PI-explanations of NBCs and other linear
classifiers 3, which exhibits two fundamental advantages over earlier work. First, the paper shows
that computing PI-explanations for NBCs (but also for any linear classifier) is in P, by proposing a
log-linear algorithm for computing one smallest size PI-explanation. Second, the paper proposes
a polynomial (log-linear) delay algorithm for enumerating the PI-explanations of NBCs (and also
of any linear classifier). Furthermore, the paper presents an experimental evaluation of different
approaches for explaining NBCs with PI-explanations, including the heuristic solutions computed by
Anchor [30] and SHAP [18]4. Moreover, although (real-valued) linear classifiers can be viewed as
interpretable [29], this does not equate with computing PI-explanations, particularly when features
are categorical. To the best of our knowledge, proving the (polynomial) complexity of computing PI-
explanations for linear classifiers (including NBCs) closes an open problem. Furthermore, the results
in this paper rank among the first to investigate classes of ML models for which PI-explanations can
be computed in polynomial time [2, 11].

Related work. In a recent paper [34], Shi et al. investigate the use of knowledge compilation in
the analysis of machine learning models. The main focus of the paper is on compilation of binarized
neural networks. However, the authors consider other ML models, including linear classifiers. In
particular, the authors state that a linear classifier with integer weights can be compiled into an OBDD
in pseudo-polynomial time O(nW ), where W is the sum of weights in the linear classifier. These
results are interesting and complement our results in terms of providing evidence that XLCs form
a tractable class of ML models. Nevertheless, our algorithm does not depend on W and runs in
log-linear time which is more efficient than [34] for finding and enumerating PI-explanations.

Another line of research focuses on designing algorithms for explaining Bayesian networks [40, 42,
21, 16, 39]. For example, Mengshoel et al. investigate the problem of finding the most probable
explanation in Bayesian networks. The authors encode the problem as a MaxSAT problem and
employ stochastic local search to find the most probable explanation. Another example is [39], where
the authors use scenarios for constructing and understanding a Bayesian network for legal evidence
and argue that this form of explanation is useful for criminal trial judges. Overall, these approaches
propose several definitions of explanation and a wide range of algorithms to compute them for BNs.
Note that we focus on NBCs which is a special class of BN and exploit the properties of NBCs to
design a polynomial algorithm for finding a PI-explanation. Finally, [40] investigates the the concept
of explaining away as a form of intercausal reasoning.

Organization. The paper is organized as follows. Section 2 introduces the concepts and notation
used throughout the paper. Section 3 introduces XLCs (a simple extension of linear classifiers (LCs)),
and develops a new approach for computing, in polynomial time, one PI-explanation for XLCs.
Section 3 also proposes a polynomial delay algorithm for the enumeration of PI-explanations of
XLCs. Section 4 compares dedicated approaches for explaining NBCs [35] with the algorithms
proposed in this paper, but also with the explanations produced by heuristic approaches. The paper
concludes in Section 5.

2 Preliminaries

Explanations of ML models. We consider a classification problem with two classes K = {⊕,	},
defined on a set of features (or attributes) e1, . . . , en, which will be represented by their indices
E = {1, . . . , n}. The features can either be real-valued or categorical. For real-valued features, we
have λi ≤ ei ≤ µi, where λi, µi are given lower and upper bounds. For categorical features, we

3In fact, the paper considers a generalization of linear classifiers, that accommodates both real-valued and
categorical features, which serves to streamline the presentation. This generalization will be referred to as an
eXtended Linear Classifier (XLC).

4It should be noted that for linear classifiers (including NBCs), heuristic explanation approaches based on
linear approximations, such as those provided by LIME [29] or SHAP [18], can be regarded as uninteresting,
since the model is itself linear. Nevertheless, aiming for coverage, we opt to include also results for SHAP.

2



have ei ∈ {1, . . . , di}. A concrete assignment to the features referenced by E is represented by an
n-dimensional vector a = (a1, . . . , an), where aj denotes the value assigned to feature j, represented
by variable ej , such that aj is taken from the domain of ej . The set of all n-dimensional vectors
denotes the feature space E. Given a classifier with features E , a decision function [35] is a mapping
from the feature space to the set of classes, i.e. τ : E→ K. For example, for a linear classifier, the
decision function picks ⊕ if

∑
i wiei > 0, and 	 if

∑
i wiei ≤ 0. Given a ∈ E, with τ(a) = ⊕,

we consider the set of feature literals of the form (ei = ai), where ei denotes a variable and ai a
constant. A PI-explanation [35] is a subset-minimal set P ⊆ E , denoting feature literals, such that

∀(e ∈ E).
∧

j∈P
(ej = aj) → τ(e) = ⊕ (1)

is true. Alternatively, we can represent (1) as a rule:
IF

∧
j∈P(ej = aj) THEN τ(e) = ⊕. (2)

(The same definitions apply in the case of class 	 (given a ∈ E, with τ(a) = 	).)

Naive Bayes Classifier (NBC). NBCs [7] can be viewed as special cases of Bayesian Network
Classifiers (BNCs) [8], that make strong conditional independence assumptions among the features.
Graphically, NBCs are represented as depicted in Figure 1 for a concrete example. Given some
evidence e (in our case, this is an assignment to the features), the predicted class is given by:

τ(e) = argmaxc∈K (Pr(c|e)) . (3)

It is well known that Pr(c|e) can be computed as follows: Pr(c|e) = Pr(c,e)
Pr(e) . However, Pr(e) is

constant for every c ∈ K. Hence, (3) can be rewritten as follows:
τ(e) = argmaxc∈K (Pr(c, e)) (4)

Finally, assuming features to be mutually conditional independent, (4) can be rewritten as follows:

τ(e) = argmaxc∈K

(
Pr(c)×

∏
i
Pr(ei|c)

)
. (5)

A standard transformation is to apply logarithms, thus getting:

τ(e) = argmaxc∈K

(
log Pr(c) +

∑
i
log Pr(ei|c)

)
. (6)

Also, if Pr(ei|c) = 0, then we use instead a sufficiently large negative value M [27] 5, i.e. we pick
max(M, log(Pr(ei|c))) ∈ [M, 0]. (A simple solution is to use the sum of the logarithms of all the
non-zero probabilities plus some ε < 0.) For simplicity, i.e. to work with positive values, we can add
a sufficiently large positive threshold T to each probability, to serve as a reference, thus obtaining:

τ(e) = argmaxc∈K

(
(T + log Pr(c)) +

∑
i
(T + log Pr(ei|c))

)
. (7)

(For example, we can set T to the complement of the negative value with the largest absolute value.)
Also for simplicity, we use the notation lPr(α) , T + max(M, log(Pr(α))).

Running Example. Consider the NBC shown in Figure 1 6. The features are the random variables
R1, R2, R3 and R4. Each Ri can take values t or f denoting, respectively, whether a listener likes
or not that radio station. Random variable G denotes an age class, which can take values Y and O,
denoting young and older listeners, respectively. Using the notation proposed earlier, we will use ⊕
for Y and 	 for O. We also associate ⊕ with 1 or t and 	 with 0 or f . In general we have

Pr(G,R1, R2, R3, R4) = Pr(G)× Pr(R1|G)× Pr(R2|G)× Pr(R3|G)× Pr(R4|G). (8)

Considering the assignment (G,R1, R2, R2, R3) = (⊕, t, f , t, f), and using g to denote G = ⊕, ri
to denote Ri = t and ¬ri to denote Ri = f , (8) can be written as follows:

Pr(g, r1,¬r2, r3,¬r4) = Pr(g)× Pr(r1|g)× Pr(¬r2|g)× Pr(r3|g)× Pr(¬r4|g).

Let us consider a = (R1, R2, R3, R4) = (t, f , t, f). Since all probabilities are strictly positive, we set
M to a very large negative (irrelevant) value. In addition, we set T to a value above the complement of
the logarithm of the smallest probability (i.e. 0.02), e.g we can set T = 4 > − log(0.02). Using (7),
we get the values shown in Figure 2. As can be concluded, the prediction will be ⊕. Observe that
neither the value of M nor of T affect the prediction.

5This section follows [27] throughout. An alternative would be to use Laplace smoothing [19].
6This example of an NBC is adapted from [3, Ch.10], with some of the conditional probabilities changed.
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G

R2 R3R1 R4

G Pr(G)
	 0.90

G Pr(R1|G)
⊕ 0.95
	 0.03

G Pr(R2|G)
⊕ 0.05
	 0.95

G Pr(R3|G)
⊕ 0.02
	 0.34

G Pr(R4|G)
⊕ 0.20
	 0.75

Figure 1: Running example.

Pr(g) Pr(r1|g) Pr(¬r2|g) Pr(r3|g) Pr(¬r4|g) lPr(⊕|a)

Pr(·) 0.10 0.95 0.95 0.02 0.80
lPr(·) 1.70 3.95 3.95 0.09 3.78 13.47

(a) Computing lPr(⊕|a)

Pr(¬g) Pr(r1|¬g) Pr(¬r2|¬g) Pr(r3|¬g) Pr(¬r4|¬g) lPr(	|a)

Pr(·) 0.90 0.03 0.05 0.34 0.25
lPr(·) 3.89 0.49 1.00 2.92 2.61 10.91

(b) Computing lPr(	|a)

Figure 2: Deciding prediction for a = (t, f , t, f)

3 Explaining Extended Linear Classifiers

This section first introduces Extended Linear Classifiers (XLCs) and then details how PI-explanations
can be computed for predictions of XLCs.

3.1 Extended Linear Classifiers

Let E be partitioned intoR and C, denoting respectively the real-valued and the categorical features.
Each real-valued feature with index i ∈ R takes bounded values λi ≤ ei ≤ µi. For each categorical
feature j ∈ C, ej ∈ {1, . . . , dj}.
We consider an XLC, that encompasses real-valued and categorical features. Let

ν(e) , w0 +
∑

i∈R
wiei +

∑
j∈C

σ(ej , v
1
j , v

2
j , . . . , v

dj
j ), (9)

where σ is a selector function that picks the value vrj iff ej takes value r. Moreover, let us define the
decision function, τ(e) = ⊕ if ν(e) > 0 and τ(e) = 	 if ν(e) ≤ 0.

Reducing linear classifiers to XLCs. For a linear classifier, with only real-valued features, simply
set C = ∅. For an NBC with boolean features7, we consider a different reduction withR = ∅, starting
from (7). Moreover, the argmax operator in (7) can be replaced by an inequality, from which we get

lPr(⊕)− lPr(	) +
∑n

i=1
(lPr(ei|⊕)− lPr(ei|	))ei +

∑n

i=1
(lPr(¬ei|⊕)− lPr(¬ei|	))¬ei > 0 (10)

The reduction is completed by setting: w0 , lPr(⊕) − lPr(	), v1j , lPr(¬ej |⊕) − lPr(¬ej |	),
v2j , lPr(ej |⊕)− lPr(ej |	), and dj , 2.
Example 1. Figure 3a shows the resulting XLC formulation for the example in Figure 2. We also let
f be associated with value 1 and t be associated with value 2, and dj = 2.

3.2 Explaining XLCs

We now investigate how (smallest or cardinality-minimal) PI-explanations can be computed for
XLCs, and also how (minimal) PI-explanations can be enumerated. First, we show that the problem

7Given the proposed reductions, it is immediate to represent an NBC with categorical features as an XLC.
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w0 v11 v21 v12 v22 v13 v23 v14 v24
-2.19 -2.97 3.46 2.95 -2.95 0.4 -2.83 1.17 -1.32

(a) Example reduction of NBC to XLC (Example 1)

Γ δ1 δ2 δ3 δ4 Φ

2.56 6.43 5.90 0.00 2.49 12.26

(b) Computing δj’s for the XLC (Example 2)

Figure 3: Values used in the running example (Example 1 and Example 2)

of computing PI-explanations for XLCs can be reduced to a variant of the knapsack problem. We
demonstrate that this class of knapsack problems can be solved in log-linear time. Second, we
exploit special properties of our reformulation and derive an efficient enumeration algorithm for
PI-explanations. Finally, we prove correctness of the proposed algorithms.

We start by assessing how free some of the features are. For a given instance e = a, define a constant
slack (or gap) value Γ given by

Γa , ν(a) = w0 +
∑

i∈R
wiai +

∑
j∈C

σ(aj , v
1
j , v

2
j , . . . , v

dj
i ), (11)

i.e. this is the value obtained when deciding ⊕ to be the picked class, given the assignment e = a.

We are interested in computing one PI-explanation [35] of an XLC, but we are also interested in
enumerating PI-explanations. As argued in Section 2, this corresponds to finding a subset-minimal
set of literals P ⊆ E such that (1) holds, or alternatively

∀(e ∈ E).
∧

j∈P
(ej = aj) → (ν(e) > 0) , (12)

assuming that ν(a) > 0. In what follows, we partition E into P and N , respectively the picked and
the non-picked attributes from E .

Categorical case. Let us first considerR = ∅. Each feature ej is assigned value aj , which results
in selecting some value vajj , i.e. the value from the weights associated with ej which is picked when
ej = aj . Thus, Γ is computed as follows: Γa = w0 +

∑
j∈C v

aj
j .

Moreover, let vωj denote the smallest (or worst-case) value associated with ej . Then, by letting every
ej take any value, the worst-case value of ν(e) is

Γω = w0 +
∑

j∈C
vωj . (13)

We are interested in cases where Γω ≤ 0, corresponding to predicting 	 instead of ⊕. (Otherwise the
prediction would not change from ⊕.) The expression above can be rewritten as follows

Γω = w0 +
∑
j∈C v

aj
j −

∑
j∈C(v

aj
j − vωj )

= Γa −∑j∈C δj = −Φ,
(14)

where we use δj , v
aj
j − vωj , and Φ ,

∑
j∈C δj − Γa = −Γω. Our goal is to find a smallest (or

subset-minimal) set P such that the prediction is still ⊕ (whatever the values of the other features):

w0 +
∑

j∈P
v
aj
j +

∑
j /∈P

vωj = −Φ +
∑

j∈P
δj > 0, (15)

i.e. we want to pick a smallest (or subset-minimal) set of literals that ensures that the prediction will
be ⊕. In turn, (15) can be represented as the following optimization problem:

min
∑n
i=1 pi

s.t.
∑n
i=1 δipi > Φ

pi ∈ {0, 1},
(16)

where the variables pi assigned value 1 denote the indices included in P . Although solving (16)
seems to equate to solving an NP-hard optimization, concretely the minimization version of the
knapsack problem [14], the fact that the coefficients in the cost function are all equal to 1 makes
the problem solvable in log-linear time8. Concretely, we can now develop a greedy algorithm that

8Pseudo-polynomial time algorithms for the knapsack problem are well-known [5, 26]. One concrete
example [26] yields a polynomial (cubic) time algorithm in the setting of computing a smallest PI-explanation
of an XLC. We show that it is possible to devise a more efficient solution.
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Function ONEEXPLANATION(Vs,Flip,∆,ΦR,Idx,Xpl) ;
Input: Vs: Values of instance being explained; Flip: Array reference of decision steps;

∆: Sorted δj’s; ΦR: Explanation threshold; Idx: Index for ∆; Xpl: Set reference of
explanation literals

Output: ΦR: Updated threshold; Idx: Updated index for ∆

1 while ΦR ≥ 0 do
2 Idx← Idx + 1 ;
3 Flip[Idx]← 0 ;
4 ΦR ← ΦR −∆[Idx] ;
5 Xpl← Xpl ∪ {(eIdx,Vs[Idx])} ;
6 REPORTEXPLANATION (Xpl) ;
7 return (ΦR, Idx) ;

Algorithm 1: Finding one explanation

computes a smallest PI-explanation, representing one optimal solution of (16). At each step, we
simply pick the largest δi that has not yet been picked. Optimality of the computed solution is given
by Proposition 1 9.

Proposition 1. Let S = 〈l1, . . . , ln〉 represent indices of E sorted by non-increasing value of
δj . Pick k such that

∑
j∈{l1,...,lk} δj > Φ and

∑
j∈{l1,...,lk−1} δj ≤ Φ. Then (12) holds for

P = {plr |1 ≤ r ≤ k}, and P represents an optimal solution of (16).

Example 2. Figure 3b shows the values used for computing explanations for the example in Figure 2.
For this example, the sorted δj’s become 〈δ1, δ2, δ4, δ3〉. By picking δ1 and δ2, we ensure that the
prediction is ⊕, independently of the evidence provided for features e3 and e4. Thus (e1) ∧ (¬e2) is
a PI-explanation for the NBC shown in Figure 1, with evidence (e1, e2, e3, e4) = (t, f , t, f). (It is
easy to observe that τ(t, f , f , f) = τ(t, f , f , t) = τ(t, f , t, f) = τ(t, f , t, t) = ⊕).

In the concrete case of NBCs, if the goal is to compute a single explanation, then the algorithm
detailed in this section is exponentially more efficient (in the worst case) than earlier work [35].
However, in some settings one wants to be able to analyze some or even all explanations for a given
instance (this is further discussed in Section 4). We describe next a polynomial (log-linear) delay
algorithm for enumeration of explanations for XLCs (and so for NBCs).

Enumerating explanations with polynomial delay. As shown above, a smallest PI-explanation
can be computed in log-linear time by sorting the δi values and picking the first k literals that ensure
the prediction. We start by presenting a more elaborate description of the algorithm, which we
then use for devising the enumeration of explanations with polynomial delay10. Algorithm 1 shows
the pseudo-code for computing one smallest explanation. ∆ denotes the array of sorted δj’s. (The
pseudo-code assumes that the order 1, 2, . . . , n represents the literals in sorted order.) ΦR is initialized
with the value of Φ, being updated as the algorithm(s) progress(es). Algorithm 1 corresponds to
the direct application of Proposition 1. This algorithm can now be exploited for implementing a
polynomial delay algorithm for enumerating PI-explanations. Algorithm 2 depicts the enumeration of
PI-explanations. The algorithm implements a (restricted) backtrack search procedure, which in some
circumstances can be shown to yield polynomial delay algorithms [4]. Idx denotes the depth of the
search tree and Flip (if assigned 0) records which δj’s are used for updating ΦR. (The entries of Flip
take value -1 if unused, and value 1 if have been backtracked upon.) A key aspect of the algorithm is
that it only branches when it is guaranteed that a PI-explanation can still be found, given the prefix
(of picked or not picked δj’s) defined by Flip and Idx. Otherwise, the algorithm must backtrack and
enter a consistent state (with at most a linear backtracking effort). Algorithm 3 shows the backtrack
step of the PI-enumeration algorithm. Algorithm 3 terminates if no more PI-explanations can be
found, or with the guarantee that another PI-explanation can be extracted with Algorithm 1. It is
straightforward to conclude that both Algorithm 1 and Algorithm 3 run in linear time on the size of
the current depth of the search tree (which is linear on the number of features). Thus, we can list
PI-explanations of XLC’s with polynomial delay 11.

9Proof included in the supplementary materials of the extended version of the paper [20].
10For a knapsack constraint, it is known that feasible solutions can be enumerated with quadratic delay [17, 12].

Nevertheless, we exploit the problem’s special structure to achieve a log-linear enumeration delay.
11Proof included in the supplementary materials.
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Function ALLEXPLANATIONS(Vs,∆,ΦR) ;
Input: Vs: Values of instance being explained; ∆: Sorted δj’s; ΦR: Explanation threshold

1 (Xpl,Flip, Idx)← (∅, [−1, . . . ,−1], 0) ;
2 while Idx ≥ 0 do
3 (ΦR, Idx)← ONEEXPLANATION(Vs,Flip,∆,ΦR, Idx,Xpl) ;
4 (ΦR, Idx)← ENTERVALIDSTATE(Vs,Flip,∆,ΦR, Idx,Xpl) ;

Algorithm 2: Finding all explanations

Function ENTERVALIDSTATE(Vs,Flip,∆,ΦR,Idx,Xpl) ;
Input: Vs: Values of instance being explained; Flip: Array reference of decision steps;

∆: Sorted δj’s; ΦR: Explanation threshold; Idx: Index for ∆; Xpl: Set reference of
explanation literals

Output: ΦR: Updated threshold; Idx: Updated index for ∆

1 while ΦR < 0 or
∑n
i=Idx ∆[i] < ΦR do

2 while Idx ≥ 0 ∧ Flip[Idx] = 1 do
3 Flip[Idx]← −1 ;
4 Idx← Idx− 1 ;
5 if Idx < 0 then return (ΦR, Idx) ;
6 Xpl← Xpl \ {(eIdx,Vs[Idx])};
7 ΦR ← ΦR + ∆[Idx];
8 Flip[Idx]← 1;
9 return (ΦR, Idx) ;

Algorithm 3: Entering a valid state

Proposition 2. PI-explanations of an XLC can be enumerated with log-linear delay.

Real-valued & mixed case. Let us now considerR 6= ∅. As before, the prediction is assumed to be
⊕. For each feature, if wi > 0, then we are interested in assessing the impact of reducing the value of
ei. Hence, the worst-case scenario is achieved when ei = λi. In this case, we define δi = (ai−λi)wi.
A no-change constraint on the value of ei is formulated as ei ≥ ai (i.e. we clamp the value of ei by
imposing a lower bound on its value). In contrast, if wi < 0, then we are interested in assessing the
impact of increasing the value of ei. The worst-case scenario is now ei = µi. In this case, we define
δi = (ai − µi)wi. Moreover, a no-change constraint on the value of ei is formulated as ei ≤ ai (i.e.
in this case we clamp the value of ei by imposing an upper bound on its value). Given the definition
of the δi constants for real-valued features, and associated literals in case of a no-change constraint,
we can compute explanations using the restricted knapsack problem formulation as above. Thus, we
can also compute one cardinality optimal solution in log-linear time, and enumerate subset-minimal
solutions with polynomial delay.

4 Experimental Evaluation

This section evaluates the PI-explanation enumerator XPXLC, that implements the algorithms
described in this paper12. XPXLC was tested in Debian Linux on an Intel Xeon CPU 5160 3.00 GHz
with 64 GByte of memory. When testing scalability, XPXLC was run with 8GByte limit on RAM and
two hours time limit. The experiment was divided into 3 parts: (1) evaluating the raw performance of
XPXLC, (2) comparing it with the state-of-the-art compilation approach STEP [35, 36], and (3) using
complete enumeration of PI-explanations to assess the quality of explanations of the well-known
heuristic explainers Anchor [30] and SHAP [18].

Datasets. We selected a set of widely-used, publicly available, datasets from [37, 28, 13]. The total
number of datasets used is 37. These datasets contain tabular data with up to 32 features per dataset.
The task is to perform classification. For each dataset, we trained a Naive Bayes classifier13 using 80%
of the training data. The average test accuracy assessed for the 20% remaining instances is 77.7%.

12The source code of XPXLC as well as the datasets, a demo and accompanying documentation are available
at https://github.com/jpmarquessilva/expxlc.

13The CategoricalNB classifier of scikit-learn [33] was used for this purpose.
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Figure 4: Scalability of XPXLC targeting 106 PI-explanations, performance of STEP, and comparative
performance of XPXLC and STEP.

(All the datasets and the trained classifiers are available in the online repository.) The experiments
targeted XPXLC’s ability to enumerate a given number of explanations within a time limit.

Raw performance. Figure 4a shows the scalability of XPXLC. Here, XPXLC was set to compute
106 distinct explanations for each instance of each dataset. For the cases having fewer than 106

explanations, XPXLC terminates as soon as all explanations are computed. The smallest number
of observed explanations per instance is 1, the maximum number is at least 106, while on average
29207.5 PI-explanations are reported per each instance. The total number of instances to explain in
this experiment is 94174. The line drawn through point (x, y) in Figure 4a shows how many instances
on the X-axis are solved by the time shown on the Y -axis. As can be observed, performance is not
an issue for XPXLC – it never exceeds 12 seconds to enumerate 106 explanations for each of the
target instances. On average, XPXLC finishes complete enumeration (of at most 106 explanations) in
0.23 seconds.

Enumerative vs. compilation-based approaches. The state of the art for finding PI-explanations
for NBCs is the STEP compilation-based approach [35, 36, 38]. Concretely, STEP consists of
(1) compilation of a BNC classifier into a sentential decision diagram (SDD) and (2) enumeration
of PI-explanations using efficient algorithms for SDD-based prime implicant enumeration. The
existing implementation of STEP can only handle binary features. Therefore, and in order to compare
the relative performance of XPXLC and STEP, we apply a one-hot encoding (OHE) to categorical
features, retrain the Naive Bayes classifiers and run both tools on the OHE instances14, targeting the
complete enumeration of explanations. Moreover, despite its worst-case exponential complexity in
time and space, STEP can still compile into SDDs 9 (out of 37) NBC classifiers, i.e. close to 25% of
the classifiers, within the 2 hours time limit and 32 GByte memory limit. Once an NBC classifier is
compiled into an SDD, enumeration of all PI-explanations is relatively easy — concretely, it takes
0.39 seconds for the compilation-based approach to enumerate all explanations. However, the SDD
compilation step itself takes between 1 and 4300 seconds for the classifiers that can be compiled. If
the compilation time is amortized over all data instances of each dataset, its impact ranges from a
fraction of a second to ≈50 seconds. Figure 4b shows a histogram summarizing the performance of
STEP’s compiler. The bars in the histogram represent the classifiers that STEP is able to compile
within 2 seconds (there are 4 of them), 10 seconds (1), 100 seconds (1), 2 hours (3) and also classifiers
that STEP fails to compile due to reaching the memory (MO) or time (TO) limits. The last two
bars represent 19 and 9 classifiers, respectively. Finally, Figure 4c summarizes the performance
comparison between XPXLC and STEP. In this comparison, the SDD compilation time is ignored,
and the plot shows only instances for the classifiers that STEP is able to compile within the 2 hour
time limit. Also note that both tools finish complete enumeration of PI-explanations for each of these
instances. A point (x, y) in the plot represents the time (in seconds) spent by XPXLC (shown on the
X-axis) and by STEP (shown on the Y -axis) for a concrete data instance. Observe that, even if the
compilation time is ignored, STEP’s enumeration phase is still between 4 and 20 times slower than
XPXLC.

14This solution is not ideal, since the use of OHE impacts the assumption of feature independence of NBCs,
and only serves to enable the comparison between STEP and XPXLC.
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Assessing heuristic approaches. Exhaustive enumeration of PI-explanations can serve to assess
heuristic explanations. Exhaustive enumeration provides a distribution of how many times feature-
value pairs appear in explanations, and thus which are likely to be more relevant for the given
prediction. As a result, one can evaluate how many features in a heuristic explanation “hit” the set
of most relevant (commonly-occurring) features. This strategy may be beneficial in some practical
settings where trustable explanations are of concern. While our “hit” metric is a heuristic evaluation
measure to compare the quality of explanations, we demonstrate its usefulness experimentally. For
example, our metric does show a strong correlation between features of heuristic explanations and
common features that we identify via enumeration. Figure 5 (included in the supplementary materials
of the extended version of the paper [20]) depicts the percentage of features in explanations of
Anchor [30] and SHAP [18] “hitting” the set of common features. Here, we focus on 2 datasets
Adult [15, 30] and Spambase [37] and use the following methodology. For an explanation E of
Anchor, we keep the top |E| features most commonly-occurring in all PI-explanations15; then we
count the number of features in E that hit the set of common features. As SHAP assigns numerical
weights to all features, we take 5 features reported by SHAP as most relevant and count how many of
them intersect the set of 5 most common features of PI-explanations. The rationale of this choice is
that larger explanations are typically harder for a user to reason about and so 5 features is normally
deemed enough to make a conclusion wrt. the cause of prediction. As can be observed, both Anchor
and SHAP are successful at hitting the most common features. However, in some cases both tools’
explanations do not overlap our important features, e.g. Anchor has zero overlap with the common
features in more than 2000 instances. Given a significant overlap in the majority of cases, a zero
hit suggests that Anchor’s explanation might be using less influential features and is hence less
trustworthy. This experiment illustrates another setting where PI-explanations can be useful, i.e.
not only to output a provably correct explanation but also to provide the user with an alternative
evaluation toolkit to measure confidence in heuristic explanations. Finally, we observe that both
Anchor and SHAP are significantly slower than XPXLC: on average, Anchor takes 1.55 seconds
to compute one explanation of an instance, whereas SHAP takes 99.58 seconds. In contrast, as
highlighted above, XPXLC never exceeds a few tens of µsec for computing a single explanation.

5 Conclusions

This paper presents a log-linear algorithm for computing a smallest PI-explanation of linear classifiers.
Moreover, the paper shows that PI-explanations for linear classifiers can be enumerated with polyno-
mial delay. The results in the paper also apply to NBCs (among other classifiers), and so should be
contrasted with earlier work [35], which proposes a worst-case exponential time and space solution
for computing PI-explanations of NBCs. A natural line of research is to investigate extensions of
XLCs that also admit polynomial time algorithms for computing PI-explanations.

15If > |E| features are in the top due to having the same frequency, all of them are marked as common. Also,
the experiment is performed only for instances for which complete PI-explanation enumeration finishes.
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Broader Impact

Recent advances in the power of machine learning have not always been accompanied with the
explainability of decisions made by complex models. The capacity to produce human-understandable
explanations is sometimes not only an advantage but a legal obligation.

Linear classifiers, including the Naive Bayes Classifier (NBC), are ubiquitous in Machine Learning,
being extensively studied and finding a wide range of practical uses. Recent work [35, 6] proposed
worst-case exponential time and space algorithms for computing PI-explanations of NBCs, where
PI-explanations denote minimal sets of feature-value pairs that are sufficient for the prediction.

Our paper investigates PI-explanations for linear classifiers, and proposes efficient (i.e. polyno-
mial time) algorithms for computing one PI-explanation, but also efficient (i.e. polynomial delay)
algorithms for enumerating PI-explanations. In practice, and for the specific case of NBCs, the
new algorithms achieve orders of magnitude speed-ups over earlier work. More importantly, our
algorithms enable computing PI-explanations for classifiers that were until now beyond the reach of
existing approaches.
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