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Abstract
In this paper, we report experiments in which we aim to auto-
matically classify primate vocalizations according to four pri-
mate species of interest, plus a background category with forest
sound events. We compare several standard deep neural net-
works architectures: standard deep convolutional neural net-
works (CNNs), MobileNets and ResNets. To tackle the small
size of the training dataset, less than seven thousand audio files,
the data augmentation techniques SpecAugment and MixUp
proved to be very useful. Against the very unbalanced classes of
the dataset, we used a balanced data sampler that showed to be
efficient. An exponential moving average of the model weights
allowed to get slight further gains. The best model was a stan-
dard 10-layer CNN, comprised of about five million parame-
ters. It achieved a 93.6% Unweighted Average Recall (UAR) on
the development set, and generalized well on the test set with a
92.5% UAR, outperforming an official baseline of 86.6%. We
quantify the performance gains brought by the augmentations
and training tricks, and report fusion and classification experi-
ments based on embeddings that did not bring better results.
Index Terms: automated species classification, primate vocal-
izations, audio data augmentation

1. Introduction
These last years, the domain of bioacoustics has greatly ben-
efited from the impressive performance breakthroughs of deep
learning and deep neural networks (DNNs), alike many other
audio-related applications such as speech recognition and audio
event detection [1]. Automatic detection of animal vocaliza-
tions, besides being a scientific challenge in itself, can be help-
ful for monitoring biodiversity. Researchers involved in bioa-
coustics and/or the recent field named ecoacoustics [2] gather
ever-growing quantities of in-situ recordings that need to be
manually analyzed. Automatic tools that label the recordings
accurately are very much in demand to ease the time-consuming
task of listening to hours of them [3].

A variety of tasks have been addressed with automatic
tools: “simply” detecting the absence/presence of animal vo-
calizations in recordings (bird singing [4], for instance), identi-
fying species of a given animal (the yearly LifeCLEF Bird Iden-
tification Task [5], for instance), recognizing individuals in mul-
tiple species [6]. All the previous examples dealt with singing
birds but many other animals have been considered, such as
bats [7], and primates [8, 9, 10].

A number of machine learning techniques have been used
in the literature, such as Support Vector Machines either with
raw acoustic features or feature representations issued from
deep neural networks [9, 11], kernel methods, such as Ex-
treme Learning Machine (ELM) [10], and, of course, a variety
of deep neural networks: convolutional and recurrent convolu-
tional neural networks [12], densely connected networks [13],

Residual Neural Networks (ResNets) [14], etc.
In this work, we are interested in comparing a number

of DNN architectures in the task of distinguishing between
four primate species based on their vocalizations: chimpanzees,
mandrills, red-capped mangabeys and a mixed group of guenon
species. We use the audio dataset provided by the INTER-
SPEECH 2021 Computational Paralinguistics Challenge [9, 11,
10]. Besides the four primate species of interest, a fifth class is
considered in this classification task: natural background noise.
In real applications, this “reject” class would be very interest-
ing to have in a classifier if we aim at spotting out primate calls
within lengthy audio field recordings.

Besides comparing different models, we also investigate
the use of audio data augmentation, as it is key for training
networks. We will report significant performance gains using
SpecAugment [15] and MixUp [16].

The best system reported by the challenge organizers is
based on extracting feature representations from a recurrent au-
toencoder in an unsupervised fashion and then use these em-
beddings, named “auDeep”, as input to an SVM classifier. We
therefore tried to use the auDeep embeddings within one of our
best models. Although this improved the auDeep-SVM perfor-
mance, no gain was obtained with our networks.

2. Models
In this section, the four different model architectures are de-
scribed. All the models make use of blocks of convolution lay-
ers followed by global pooling before a classification head com-
prised of two fully-connected layers. The difference between
the architectures lies in the convolutional blocks’ definition.

In the present work, all the models take log-mel spectro-
grams of 64 coefficients as input. More details on data prepro-
cessing will be given in Section 3.

2.1. Standard CNNs: CNN6 and CNN10

By standard CNNs we mean networks comprised of blocks of
a convolution layer, followed by batch-normalization (BN), the
rectifier linear unit (ReLU) activation function, and 2× 2 aver-
age pooling. Dropout of rate 20% is applied after each convolu-
tion block. The blocks are followed by, first, an average pooling
over the frequency dimension, and second, summation of mean
and max-pooling on the time axis. The pooled representations
(vectors) are given to a first fully-connected layer (FC) of 512
units, with ReLU, and second to the classification FC layer of
dimension the number of classes of interest (five classes).

CNN6 and CNN10 follow this architecture with six and ten
layers, respectively. CNN6 consists of four convolution layers
with a 5× 5 kernel size, and 2× 2 padding. CNN10, shown in
Table 1, uses kernels of size 3×3 and there are two consecutive
convolution layers in each block. CNN6 and CNN10 totalize
4.57 M and 4.95 M parameters, respectively.



Table 1: CNN10 architecture [17]. The number before @ indi-
cates the number of output channels.

log-Mel spectrograms
75 frames × 64 Mel bins(

64@3× 3
BN,ReLU

)
×2

Pooling 2 × 2(
128@3× 3
BN,ReLU

)
×2

Pooling 2 × 2(
256@3× 3
BN,ReLU

)
×2

Pooling 2 × 2(
512@3× 3
BN,ReLU

)
×2

Global pooling
FC, 512, ReLU

FC, 5, Sigmoid or Softmax

2.2. MobileNetV1

MobileNets [18] make use of depthwise separable convolutions
to reduce computation costs and compensate with 1× 1 kernel
sized convolutions, also called point-wise convolutions, in order
to exchange information between different channels.

In this work, we used MobileNetV1, comprised of 13 Mo-
bileNetV1 convolutional blocks. Each block consists of a
depthwise separable convolution, followed by average pool-
ing, BN, ReLU, and then a pointwise convolution with BN and
ReLU. The same pooling and FC layers as in the CNNs and
ResNet22 are used after the convolutional blocks. In total, this
network comprises 4.26 M parameters.

2.3. ResNet22

A ResNet is comprised of convolutional blocks, each of two
convolution layers with a 3× 3 kernel size, and a shortcut con-
nection between input and output that allows to train efficient
deep networks [19]. We used ResNet22, a model comprised of
22 layers: two convolutional layers and a downsampling layer
applied on the spectrograms and then eight convolutional blocks
with residual connections. Again, the same classification head
as the other models is used. The resulting model is much larger
than the other architectures, with 62.60 M parameters. Despite
this large size and the relatively small number of training sam-
ples, the test performance and generalization capability of this
model is remarkable, as we shall see hereafter. No training strat-
egy specific to this model was used.

2.4. WideResNet28-2

Wide Residual Networks [20] consist of an initial convolutional
layer followed by three groups of residual blocks. After these
blocks, follow average pooling and a linear layer that acts as
a classifier. The residual blocks, each composed of two “Ba-
sicBlocks” with a convolutional layer with 3× 3 kernels, Batch
Normalization and ReLU, are repeated three times. We used the
official implementation available in PyTorch [21] of the Wide

ResNet 28-2 architecture, but slightly modified to be more sim-
ilar to the other models in this study: after the convolution
blocks, we use global max- and average-pooling, sum the re-
sult and apply two FC layers. It results in a small sized model
of about 1.5 million parameters.

3. Data processing and setup
3.1. Feature extraction

The primate vocalization dataset [10] consists of three subsets
(“train”, “devel” and “test”) of comparable size: 6915, 6918
and 6923 audio files of variable duration. We padded all the
files to reach three seconds duration, as it corresponds to the
largest recording duration of all the files. 64 log-mel spectro-
grams were extracted with a 1024-sample-long Hanning win-
dow and 320 samples hop size. We ran experiments with the
original 16 kHz sampled signal and a downsampled 8 kHz ver-
sion to speed up model comparison. With the 16 kHz version,
spectrograms are of size 150× 64 in time and frequency.

3.2. Data balancing

The train and development subsets are highly imbalanced re-
garding the five classes of interest: 50.0%, 32.1%, 2.3%, 12.6%,
3.0% for Background, Chimpanzee, Guenon, Mandrill, and
Red-capped mangabeys, respectively.

Training data are input to our models in mini-batches of
size 32 samples during training, which is a relatively small size.
Given the important imbalanced representation of the classes, it
may happen that all the data in a mini-batch may belong to the
same sound class Background. This will cause the models to
overfit to this class, with more training clips, and underfit to the
other sound classes with fewer training clips. To avoid this is-
sue, Kong and colleagues proposed to use a balanced data sam-
pler used during training [17]. With this sampler, audio clips are
equally sampled from all the five sound classes when constitut-
ing a mini-batch. We will compare the results obtained with this
strategy to using a uniform standard sampler.

3.3. Data augmentation

Data augmentation is key to increase the generalization capa-
bilities of DNNs. Nevertheless, finding the right augmentation
strategies is a difficult task. In [22], a number of audio-specific
augmentations were tested in a systematic way for environmen-
tal sound classification: time stretching, pitch shifting, dynamic
range compression and background noise addition. The authors
show that the impact of using these techniques depends on the
sound classes of interest: performance may decrease if the tech-
nique is not well suited for a given class.

In this work, several augmentations were tested: time
stretching with a rate uniformly sampled in the [0.9, 1.1] inter-
val, pitch shifting by 0 to 3 quarter-tones up or down, MixUp,
and SpecAugment. In preliminary experiments, time stretching
and pitch shifting did not bring performance improvements. On
the contrary, MixUp and SpecAugment revealed very efficient.

MixUp [16] is a successful data augmenta-
tion/regularization technique, in which we mix pairs of
data samples (images, audio clips, etc.). If x1 and x2 are two
different input samples (spectrograms in our case), and y1, y2
their respective one-hot encoded labels, then the mixed sample
and target are obtained by a simple convex combination:



xmix = λx1 + (1− λ)x2

ymix = λy1 + (1− λ)y2

where λ is a scalar sampled from a symmetric Beta distribution
at each mini-batch generation:

λ ∼ Beta(α, α)

where α is a real-valued hyper-parameter to tune (always
smaller than 1.0 in our case).

SpecAugment [15] is an occlusion augmentation technique,
applied onto the log-mel spectrograms. In our case, we ran-
domly choose to mask zero, one or two stripes both in the time
and frequency axes. The width of the strides is also chosen
randomly with a maximum of 16 and 8 bins in time and fre-
quency, respectively. SpecAugment is applied at mini-batch
level, meaning that the same random strides are masked in all
the samples of a given mini-batch. SpecAugment has been orig-
inally proposed in automatic speech recognition but it has been
rapidly used with success also for other audio-related tasks,
such as audio tagging.

3.4. Experimental setup

The models were trained to optimize binary cross-entropy,
when MixUp was used, and categorical cross-entropy other-
wise. In all our experiments, we used the Adam [23] optimizer
to train the models with a learning rate of 1e-3. The size of
the minibatches was set to 32. We trained our model for 60k
iterations. Except WideResNet, all the model architectures are
the ones proposed in [17] for multilabel audio event detection
and we largely used their open-sourced implementation1. Our
PyTorch [21] code is available2.

We used Exponential Moving Average (EMA) to obtain our
final models: during the training of any model, we create a sepa-
rate model which is the EMA variant of the model being trained.
We used a 0.995 decay and EMA updates were initiated after
15k training iterations.

4. Results
In this section, we report results in terms of mean average pre-
cision (mAP) and unweighted average recall (UAR). UAR is
the metric used in the Primate sub-challenge, occurring in the
framework of the yearly Paralinguistic Compare challenges.

4.1. Comparison between models

Table 2 shows the results obtained with the different models on
the development subset. As a global comment, all the DNNs
outperformed the 84.6% UAR reported in the official challenge
paper [11]. The best model is CNN10-16k, the 10-layer stan-
dard CNN, that achieved a 93.6% UAR on the devel subset and
92.5% on the official test set. CNN10-16k is closely followed
by ResNet22-16k. CNN10-16k’s size is an order of magnitude
smaller than ResNet22, thus, besides being slightly more ac-
curate, it is also much more preferable in terms of computa-
tion. CNN6, the 6-layer standard CNN is ranked third closely
followed by MobilenetV1. The least performing model was
WideResNet28-2. This ranking between architectures should
be considered with caution because we used the same learning

1https://github.com/qiuqiangkong/audioset tagging cnn
2https://github.com/topel/ComParE2021 PRS

Table 2: Comparison between models. mAP: average precision,
UAR: unweigthed average recall. 8k, 16k: audio sampling rate.

devel test
setting mAP (%) UAR (%) UAR (%)

ELM [10] 60.3 61.0 70.7
auDeep-SVM [11] N/A 84.6 86.6

CNN6-8k 92.9 88.2
CNN10-8k 95.4 91.9 90.6
MobileNetV1-8k 91.4 88.0
ResNet22-8k 93.8 91.2 89.1
WideResNet28-2-8k 92.8 87.7

ResNet22-16k 95.7 92.6
CNN10-16k 97.0 93.6 92.5

hyper-parameters for all models. It may happen that the 1e-3
learning rate is not the best one for all the models, for instance.
Nevertheless, the fact that a standard CNN is the best model in
these experiments, is in line with the results obtained by Kong
and colleagues on AudioSet [17]. We tested CNNs with more
layers (CNN14) on our task, but CNN10 proved to be better,
probably because CNN14 is too deep to be correctly trained
with our small dataset.

In Table 2, we also report three UAR values obtained on the
official challenge test set. CNN10-16k reached a 92.5% UAR
on the test set, showing that it generalized well on these new
data. It outperformed the ELM model [10] at 70.7%, and the
86.6% auDeep-SVM baseline provided by the challenge orga-
nizers [11].

Figure 1 shows the confusion matrix on the devel subset,
obtained with our best model. The best recognized classes are
guenon (G) and mandrills (M) with about 97% accuracy. Back-
ground (B) has the lowest accuracy, about 89%, and most con-
fusions are made with samples of the chimpanzee class (C), and
to a less extent with the other primate species. Finally, Red-
capped mangabeys (R) are confused with Mandrills in 3.3% of
the cases.

4.2. Ablation study

Table 3 shows the impact of several components: balanced sam-
pler, data augmentation and EMA. This ablation study was per-
formed with ResNet22-8k and CNN10-16k.

The first two lines compare the use of a random sampler
(no-bal) and a balanced sampler (bal). Using a random sampler
is worse than a balanced one in UAR, as expected. In the case
of ResNet22, there is a two points difference in mAP and 4
points in UAR. This is because the background class is better
recognized with no-bal, and it is by far the most represented
class in the dataset (50% of the samples).

The next three lines show the impact of data augmentation:
specAugment alone (specA), MixUp alone and specAugment
and MixUp together. We can see that both techniques boost
mAP and UAR significantly: about 3 points absolute in mAP
and 5.5 points in UAR for ResNet22, or instance. Finally using
both methods together gave the best results for both models.

The last line in the table shows the results of the counterpart
of the EMA model of the preceding line. EMA shows slightly
better results than their non-EMA counterparts. This tendency
was observed with all the architectures.



Figure 1: Confusion matrix on the devel subset, obtained with
our best model CNN10-16k. B: Background, C: Chimpanzee,
G: Guenon, M: Mandrille, R: Red-capped Mangabeys.

Figure 2: 2-d representations obtained with t-SNE on the em-
beddings obtained with CNN10-16k on the devel samples.

5. Complementary experiments
In this section, we briefly describe complementary experiments
that did not bring improvements, at least in UAR.

CNN10 embeddings and SVM. The challenge organizers
reported their best results using Support Vector Machines with a
linear kernel applied onto embeddings obtained with a deep re-
current neural network named auDeep: 84.6% and 86.6% of the
development and test subsets respectively. In a similar fashion,
we extracted CNN10 embeddings outputted from the penulti-
mate fully-connected layer in CNN10. Figure 2 shows a two-
dimensional representation of the embeddings obtained with t-
SNE [24] on the development subset. We can observe that the
five classes are mostly well separated in the plane, Background
(in red) and Chimpanzee (in green) to a less extent though. Lin-
ear SVMs reached a 88.8% UAR on the development set.

Fusion between CNN10 and ResNet22. Since CNN10
and ResNet22 achieved very similar mAP and UAR values, we
experimented an intermediate fusion: we defined a “ResNet22-
CNN10” model that combines CNN10-8k and ResNet22-8k as

Table 3: Ablation study mAP(%)/UAR(%) results using CNN10-
16k on the development subset. bal: balanced data sampler,
no-aug: no augmentation at all, specA: SpecAugment.

setting ResNet22-8k CNN10-16k

no-bal, no-aug 87.9/78.7 94.7/90.9
bal, no-aug 89.8/82.6 94.7/92.1
bal, specA 92.6/88.1 94.1/92.1
bal, MixUp 92.4/88.8 96.0/92.5
bal, specA+MixUp 93.8/91.2 97.0/93.6

w/o EMA 93.1/90.0 96.7/93.0

two parallel branches to extract embeddings from their penul-
timate fully-connected layer. Their embeddings, of size 512
(CNN10) and 2048 (ResNet22) are then simply concatenated
and given as input an FC classification layer. Both CNN10 and
ResNet22 branches were initialized with the weights of the best
models reported above. We tried to freeze or not these branches,
and we also tried with and without augmentation (specAugment
and/or MixUp). Freezing the branches and using both augmen-
tations led to the best results: 91.6% UAR and 96.2% mAP.
This UAR value is below that of the CNN10-8k alone. Never-
theless, the 96.2% mAP is slightly larger than the CNN10-8k
95.4% value.

6. Conclusions
We reported experiments aiming to classify primate vocaliza-
tions into four primate species of interest, plus a background
category with forest sound events. We compared standard
DNN architectures: standard deep convolutional neural net-
works (CNNs), MobileNets, ResNets and WideResNets.

To tackle the relative small size of the training dataset, less
than seven thousand audio files, the data augmentation tech-
niques SpecAugment and MixUp proved to be very useful.
Against the very unbalanced distribution of the classes, we used
a balanced data sampler, which was efficient with a ResNet but
not with our standard CNN. An exponential moving average
of the model weights allowed to get slight further gains. The
best model was a standard 10-layer CNN, comprised of about
five million parameters, that achieved a 92.5% UAR on the test
subset. We quantified the performance gains brought by the
augmentations and training tricks, and report fusion and clas-
sification experiments based on embeddings that did not bring
better results in UAR at least.

Most confusions occur between Background and all the pri-
mate species, thus, a hierarchical system would be worth trying.
One can also imagine a single model but trained on both objec-
tives.
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[12] T. Grill and J. Schlüter, “Two convolutional neural networks for
bird detection in audio signals,” in Proc. European Signal Pro-
cessing Conference (EUSIPCO), 2017, pp. 1764–1768.

[13] T. Pellegrini, “Densely connected cnns for bird audio detection,”
in Proc. EUSIPCO, Kos, 2017, pp. 1734–1738.

[14] S. Kahl, C. M. Wood, M. Eibl, and H. Klinck, “Birdnet: A deep
learning solution for avian diversity monitoring,” Ecological In-
formatics, vol. 61, p. 101236, 2021.

[15] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple augmentation method for
automatic speech recognition,” in Proc. INTERSPEECH, Graz,
2019, pp. 2613–2617.

[16] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond Empirical Risk Minimization,” in Proc. ICLR, Vancouver,
2018.

[17] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumb-
ley, “Panns: Large-scale pretrained audio neural networks for
audio pattern recognition,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 28, pp. 2880–2894, 2020.

[18] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[20] S. Zagoruyko and N. Komodakis, “Wide residual networks,”
arXiv preprint arXiv:1605.07146, 2017.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance
deep learning library,” in proc. NeurIPS, 2019, pp. 8026–8037.
[Online]. Available: http://papers.nips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[22] J. Salamon and J. P. Bello, “Deep convolutional neural networks
and data augmentation for environmental sound classification,”
IEEE Signal Processing Letters, vol. 24, no. 3, pp. 279–283, 2017.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2017.

[24] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”
Journal of machine learning research, vol. 9, no. 11, 2008.


