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Abstract

Backward error (BE) analysis was developed and popularized by James Wilkinson
in the 1950s and 1960s, with origins in the works of Neumann and Goldstine (1947)
and Turing (1948). It is a fundamental notion used in numerical linear algebra
software, both as a theoretical and a practical tool for the rounding error analysis
of numerical algorithms. Broadly speaking the backward error quantifies, in terms
of perturbation of input data, by how much the output of an algorithm fails to
be equal to an expected quantity. For a given computed solution ŷ, this amounts
to computing the norm of the smallest perturbation ∆x of the input data x such
that ŷ is an exact solution of a perturbed system: f(x + ∆x) = ŷ. Up to now,
BE analysis has been applied to numerous linear algebra problems, always with
the objective of quantifying the robustness of algebraic processes with respect to
rounding errors stemming from finite precision computations. While deep neural
networks (DNN) have achieved an unprecedented success in numerous machine
learning tasks in various domains, their robustness to adversarial attacks, rounding
errors, or quantization processes has raised considerable concerns from the machine
learning community. In this work, we generalize BE analysis to DNN. This enables
us to obtain closed formulas and a numerical algorithm for computing adversarial
attacks. By construction, these attacks are optimal, and thereby smaller, in norm,
than perturbations obtained with existing gradient-based approaches. We produce
numerical results that support our theoretical findings and illustrate the relevance
of our approach on well-known datasets.

1 Introduction

Adversarial attacks Deep neural networks have become increasingly popular and successful
in many machine learning tasks: their efficiency in solving complex problems has led to apply
deep learning techniques in safety-critical tasks such as autonomous driving [8] and medicine [14].
However, many works [7, 10, 1] have shown that deep neural network models are vulnerable to
adversarial attacks: attacks on a machine learning model that an attacker intentionally designed to
cause the model to make mistakes. In order to use DNNs in security-critical scenarios it is thus
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crucial to explore their vulnerability against attackers. Several types of attacks are now well known,
such as adversarial examples [16, 12], poisoning the training data [2], etc. Adversarial examples have
been one of the most popular approaches. They correspond to slight perturbations on the input data
of a neural network, small enough so that they are not noticeable by the human eye but still change
the model predictions. Whereas adversarial perturbations are mostly used on the input space, there
are few approaches which take interest on a similar notion for the model’s parameters [6] despite its
potential use to help robust generalization [21].

In this work we propose a novel approach for the construction of adversarial attacks which relies on
backward error analysis methods that are more commonly used in scientific computing to assess the
effect of finite precision computation or to measure the sensitivity of an algorithm to perturbations on
data. Because of its generality, this approach allows us to compute adversarial attacks on the input
data as well as on the network parameters; the latter correspond to the case where a malicious user
tampers with the values of the weights or biases in order to alter the behavior of the network.

Backward error Numerical error is inherent in machine computation due to its use of floating-point
arithmetic. Hence the ability to measure the accuracy of numerical programs is essential [9, 3]. Given
a computed solution to a problem, there are two ways to measure its numerical accuracy. Forward
error analysis directly measures the distance or difference between the computed solution and the
exact solution. Backward error measures how much the problem’s input data must be perturbed to
produce the computed solution. Backward error analysis was developed and popularized by James
Wilkinson [20] in the 1950s and 1960s, with origins in the works of Neumann and Goldstine (1947)
[13] and Turing (1948) [18].

Let us assume ŷ is the computed solution of y = f(x), with f : Rn → Rn. The backward error
is obtained by asking for what value of x the problem has actually been solved, that is, of what
perturbed problem ŷ is the solution. Formally, we have

ŷ = y + ∆y = f(x+ ∆x) (1)

and the backward error is defined as

Eback(ŷ) = min {ε : ŷ = f(x+ ∆x), ‖∆x‖ ≤ ε ‖x‖} , (2)

that is, the minimal norm perturbation ∆x of data x such that the perturbed problem f(x + ∆x)
produces the computed solution ŷ. As a consequence of this definition, it can be said that:

• If there is an uncertainty in the data (physical measurements, approximations, ...), it is
sufficient that the backward error is of the same order as this uncertainty for the computed
solution to be satisfactory.

• The algorithm is numerically stable if the backward error is close to the round-off error u of
the computer arithmetic used for the computation.

Forward error and backward error are linked by a third quantity, called the problem conditioning,
which measures how sensitive the solution to a problem is to disturbances in the data. Indeed we
have:

forward error ≤ condition number× backward error.

Our main focus here is to apply backward error analysis to neural networks and to derive mathematical
expressions for the backward error defined as in equation (2). We will focus on fully connected
deep classification neural networks but the approach is easily generalized to convolutions because a
convolution layer, as a fully connected layer, can be expressed as a matrix product. Our objective is
to use these expressions to search for perturbations on the neural networks’ parameters and input
data that produce adversarial examples with no need to have an access to training data but only the
model’s parameters and a typical example of the data that we aim to misclassify.

Notations We define one layer i of a fully connected or convolutional artificial neural network as

yi = fi (Aiyi−1) , i = 1, ..., p, (3)

where yi is the output of the layer, fi is the activation function, Ai the weight matrix, yi−1 the output
of the previous layer, y0 = x being the network input data. Note that bias can be added as follows:

y = f

(
[A, b]

[
x
1

])
,
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and thus, without loss of generality, we wil assume that one layer of the neural network corresponds
to a matrix-vector product and drop b for the sake of readability. We use ŷ as the approximation of
the output vector y and note ∆y = ŷ− y whereas ∆Ai or ∆x are perturbations on the matrices or on
vectors.

We will always use the 2-norm for vectors and the Frobenius norm for matrices; for the sake of
readability, we will drop the subscripts in the norms.

We will use the vec operator which stacks the columns of a matrix one underneath the others and
note

−→
A = vec(A). We recall some properties of the Kronecker product which will be used in the

remainder of this document:

(A
⊗

C)(B
⊗

D) = (AB)
⊗

(CD),∥∥∥A⊗B
∥∥∥ = ‖A‖ ‖B‖ ,

|A
⊗

B| = |A|
⊗
|B|,

vec(AXB) = (BT
⊗

A) vec(X).

2 Backward error analysis for neural networks

The goal of this section is to establish an explicit expression of the backward error for a deep neural
network with p fully connected layers defined as in equation (3). We will assume perturbations
on both the input data x and the network weights Ai. For the sake of clarity, we will proceed in
incremental steps. In section 2.1 we will focus on the simple case of a single layer without activation
function and, in sections 2.2 and 2.3, we will extend this result to the cases of two layers without and
one layer with activation function, respectively. These steps will provide the ingredients to produce
the final and generic result that will be presented in section 2.4.

2.1 One layer without activation function

For a single layer linear neural network the approximated output vector is given by: ŷ = (A1 +
∆A1)(x+ ∆x). Since our goal is to derive adversarial attacks focusing on small perturbations, the
second order perturbations ∆A1∆x can be safely neglected and dropping it allows us to obtain the
following simplified formula

∆y = ∆A1x+A1∆x =
[
xT
⊗
I, A1

] [−−→∆A1

∆x

]
.

By this formulation, the ∆A1 and ∆x perturbations can be computed as the solution of the following
linear system

A
−−→
∆A = ∆y, where A =

[
xT
⊗
I, A1

]
and
−−→
∆A =

[−−→
∆A1

∆x

]
.

Note that this is an under determined system whose minimum norm solution is given by
−−→
∆A = A+∆y

with

A+ = AT (AAT )−1 and AAT =
[
xT
⊗
I, A1

] [x⊗ I
AT

1

]
= A1A

T
1 + ‖x‖2 I.

Writing B = (A1A
T
1 + ‖x‖2 I)−1, we obtain[−−→

∆A1

∆x

]
=

[
x
⊗
I

AT
1

]
B∆y

and so {
∆A1 = B∆yxT ,
∆x = AT

1 B∆y.

Note that if we ignore perturbations ∆x on the input, we recover the well-known result of Rigal and
Gaches [15].
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2.2 Two layers without activation function

In this section the goal is to establish an explicit expression of the backward error for a two layers
neural network without activation function in order to show how adding layers affects the backward
error. For a two layers linear neural network the computed output vector is given by: ŷ2 = (A2 +
∆A2)(A1 + ∆A1)(x+ ∆x). Once more we drop lower order perturbations and obtain

∆y = A2∆A1x+ ∆A2A1x+A2A1∆x

=
[
xT
⊗
A2, xTAT

1

⊗
I, A2A1

] −−→∆A1−−→
∆A2

∆x

 .
Again, this formulation allows us to compute the perturbations as the minimum norm solution of an
underdetermined linear system A

−−→
∆A = ∆y, where

A =
[
xT
⊗
A2, xTAT

1

⊗
I, A2A1

]
and
−−→
∆A =

−−→∆A1−−→
∆A2

∆x

 .
As in the previous section, this is achieved computing A+∆y with A+ = AT (AAT )−1 and

AAT =
[
xT
⊗
A2, xTAT

1

⊗
I, A2A1

]  x⊗AT
2

A1x
⊗
I

(A2A1)T


= ‖x‖2A2A

T
2 + ‖A1x‖2 I +A2A1(A2A1)T .

Writing B = (‖x‖2A2A
T
2 + ‖A1x‖2 I +A2A1(A2A1)T )−1, we obtain−−→∆A1−−→

∆A2

∆x

 =

 x⊗AT
2

A1x
⊗
I

(A2A1)T

B∆y,

which leads to 
−−→
∆A1 = x

⊗
AT

2 B∆y = vec(AT
2 B∆yxT ),

−−→
∆A2 = A1x

⊗
IB∆y = vec(IB∆yxTAT

1 ),
∆x = (A2A1)TB∆y,

or, equivalently,  ∆A1 = AT
2 B∆yxT ,

∆A2 = B∆yxTAT
1 ,

∆x = AT
1 A

T
2 B∆y.

2.3 One layer with activation function

We now turn our attention to the case of a single layer with activation function to show how nonlinear
functions affect the backward error. Let ŷ = f1((A1 + ∆A1)(x + ∆x))) and suppose that f1 is
differentiable; a first-order Taylor expansion gives us

∆y = f ′1(A1x)∆A1x+ f ′1(A1x)A1∆x =
[
xT
⊗
f ′1(A1x), f ′1(A1x)A1

] [−−→∆A1

∆x

]
.

Let A =
[
xT
⊗
f ′1(A1x), f ′1(A1x)A1

]
; following the same approach as in section 2.1, we have

AT (AAT )−1∆y =

[−−→
∆A1

∆x

]
with

AAT = xTx
⊗

f ′1(A1x))(f ′1(A1x))T + f ′1(A1x)A1(f ′1(A1x)A1)T

= ‖x‖2 (f ′1(A1x))(f ′1(A1x))T + f ′1(A1x)A1(f ′1(A1x)A1)T .
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Writing B = (AAT )−1, we obtain{
∆A1 = (f ′1(A1x))TB∆yxT ,
∆x = (f ′1(A1x)A1)TB∆y.

2.4 Backward error analysis for a generic neural network

In this section we will use the results of the previous three sections and generalize them to the case of
a deep neural network with p layers and activation functions.

For a neural network with p layers defined as in equation (3), the computed result is

ŷp = fp((Ap + ∆Ap)fp−1((Ap−1 + ∆Ap−1) . . . (A2 + ∆A2)f1((A1 + ∆A1)(x+ ∆x)) . . .)).

Assuming the activation functions (fi)i=1,...,p are differentiable, with first order approximations we
have

AT =



x
⊗

(f ′p(Apyp−1)Apf
′
p−1(Ap−1yp−2) . . . A2f

′
1(A1x))T

...
yi−1

⊗
(f ′p(Apyp−1)Apf

′
p−1(Ap−1yp−2) . . . Ai+1f

′
i(Aiyi−1))T

...
yp−1

⊗
(f ′p(Apyp−1))T

(f ′p(Apyp−1)Apf
′
p−1(Ap−1yp−2) . . . A2f

′
1(A1x)A1)T


.

Let B = (AAT )−1, we then can show that the perturbations associated with the given approximation
ŷp are: 

∆A1 = (f ′p(Apyp−1)Apf
′
p−1(Ap−1yp−2))TB∆yxT ,

...
∆Ai = (f ′p(Apyp−1)Apf

′
p−1(Ap−1yp−2) . . . Ai+1f

′
i(Aiyi−1))TB∆yyTi−1,

...
∆Ap = (f ′p(Apyp−1))TB∆yyTp−1,
∆x = (f ′p(Apyp−1)Apf

′
p−1(Ap−1yp−2) . . . A2f

′
1(A1x)A1)TB∆y.

(4)

Thanks to this backward error analysis of neural networks, we have thus obtained a general expression
for perturbations to yield a given approximate result. Our analysis is for a general arbitrary network
with any number of layers and with activation functions, and allows perturbations made on both the
weights and the input of the network.

3 Adversarial attacks via backward error analysis

In this section we present a novel approach for producing adversarial attacks to classification neural
networks that relies on the backward error analysis presented in section 2. The approach consists in
computing the smallest norm perturbation on input data or network weights such that, for a given
input x, the computed ŷ results in a misclassification, that is, it erroneously affects the input to class
j instead of the expected one. Mathematically, the adversarial perturbation is defined as the solution
of the following minimization problem

Solve

arg min
∆Ai,∆x

p∑
i=1

‖∆Ai‖2

‖Ai‖2
+
‖∆x‖2

‖x‖2

subject to
ŷ = fp((Ap + ∆Ap)fp−1((Ap−1 + ∆Ap−1) . . . f1((A1 + ∆A1)(x+ ∆x))))

ŷi ≤ ŷj , i = 1, . . . , n.

(5)

From section 2 we know that we can express the perturbations as:{
∆Ai = Mi∆yy

T
i−1

∆x = M∆y
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where
Mi = (f ′p(Apyp−1)Apf

′
p−1(Ap−1yp−2) . . . Ai+1f

′
i(Aiyi−1))TB and

M = (f ′p(Apyp−1)Apf
′
p−1(Ap−1yp−2) . . . A2f

′
1(A1x)A1)TB.

Therefore
‖∆Ai‖2

‖Ai‖2
=

∥∥Mi∆yy
T
i−1

∥∥2

‖Ai‖2
=
‖Mi∆y‖2 ‖yi−1‖2

‖Ai‖2
,

where we have used the fact that ‖xyT ‖2F = ‖x‖22‖y‖22.

Hence, using backward error analysis, we express the perturbations as variables which only depends
on a given approximate result ŷ and on the network’s parameters. The optimization problem is then
reduced to:

Solve

arg min
ŷ

‖M(ŷ − y)‖2

subject to
ŷi ≤ ŷj , i = 1, . . . , n,

(6)

with

M =



‖x‖
‖A1‖M1

...
‖yi−1‖
‖Ai‖ Mi

...
‖yp−1‖
‖Ap‖ Mp

1
‖x‖M


.

Note that here we focus on the case where the classifier assign the input data to the j-th class when
ŷi ≤ ŷj , i = 1, . . . , n. But this can easily be generalized to other types of classification by modifying
those constraints. Once this optimization problem is solved and, thus, ŷ is computed, the adversarial
perturbations can be computed using equation (4).

Most of the approaches that generate adversarial examples (FGSM [7] or based on FGSM [10], SGD
[12] or based on SGD [5], FAB [4]...) use the gradient of the loss function in order to solve a given
optimization problem. Usually the optimization problem can be generically formulated as:

Solve

min ‖∆x‖2

subject to
C(x+ ∆x) = j.

(7)

Where j is the target class and C(x + ∆x) the class of the perturbed image. This problem being
difficult to solve, the above-mentioned approaches commonly resort to solving the following problem:

Solve

min c ‖∆x‖2 + L(x+ ∆x, j),
(8)

where L is the loss of a given image with respect to a given target class.

Unlike these methods, our approach relies on a first order approximation of ∆x or ∆Ai resulting
from the BE analysis. This enables us to simplify equation (7) and formulate it as equation (6). A
notable advantage of our approach is that it does not require the loss gradient in order to find optimal
perturbations.

4 Experimental results

For all of our experiments we train a fully connected neural network with Keras with Adam’s
optimizer and a sparse categorical cross entropy’s loss on Python on the MNIST database [11]. We
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describe the neural network’s structure in each subsection. Once the network is trained, we use its
weight matrices to compute adversarial attacks as described before, using MATLAB R2020a. For
each data in our set, we first solve the optimization problem (6) using MATLAB’s lsqlin function
from the optimization toolbox, and then we find the corresponding perturbations on the input or on
the model’s weight. We report for each image its label and the targeted label, as label 7→ targeted
label, and the norm of the perturbations needed to create an adversarial example. We show in green
each successful attempt to create an adversarial attack to the targeted class.

4.1 Attack on weights

4.1.1 One layer without activation function

Here the network is just one layer of 10 neurons and it achieves 92% of accuracy on the test data.
The norm values reported in the table below is ‖∆A1‖

‖A1‖ .

Table 1: Norm of the adversarial attacks on weights for a single layer neural network.

Class 7 7→ 0 7 7→ 1 7 7→ 2 7 7→ 3 7 7→ 4 7 7→ 5 7 7→ 6 7 7→ 8 7 7→ 9

Norm 0.0492 < 10−4 0.0283 0.0284 0.0120 0.0438 0.0288 0.0087 0.0102

Class 8 7→ 0 8 7→ 1 8 7→ 2 8 7→ 3 8 7→ 4 8 7→ 5 8 7→ 6 8 7→ 7 8 7→ 9

Norm 0.0487 0.0008 0.0183 0.0053 0.0394 0.0299 0.0365 0.0214 0.0099

Class 5 7→ 0 5 7→ 1 5 7→ 2 5 7→ 3 5 7→ 4 5 7→ 6 5 7→ 7 5 7→ 8 5 7→ 9

Norm 0.0328 0.0563 0.0344 0.0036 0.0144 0.0400 0.0285 0.0047 0.0187

Class 4 7→ 0 4 7→ 1 4 7→ 2 4 7→ 3 4 7→ 5 4 7→ 6 4 7→ 7 4 7→ 8 4 7→ 9

Norm 0.0391 0.0451 0.0146 0.0067 0.0447 0.0357 0.0181 0.0247 0.0184

In this case, as we said in section 2.3, we find the same result as Rigal and Gaches, so we have an
explicit formula enabling us to compute optimal perturbations, hence we successfully misclassify
each image to each possible class, with very small perturbations (their norm is typically around 1%
that of the weight’s norm).

4.1.2 Two layers with activation function

Here the network is composed of two layers of 100 and 10 neurons each followed by hyperbolic
tangent as activation function, and it achieves 97% of accuracy on the test data. The norm values
reported in the table below correspond to max(‖∆A1‖

‖A1‖ ,
‖∆A2‖
‖A2‖ ).

Table 2: Norm of the adversarial attacks on weights for a two layers neural network.

Class 7 7→ 0 7 7→ 1 7 7→ 2 7 7→ 3 7 7→ 4 7 7→ 5 7 7→ 6 7 7→ 8 7 7→ 9

Norm 0.0802 0.0663 0.0774 0.0787 0.0672 0.0760 0.0717 0.0667 0.0642

Class 8 7→ 0 8 7→ 1 8 7→ 2 8 7→ 3 8 7→ 4 8 7→ 5 8 7→ 6 8 7→ 7 8 7→ 9

Norm 0.0591 0.0170 0.1092 0.1180 0.0648 0.0860 0.0543 0.0218 0.0839

Class 5 7→ 0 5 7→ 1 5 7→ 2 5 7→ 3 5 7→ 4 5 7→ 6 5 7→ 7 5 7→ 8 5 7→ 9

Norm 0.0857 0.0955 0.0865 0.0704 0.1004 0.0916 0.0982 0.0927 0.0984

Class 4 7→ 0 4 7→ 1 4 7→ 2 4 7→ 3 4 7→ 5 4 7→ 6 4 7→ 7 4 7→ 8 4 7→ 9

Norm 0.0772 0.0855 0.1027 0.1118 0.1002 0.0789 0.0959 0.0791 0.1028
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For this setting, some tests did not achieve the expected result, as reported by the red cells; in these
cases, the perturbation resulted in a misclassification in a class other than the target one. This is
likely due to a malfunctioning of the optimizer used for solving the problem in equation (6). We
reserve to future work the use of more efficient optimizers. We can remark that the reported values
are, on average, larger than those reported in the previous section due to the higher complexity of the
network or, again, because of the inefficiency of the optimizer.

4.2 Attacks on the input data

4.2.1 One layer without activation function

In figure 1 we show, for multiple input images and classes, the perturbed image resulting from an
adversarial attack computed with the approach proposed in section 3. Above each image is the
obtained label and, in parenthesis, the norm of the perturbation.

Figure 1: Adversarial examples found with BE attack

We remark that for perturbations of relative norm greater than approximately 0.1 we start noticing
slight white stains on the perturbed image, but a human eye would still classify these perturbed
images in their original class.

4.2.2 Two layers with activation function

Here we compare, for four different images, all adversarial examples found by our method and by
non-targeted and targeted FGSM in figures 2 and 3 and 4, respectively. Above each image is the
obtained label and, in parenthesis, the norm of the perturbation. Adversarial examples which did
not result in the intended class are not showed here, but as in 4.1.2, in these cases, the perturbation
resulted in a misclassification in a class other than the target one.

Figure 2: Adversarial examples found with BE attack
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Figure 3: Adversarial examples found with FGSM attack

Figure 4: Adversarial examples found with targeted FGSM attack

There are multiple differences between the images resulting from these two methods:

• For a given image and a given target label, the two methods often give different results in
terms of perturbations norm. In some cases FGSM or targeted FGSM will achieve better
performance (4 labeled as 3) and in some others our method will (4 labeled as 0). Whereas
FGSM can attain smaller perturbation’s norm for a given image and a given label our method
can still find better results for the same image with another label, as it can successfully lead
to misclassify a given image to a variety of target labels.

• Perturbation patterns are quite different; if we compare the two images representing a 5
which are labeled as a 4, for FGSM perturbations are uniform on a given set of pixels, and as
reported in [19] it’s a result which is common to all currently used gradient-based methods.
On the contrary, for our method, perturbations are more diffuse. This would be helpful when
one wants to train a neural network with adversarial images. Indeed, adversarial training
is the most investigated [7, 17] way to make DNNs robust. Adversarial training consist on
injecting adversarial examples on the training data set, hence network which are trained
with adversarial examples obtained by gradient methods learn to resist to those kinds of
perturbations. Hence those network may not be robust to adversarial examples obtained by
backward error approach.

5 Conclusion and limitations

We have performed a backward error analysis of generic deep neural networks. Our analysis provides
formulas and a numerical algorithm that can be used to construct adversarial attacks in a novel way,
on either the input data or the neural network’s parameters.

Our analysis makes uses of first order approximations, which means that, in the case where the
perturbations needed to attain a given output vector are large, the not-so-small second order terms
could make the results inexact. However, this should not be a problem in the context of adversarial
attacks, which focus on small perturbations.

Our experiments focus on neural networks with few layers, trained on a simple dataset (MNIST).
The goal of this paper is to provide a first proof-of-concept that successful adversarial attacks can be
built via backward error analysis, and to show how they are different from most of the state-of-the-art
attacks. These preliminary results illustrate the potential of backward error analysis, and we expect
that our method can be further improved and refined to target deeper networks using more robust
optimization solvers. Once this is achieved, further statistical studies to compare performances of
this approach to state-of-the-art attacks will be considered.

6 Broader impact

The existence of new types of adversarial attacks poses potential security threats to machine learning
models. This work shows how to construct adversarial attacks on a neural network’s weights and
input data. However as it is a new approach in development we do not expect it to have an immediate
effect on existing robust models. Moreover such attacks often enable to develop more robust deep
learning systems by using them to train neural networks. On the other hand we think that by using
classical numerical analysis tools, such as backward error, we could develop new ways of evaluating
the robustness of neural networks.
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