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Abstract

Backward error (BE) analysis was developed
and popularized by James Wilkinson in the
1950s and 1960s, with origins in the works of
Neumann and Goldstine (1947) and Turing
(1948). It is a fundamental notion used in
numerical linear algebra software, both as a
theoretical and a practical tool for the round-
ing error analysis of numerical algorithms.
Broadly speaking the backward error quanti-
fies, in terms of perturbation of input data,
by how much the output of an algorithm fails
to be equal to an expected quantity. For a
given computed solution ŷ, this amounts to
computing the norm of the smallest pertur-
bation ∆x of the input data x such that ŷ
is an exact solution of a perturbed system:
f(x+ ∆x) = ŷ. Up to now, BE analysis has
been applied to numerous linear algebra prob-
lems, always with the objective of quantifying
the robustness of algebraic processes with re-
spect to rounding errors stemming from finite
precision computations. While deep neural
networks (DNN) have achieved an unprece-
dented success in numerous machine learning
tasks in various domains, their robustness to
adversarial attacks, rounding errors, or quan-
tization processes has raised considerable con-
cerns from the machine learning community.
In this work, we generalize BE analysis to
DNN. This enables us to obtain closed for-
mulas and a numerical algorithm for comput-
ing adversarial attacks on input data and on
DNN’s parameters. By construction, these
attacks are optimal, and thereby smaller, in

norm, than perturbations obtained with exist-
ing gradient-based approaches. We produce
numerical results that support our theoretical
findings and illustrate the relevance of our
approach on well-known datasets.

1 Introduction

Adversarial attacks Deep neural networks have be-
come increasingly popular and successful in many ma-
chine learning tasks: their efficiency in solving complex
problems has led to apply deep learning techniques in
safety-critical tasks such as autonomous driving (Grig-
orescu et al., 2019) and medicine (Rajpurkar et al.,
2017). However, many works (Goodfellow et al., 2015;
Kurakin et al., 2017; Akhtar and Mian, 2018) have
shown that deep neural network models are vulnerable
to adversarial attacks: attacks on a machine learn-
ing model that an attacker intentionally designed to
cause the model to make mistakes. In order to use
DNNs in security-critical scenarios it is thus crucial to
explore their vulnerability against attackers. Several
types of attacks are now well known, such as adver-
sarial examples (Szegedy et al., 2014; Madry et al.,
2019), poisoning the training data (Biggio et al., 2013),
etc. Adversarial examples have been one of the most
popular approaches. They correspond to slight pertur-
bations on the input data of a neural network, small
enough so that they are not noticeable by the human
eye but still change the model predictions. Whereas
adversarial perturbations are mostly used on the input
space, there are few approaches which take interest
on a similar notion for the model’s parameters (Garg
et al., 2020) despite its potential use to help robust
generalization (Wu et al., 2020).

In this work we propose a novel approach for the con-
struction of adversarial attacks which relies on back-
ward error analysis methods that are more commonly
used in scientific computing to assess the effect of finite
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precision computation or to measure the sensitivity
of an algorithm to perturbations on data. Because
of its generality, this approach allows us to compute
targeted adversarial attacks on the input data as well
as on the network parameters; the latter correspond
to the case where a malicious user tampers with the
values of the weights or biases in order to alter the
behavior of the network. We show that when using
only perturbations on the data we can outperform state
of art algorithms such as PGD (Madry et al., 2019) or
DeepFool (Moosavi-Dezfooli et al., 2016), and that by
using only perturbations on the network’s parameters
we can alter a network’s accuracy as efficiently.

Backward error Numerical error is inherent in ma-
chine computation due to its use of floating-point arith-
metic. Hence the ability to measure the accuracy of
numerical programs is essential (Higham, 2002; Chaitin-
Chatelin and Frayssé, 1996). Given a computed solu-
tion to a problem, there are two ways to measure its
numerical accuracy. Forward error analysis directly
measures the distance or difference between the com-
puted solution and the exact solution. Backward error
measures how much the problem’s input data must be
perturbed to produce the computed solution. Back-
ward error analysis was developed and popularized
by Wilkinson (1963) in the 1950s and 1960s, with ori-
gins in the works of Neumann and Goldstine (1947)
and Turing (1948).

Let us assume ŷ is the computed solution of y = f(x),
with f : Rn → Rn. The backward error is obtained by
asking for what value of x the problem has actually
been solved, that is, of what perturbed problem ŷ is
the solution. Formally, we have

ŷ = y + ∆y = f(x+ ∆x) (1)

and the backward error is defined as

Eback(ŷ) = min {ε : ŷ = f(x+ ∆x), ‖∆x‖ ≤ ε ‖x‖} ,
(2)

that is, the minimal norm perturbation ∆x of data x
such that the perturbed problem f(x+ ∆x) produces
the computed solution ŷ. As a consequence of this
definition, it can be said that:

• If there is an uncertainty in the data (physical
measurements, approximations, ...), it is sufficient
that the backward error is of the same order as
this uncertainty for the computed solution to be
satisfactory.

• The algorithm is numerically stable if the back-
ward error is close to the round-off error u of the
computer arithmetic used for the computation.

Forward error and backward error are linked by a third
quantity, called the problem conditioning, which mea-
sures how sensitive the solution to a problem is to
disturbances in the data. Indeed we have:

forward error ≤ condition number× backward error.

Our main focus here is to apply backward error analysis
to neural networks and to derive mathematical expres-
sions for the backward error defined as in equation 2.
We will focus on fully connected deep classification
neural networks but the approach is easily generalized
to convolutions because a convolution layer, as a fully
connected layer, can be expressed as a matrix product.
Our objective is to use these expressions to search for
perturbations on the neural networks’ parameters and
input data that produce adversarial attacks with no
need to have an access to training data but only the
model’s parameters and a typical example of the data
that we aim to misclassify.

Notations We define one layer i of a fully connected
or convolutional artificial neural network as

yi = fi (Aiyi−1) , i = 1, ..., p, (3)

where yi is the output of the layer, fi is the activation
function, Ai the weight matrix, yi−1 the output of the
previous layer, y0 = x being the network input data.
Note that bias can be added as follows:

y = f

([
A, b

] [x
1

])
,

and thus, without loss of generality, we wil assume
that one layer of the neural network corresponds to
a matrix-vector product and drop b for the sake of
readability. We use ŷ as the approximation of the
output vector y and note ∆y = ŷ − y whereas ∆Ai or
∆x are perturbations on the matrices or on vectors.

We will always use the 2-norm for vectors and the
Frobenius norm for matrices; for the sake of readability,
we will drop the subscripts in the norms.

We will use the vec operator which stacks the columns
of a matrix one underneath the others and note

−→
A =

vec(A). We recall some properties of the Kronecker
product which will be used in the remainder of this
document:

(A
⊗

C)(B
⊗

D) = (AB)
⊗

(CD),∥∥∥A⊗B
∥∥∥ = ‖A‖ ‖B‖ ,

|A
⊗

B| = |A|
⊗
|B|,

vec(AXB) = (BT
⊗

A) vec(X).
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2 Backward error analysis for neural
networks

The goal of this section is to establish an explicit expres-
sion of the backward error for a deep neural network
with p fully connected layers defined as in equation 3.
We will assume perturbations on both the input data
x and the network weights Ai. For the sake of clarity,
we will proceed in incremental steps. In section 2.1 we
will focus on the simple case of a single layer without
activation function and, in sections 2.2 and 2.3, we will
extend this result to the cases of two layers without and
one layer with activation function, respectively. These
steps will provide the ingredients to produce the final
and generic result that will be presented in section 2.4.

2.1 One layer without activation function

For a single layer linear neural network the approxi-
mated output vector is given by: ŷ = (A1 + ∆A1)(x+
∆x). Since our goal is to derive adversarial attacks fo-
cusing on small perturbations, the second order pertur-
bations ∆A1∆x can be safely neglected and dropping
it allows us to obtain the following simplified formula

∆y = ∆A1x+A1∆x =
[
xT
⊗
I, A1

] [−−→∆A1

∆x

]
.

By this formulation, the ∆A1 and ∆x perturbations
can be computed as the solution of the following linear
system

A
−−→
∆A = ∆y, where A =

[
xT
⊗
I, A1

]
and

−−→
∆A =

[−−→
∆A1

∆x

]
.

Note that this is an under determined system whose
minimum norm solution is given by

−−→
∆A = A+∆y with

A+ = AT (AAT )−1

and AAT =
[
xT
⊗
I, A1

] [x⊗ I
AT1

]
= A1A

T
1 +‖x‖2 I.

Writing B = (A1A
T
1 + ‖x‖2 I)−1, we obtain[−−→

∆A1

∆x

]
=

[
x
⊗
I

AT1

]
B∆y

and so {
∆A1 = B∆yxT ,
∆x = AT1 B∆y.

Note that if we ignore perturbations ∆x on the input,
we recover the well-known result of Rigal and Gaches
(1967).

2.2 Two layers without activation function

In this section the goal is to establish an explicit ex-
pression of the backward error for a two layers neural
network without activation function in order to show
how adding layers affects the backward error. For a two
layers linear neural network the computed output vec-
tor is given by: ŷ2 = (A2 + ∆A2)(A1 + ∆A1)(x+ ∆x).
Once more we drop lower order perturbations and ob-
tain

∆y = A2∆A1x+ ∆A2A1x+A2A1∆x

=
[
xT
⊗
A2, xTAT1

⊗
I, A2A1

] 
−−→
∆A1−−→
∆A2

∆x

 .
Again, this formulation allows us to compute the per-
turbations as the minimum norm solution of an under-
determined linear system A

−−→
∆A = ∆y, where

A =
[
xT
⊗
A2, xTAT1

⊗
I, A2A1

]
and

−−→
∆A =


−−→
∆A1−−→
∆A2

∆x

 .
As in the previous section, this is achieved computing
A+∆y with A+ = AT (AAT )−1 and

AAT =
[
xT
⊗
A2, xTAT1

⊗
I, A2A1

]  x⊗AT2
A1x

⊗
I

(A2A1)T


= ‖x‖2A2A

T
2 + ‖A1x‖2 I +A2A1(A2A1)T .

Writing B = (‖x‖2A2A
T
2 + ‖A1x‖2 I +

A2A1(A2A1)T )−1, we obtain
−−→
∆A1−−→
∆A2

∆x

 =

 x⊗AT2
A1x

⊗
I

(A2A1)T

B∆y,

which leads to
−−→
∆A1 = x

⊗
AT2 B∆y = vec(AT2 B∆yxT ),

−−→
∆A2 = A1x

⊗
IB∆y = vec(IB∆yxTAT1 ),

∆x = (A2A1)TB∆y,

or, equivalently, ∆A1 = AT2 B∆yxT ,
∆A2 = B∆yxTAT1 ,
∆x = AT1 A

T
2 B∆y.

2.3 One layer with activation function

We now turn our attention to the case of a single
layer with activation function to show how nonlinear
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functions affect the backward error. Let ŷ = f1((A1 +
∆A1)(x+ ∆x))) and suppose that f1 is differentiable;
a first-order Taylor expansion gives us

∆y = f ′1(A1x)∆A1x+ f ′1(A1x)A1∆x

=
[
xT
⊗
f ′1(A1x), f ′1(A1x)A1

] [−−→∆A1

∆x

]
.

Let A =
[
xT
⊗
f ′1(A1x), f ′1(A1x)A1

]
; following the

same approach as in section 2.1, we have

AT (AAT )−1∆y =

[−−→
∆A1

∆x

]
with

AAT = xTx
⊗

f ′1(A1x))(f ′1(A1x))T

+ f ′1(A1x)A1(f ′1(A1x)A1)T

= ‖x‖2 (f ′1(A1x))(f ′1(A1x))T

+ f ′1(A1x)A1(f ′1(A1x)A1)T .

Writing B = (AAT )−1, we obtain{
∆A1 = (f ′1(A1x))TB∆yxT ,
∆x = (f ′1(A1x)A1)TB∆y.

2.4 Backward error analysis for a generic
neural network

In this section we will use the results of the previous
three sections and generalize them to the case of a deep
neural network with p layers and activation functions.

For a neural network with p layers defined as in equa-
tion 3, the computed result is

ŷp = fp((Ap + ∆Ap)fp−1((Ap−1 + ∆Ap−1)

. . . (A2 + ∆A2)f1((A1 + ∆A1)(x+ ∆x)) . . .)).

Assuming the activation functions (fi)i=1,...,p are dif-
ferentiable, with first order approximations we have

AT =



x
⊗

(f ′p(Apyp−1)Ap . . . f
′
1(A1x))T

...
yi−1

⊗
(f ′p(Apyp−1)Ap . . . f

′
i(Aiyi−1))T

...
yp−1

⊗
(f ′p(Apyp−1))T

(f ′p(Apyp−1)Ap . . . f
′
1(A1x)A1)T


.

Let B = (AAT )−1, we then can show that the per-
turbations associated with the given approximation ŷp

are:

∆A1 = (f ′p(Apyp−1)Ap . . . f
′
1(A1x))TB∆yxT ,

...
∆Ai = (f ′p(Apyp−1)Apf

′
p−1(Ap−1yp−2)

. . . Ai+1f
′
i(Aiyi−1))TB∆yyTi−1,

...
∆Ap = (f ′p(Apyp−1))TB∆yyTp−1,
∆x = (f ′p(Apyp−1)Apf

′
p−1(Ap−1yp−2)

. . . A2f
′
1(A1x)A1)TB∆y.

(4)

Thanks to this backward error analysis of neural net-
works, we have thus obtained a general expression for
perturbations to yield a given approximate result. Our
analysis is for a general arbitrary network with any
number of layers and with activation functions, and
computes perturbations on both the weights and the
input of the network.

3 Adversarial attacks via backward
error analysis

3.1 Proposed approach

In this section we present a novel approach for produc-
ing adversarial attacks to classification neural networks
that relies on the backward error analysis presented
in section 2. The approach consists in computing the
smallest norm perturbation on input data or network
weights such that, for a given input x, the computed
ŷ results in a misclassification, that is, it erroneously
affects the input to class j instead of the expected one.
Mathematically, the adversarial perturbation is defined
as the solution of the following minimization problem

Solve

arg min
∆Ai,∆x

p∑
i=1

‖∆Ai‖2

‖Ai‖2
+
‖∆x‖2

‖x‖2

subject to
ŷ = fp((Ap + ∆Ap)fp−1((Ap−1 + ∆Ap−1)

. . . f1((A1 + ∆A1)(x+ ∆x))))

ŷi ≤ ŷj , i = 1, . . . , n.
(5)

From section 2 we know that we can express the per-
turbations as: {

∆Ai = Mi∆yy
T
i−1

∆x = M∆y
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where

Mi =(f ′p(Apyp−1)Apf
′
p−1(Ap−1yp−2)

. . . Ai+1f
′
i(Aiyi−1))TB and

M =(f ′p(Apyp−1)Apf
′
p−1(Ap−1yp−2)

. . . A2f
′
1(A1x)A1)TB.

Therefore

‖∆Ai‖2

‖Ai‖2
=

∥∥Mi∆yy
T
i−1

∥∥2

‖Ai‖2
=
‖Mi∆y‖2 ‖yi−1‖2

‖Ai‖2
,

where we have used the fact that ‖xyT ‖2F = ‖x‖22‖y‖22.

Hence, using backward error analysis, we express the
perturbations as variables which only depend on a given
approximate result ŷ and on the network’s parameters.
The optimization problem can then be reduced to:

Solve

arg min
ŷ

‖M(ŷ − y)‖2

subject to
ŷi ≤ ŷj , i = 1, . . . , n,

(6)

with

M =



‖x‖
‖A1‖M1

...
‖yi−1‖
‖Ai‖ Mi

...
‖yp−1‖
‖Ap‖ Mp

1
‖x‖M


.

Once this optimization problem is solved and, thus,
ŷ is computed, the adversarial perturbations can be
computed using equation 4.

Alternatively, we can reformulate the optimization prob-
lem using backward error analysis to only simplify the
constraints which reduce the problem to:

Solve

arg min
∆Ai,∆x

p∑
i=1

‖∆Ai‖2

‖Ai‖2
+
‖∆x‖2

‖x‖2

subject to

∆y = A
−−→
∆A,

ŷi ≤ ŷj , i = 1, . . . , n.

(7)

with A defined as in section 2.4 and

−−→
∆A =


−−→
∆A1

...
−−→
∆Ap
∆x

 .

This formulation can be further refined by iterating on
the perturbations, for example in the case where we
attack the input data we get:

Solve

min
δx

‖∆x+ δx‖2

‖x‖2

subject to
∆y = Aδx,
ŷi ≤ ŷj , i = 1, . . . , n,

(8)

at the end of each iteration we apply the following
modifications:

∆x←− ∆x+ αδx

x←− x+ αδx

with α a fixed regularization term. Following the same
approach we can also get perturbations on the neural
network’s parameters.

These two formulations enable us to compute targeted
adversarial attacks either on weights or on the input
data and on both weights and input data. Note that
here we focus on the case where the classifier assigns the
input data to the j-th class when ŷi ≤ ŷj , i = 1, . . . , n,
but this can easily be generalized to other types of
classification by modifying these constraints.

3.2 Comparison with other approaches

Most of the approaches that generate adversarial ex-
amples, including FGSM (Goodfellow et al., 2015) or
FGSM-based approaches (Kurakin et al., 2017), SGD
(Madry et al., 2019) or SGD-based approaches (Croce
and Hein, 2020b), FAB (Croce and Hein, 2020a), etc.,
use the gradient of the loss function in order to solve a
given optimization problem. Usually the optimization
problem can be generically formulated as:

Solve

min ‖∆x‖2

subject to
C(x+ ∆x) = j.

(9)

Where j is the target class and C(x + ∆x) the class
of the perturbed image. This problem being difficult
to solve, the above-mentioned approaches commonly
resort to solving the following problem:

Solve

min c ‖∆x‖2 + L(x+ ∆x, j),
(10)

where L is the loss of a given image with respect to a
given target class.
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Unlike these methods, our approach relies on a first
order approximation of ∆x or ∆Ai resulting from the
BE analysis. This enables us to simplify equation 9
and formulate it as equation 6 or equation 7.

Unlike most existing approaches, our method is generic
enough to enable to compute targeted adversarial at-
tacks on both the neural network’s parameters and
input. Attacks on a network’s parameters should not
be neglected. In fact in a context where cloud comput-
ing is rising in popularity, neural network’s inferences
which happen on the cloud are subject to multiple
threats such as unauthorized access through malicious
co-located virtual machines (VM) on a same physical
host or root access via host organization. In these situa-
tions an intruder can have access to a neural network’s
parameters and perturb them to launch adversarial
attacks on specific inputs using our approach.

Finally, a notable advantage of our approach is that it
does not require the knowledge of the loss function and
of its gradient in order to find optimal perturbations;
unlike other gradient-based adversarial attacks, the pro-
posed attack only depends on the output information
and the network’s parameters. Indeed, when a neural
network is deployed after being trained, no informa-
tion on the loss function used to train it is available.
Although only a few loss functions (e.g., mean square
error, cross entropy) are most commonly used there are
still numerous cases where non trivial loss functions
are used which are difficult, if not impossible, to guess.
One commonly occurring example is represented by
Generative Adversarial Networks (GAN) (Goodfellow
et al., 2014), where a discriminative network acts as a
loss function.

4 Experimental results

For all of our experiments we train a fully connected
neural network, with tanh activation functions, with
Keras with Adam’s optimizer and a sparse categorical
cross entropy’s loss on Python on the MNIST (LeCun
et al., 2010) or CIFAR10 (Krizhevsky, 2009) database.
We describe the neural network’s structure in each sub-
section or on the first row of the corresponding table.
If the network is a fully connected neural network with
one hidden layer, with 784 nodes in the input layer
and 100 nodes in the hidden layer on MNIST then
we use the following notation: (784, 100, 10). Once
the network is trained, we use its weight matrices to
compute adversarial attacks as described before, using
MATLAB R2020a. For each experiment we take the
100 first images on the testing data set, we first solve
the optimization problem equation 6 or the iterative
version of equation 7, as specified in each case, us-
ing MATLAB’s lsqlin function from the optimization

toolbox, and then we find the corresponding pertur-
bations on the input or on the model’s weight. Hence
we divide our experimental approach in two parts, one
where we focus only on attacks on the neural network’s
input and one where we only want to attack the neural
network’s parameters. Neural networks for a given size
and database are the same across sections 4.2 and 4.1.

4.1 Attacks on the input data

In this section we perform an attack only on the in-
put and compare it to state of the art attacks such
as fast gradient method (FGM) which is the L2 norm
variation of FGSM (Goodfellow et al., 2015), projected
gradient descent (PGD) (Madry et al., 2019) and Deep-
Fool (Moosavi-Dezfooli et al., 2016), using the Foolbox
library (Rauber et al., 2020). For each attack we search
for the best hyper-parameter needed on Foolbox before
comparing the different methods. We give the network
accuracy for different ε assuming that the attack is
successful if:

‖∆x‖
‖x‖

< ε.

Hence if we do not find any perturbations that changes
the network’s result for a given image, such that ‖∆x‖‖x‖ <

ε then we report a network accuracy of 100%.

In figure 1 we show, for multiple input images and
classes, the adversarial example resulting from an at-
tack on MNIST, using a (784, 100, 10) network with
tanh activation functions, computed with the approach
proposed in section 3. Above each image is the obtained
label and, in parenthesis, the norm of the perturbation.

For perturbations of relative norm greater than approx-
imately 0.1 slight white stains on the perturbed image
appear, although a human eye would still classify these
perturbed images in their true label.

It is interesting to notice that in the examples of figure 1
we can get multiple adversarial examples for a given
input image that are obtained with perturbations of
relatively small norm; it clearly shows that our method
is efficient in producing adversarial examples for multi-
ple given target classes. In the following comparison
we will only use non-targeted attacks to show that this
method can compete with, and even outperform, state
of the art attacks on a non-targeted scheme.

As seen in table 1, using the iterative version of formula-
tion 7 leads to better results than using the formulation
6, hence we will use this one on the following compar-
isons.
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Figure 1: Adversarial Examples Found With BE Attack.

Table 1: Adversarial Attacks On MNIST, (784, 10)
Network

ε BE attack (6) BE attack (8)

0.2 70% 23%

0.1 90% 41%

0.05 97% 68%

Table 2: Adversarial Attacks On MNIST, (784, 10)
Network

ε FGM L2PGD L2DeepFool BE attack

0.2 60% 31% 27% 23%

0.1 79% 71% 60% 41%

0.05 92% 91% 72% 68%

In the case of table 2 the backward error attack clearly
outperforms state of the art algorithms, finding much
more adversarial examples with relative norm smaller
than 0.1 compared to DeepFool or PGD.

Table 3: Adversarial Attacks On MNIST, (784, 100, 10)
Network

ε FGM L2PGD L2DeepFool BE attack

0.2 49% 34% 44% 41%

0.1 80% 81% 78% 72%

0.05 94% 96% 93% 90%

Here the network is composed of two layers of 768
and 10 neurons each followed by hyperbolic tangent as
activation function, and it achieves 56% of accuracy on

the CIFAR10 test data. For our computations we use
the 100 first test images which are correctly classified.

Table 4: Adversarial Attacks On CIFAR10,
(3072, 768, 10) Network

ε FGM L2PGD L2DeepFool BE attack

0.2 1% 2% 0% 0%

0.1 5% 7% 0% 1%

0.05 18% 27% 3% 5%

0.01 77% 79% 55% 55%

The results we get in tables 2, 3, and 4 show that even
by perturbing only the input data our method still
obtains satisfactory results, in the majority of the cases
outperforming PGD and DeepFool, and being at least
competitive with these algorithms.

4.2 Attack on weights

In this section we perform an attack only on the neural
network’s weights. For each attack we give the network
accuracy for different ε assuming that the attack is
successful if:

max
i

‖∆Ai‖
‖Ai‖

< ε.

Hence if we do not find any perturbations that changes
the network’s result for a given image, such that
maxi

‖∆Ai‖
‖Ai‖ < ε then we report a network accuracy

of 100%.

Unlike what we have seen in section 4.1, in table 5,
formulation 6 leads to better results than using the
iterative version of formulation 7, even if this still gives
satisfying results. Hence on the following comparisons
we will use this version.
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Table 5: Adversarial Attacks On Weights On MNIST,
(784, 10) Network

ε BE attack (6) BE attack (7)

0.5 30% 39%

0.2 38% 51%

0.1 50% 61%

0.05 64% 83%

0.01 88% 100%

Table 6: Adversarial Attacks On Weights On MNIST

(784, 10) (784, 100, 10)
ε BE attack BE attack

0.5 30% 37%

0.2 38% 64%

0.1 50% 72%

0.05 64% 84%

0.01 88% 95%

The results in table 6 show that backward error can
be used to efficiently fool a given neural network by
perturbing it’s weights, moreover it is interesting to
note that for a given ε the accuracy we can get by
perturbing weights is typically of the same order than
the one we get before in section 4.1 by perturbing the
input data.

Table 7: Adversarial Attacks On Weights On CIFAR10,
(3072, 768, 10) Network

ε BE attack

0.05 0%

0.01 4%

5e-3 9%

1e-3 56%

5e-4 73%

1e-4 93%

Here in table 7, even if the data set is more complex
and the network has more parameters, these results
show that some neural network are less robust than
others when it comes to perturbations on their weights.
The accuracy we get here for a given ε is typically a lot
smaller than the one we get for an attack on the input
in section 4.1, despite using the same neural network for

both attacks. Hence some network are more sensitive
to weight perturbations than to input perturbations.

5 Conclusion and discussion

We have performed a backward error analysis of generic
deep neural networks. Our analysis provides formu-
las and a numerical algorithm that can be used to
construct adversarial attacks in a novel way, without
any knowledge of the loss function used to train the
neural network, on either the input data or the neural
network’s parameters.

As seen in section 4, our method can outperform state
of the art methods in the case were we attack a given
network on the input data. Moreover it also enables
to attack a network by perturbing its parameters and
hence, for a given input, target a given class.

Our analysis relies on first order approximations, which
means that, in the case where the perturbations needed
to attain a given output vector are large, the not-so-
small second order terms could make the results inexact.
However, this should not be a problem in the context of
adversarial attacks, which focus on small perturbations.

Our experiments focus on neural networks with few lay-
ers, trained on a couple of simple data sets (MNIST and
CIFAR10). The goal of this paper is to provide a first
proof-of-concept that successful adversarial attacks can
be built via backward error analysis. We have shown
how our approach can compete with state of the art
attacks on the input, and how it can also create attacks
on the network’s parameters, which, to our knowledge,
has not been the object of much investigation.

These preliminary results illustrate the potential of
backward error analysis, and we expect that our method
can be further improved and refined to target deeper
networks using more robust optimization solvers.

The existence of new types of adversarial attacks poses
potential security threats to machine learning models.
This work shows how to construct adversarial attacks
on a neural network’s weights and input data. How-
ever even if it is a new approach in development and
we do not expect it to have an immediate effect on
existing robust models, it shows that models stored on
environments that could potentially be the target of an
intruder, such as cloud computing environments, could
be very sensitive to this sort of attack. Moreover such
attacks often enable to develop more robust deep learn-
ing systems by using them to train neural networks.
On the other hand we think that by using classical
numerical analysis tools, such as backward error, we
could develop new ways of evaluating the robustness
of neural networks.
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