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Abstract -- This article deals with the design and drive of a 

thin plate wall, bent by piezoelectric fibers (MFC- Macro Fiber 

Composite). The purpose of this deformable membrane is to 

drive a moving fluid inside a thin channel according to a 

principle similar to peristaltic pumping. To promote this 

pumping effect, the deformation of the wall must be as a 

traveling wave-like with sufficiently high amplitude to transfer 

momentum to the fluid. 

Keywords— Piezoelectric actuators, peristaltic pumps, flexible 

electronics. 

I.   INTRODUCTION 

Pumping or micro-pumping of fluids may be achieved 

using various physical principles, as described in Fig. 1. 

Moreover, many different technologies are available to 

realize the pumping, depending on the requirements of the 

system [1-2]. These technologies may use mechanical 

elements (or not), flexible membranes, expansion tanks, or 

electrical and magnetic fields.  Focusing on peristaltic 

pumping, which is the main interest of this work, two reviews 

of micro-pumps technologies are presented in [3-4]. 

 

 
Fig. 1 Comparison of mechanical performances of smart materials [1-2] 

 

In addition, various electroactive materials have been 

studied in order to meet the specific technical requirements 

of mechanical solutions (e.g. compactness) and performance 

of fluid pumps (e.g. desired mass flow rate). They 

demonstrate various capabilities in terms of stroke, blocked 

force, and operating frequency. Among these electroactive 

materials, this article focuses on peristaltic pumping solutions 

actuated by piezoelectric elements, which may be classified 

according to the category of the wave propagated [5]: 

1) The traveling wave is said to be free (or natural) when one 

or more actuators create a mechanical wave propagated freely 

in the membrane in either a plate mode or surface wave [5-

6]. Its operation is dynamic and most often resonant; 

2) It is said to be a forced wave when the drive is distributed 

so that each deformation profile at every instant can be 

obtained in quasi-static mode (even if the actuators can be 

operated at resonance frequency to increase their 

displacement): 

2a) The forced wave will be referred to as discrete when 

the deformation is obtained by the coordinated 

deformation of a set of actuators, for example in the multi-

chamber devices with diaphragms in series [7]. 

2b) Conversely, the forced wave will be referred to as 

continuous when the actuator has a uniformly distributed 

contribution associated with a longitudinal movement in 

the direction of wave propagation (such as conventional 

peristaltic roller pumps). 

 

Due to the fact that they can be actuated by few actuators 

and that the wave is naturally propagated, free wave solutions 

may seem attractive at first sight. However, they have the 

disadvantage of low amplitude of deformation and they do 

not allow transferring large momentum to the fluid and 

consequently, they present a relatively low mass flow rate 

capability. 

The aim of this study is to present the development and 

successful subsequent testing of a forced wave actuation 

realized from an electroactive membrane, that is, a flexible 

material equipped with several piezoelectric ceramics used as 

actuators. These transducers may be driven separately or 

together (by sets of several transducers) to produce a 

deformation with a specific wave shape and propagation law 

within the membrane. The objective is to maximize the mass 

flow rate induced by the deformation of the membrane and 

the associated pumping of fluid. This requires in turn two 

nested optimization loops: (i) an optimal design of the 

membrane (i.e. number and location of the piezoelectric 

transducers) and (ii) an optimal design of the actuation law of 

the transducers (i.e voltage, number and configuration of the 



 

 

sets of transducers). The experimental prototype is first 

presented, then a pseudo-analytical model of the coupled 

electromechanical behavior of the electroactive membrane is 

derived to enable the realization of the optimization loops. 

Finally, an experimental validation of the pumping 

capabilities of this peristaltic pumping solution is presented.  

II.   EXPERIMENTAL PROTOTYPE 

The electroactive membrane was specifically designed for 

this application, and is made of a 110 mm x 80 mm x 750 μm 

thin plate constituting a deformable substrate on which 

piezoelectric transducers are glued. These transducers may be 

driven separately or together (by sets of several transducers 

referred to as piezo-segments), and for this first 

demonstration of the pumping capabilities, fifteen 

transducers are used (refer to Fig. 2 and Fig 3). The 

piezoelectric transducers are Macro Fiber CompositeTM 

(MFC) actuators commercialized by Smart Materials and 

consist of an active layer sandwiched between two 

encapsulating layers of Pyralux© made of Kapton, acrylic and 

epoxy shells, as illustrated on Fig 3 for a random 

configuration. These encapsulation layers guaranty a 1500V 

voltage supply insulation and support the mechanical stress 

during bending. Overall dimensions of the transducers 

(including the encapsulating layers) are 

5mm x 60mm x 350μm. All the transducers considered 

together form an equivalent MFC actuator operating in 

transverse coupling mode (𝑑31 mode). 

 
Fig. 2 Custom-made electroactive membrane using MFC actuators 

III.   PSEUDO ANALYTICAL MODEL 

A.   Set of assumptions 

A pseudo-analytical model of the coupled electrical-

mechanical behavior of the electroactive membrane is 

derived in order to express the mechanical displacement of 

the bending wall as a function of the voltage supply of the 

piezo-segments, under the following assumptions: 

 

1) Isotropy and homogeneity of each material 

2) Linear elasticity for each material 

3) No geometric nonlinearities (“small perturbations”) 

4) Thin beam theory (Navier-Bernoulli): the thin plate 

dimensions allow neglecting the following vector 

components of stress 𝜎 and strain 𝜀:̿ 

𝜎22 = 𝜎33 = 0 and  𝜀31 = 𝜀32= 𝜀12 = 0 

5) Linear piezoelectricity 

6) Quasi-static analysis 

7) Invariant problem in the width direction 
 

The bending behavior of the membrane is numerically solved 

in free displacement (no external force induced by the 

presence of fluid in contact) and as a function of the set of the 

voltage supply. 

 

 
Fig. 3 Dimensions of the deformable wall 

 

B.   Governing equations 

The governing equations of the problem are the Cauchy 

equation for the mechanical part 

∇⃗⃗ ∙ 𝜎 = 0⃗  (1) 

and the Maxwell-Gauss equation in a dielectric medium for 

the electrostatic part 

∇⃗⃗ ∙ 𝐷⃗⃗ = 0 (2) 

with the assumptions on the piezo-elements  

𝐷1 = 𝐷2 = 0 (3) 

where 𝜎 is the second-order Cauchy stress tensor and 𝐷⃗⃗  the 

first-order electric displacement field tensor. 

 

C.   Closure with constitutive equations 

The governing equations (1) and (2) are partially closed 

using, on the one hand, the constitutive equation of a linear 

elastic material (Hooke’s law) for the mechanical part, 

written under assumptions (1)-(4), 

𝜎11 = 𝑐11
𝐸 𝜀11 (4) 

and, on the other hand, the constitutive equations for linear 

piezoelectricity for the electrostatic part, also written under 

assumptions (1)-(5): 

{
𝜎11 = 𝑐11

𝐸 𝜀11 − 𝑒31𝐸3
𝐷3 = 𝑒31𝜀11 + 𝜖33

𝜎 𝐸3
 

(5) 

(6) 

 

where 𝑐̿̿ is a fourth-order elasticity tensor, 𝜀 ̿ is the second-

order strain tensor, 𝑒̿̅ is the third-order piezoelectric tensor 

and 𝜖𝜎̿̿ ̿  is the second-order dielectric permittivity tensor. 

 

D.   Closure with gradient relationships 

The governing equations (1) and (2) are also closed using the 

gradient relationship on the strain 𝜀 ̿ , written under 

assumption (1)-(4) for the mechanical part, 

𝜀11 = 𝑢1,1 − 𝑧. 𝑢3,11 (7) 

and the Maxwell-Faraday static equation (i.e the electric field 

is curl-free and thus derive from an electric potential V) for 

the electrostatic part, 

𝐸3 = −𝑉,3 (8) 

where 𝑢𝑖,𝑗 is the derivative expression of the displacement in 

(i) direction, derived according to (j). 

direction of wave propagation 



 

 

E.   Static equilibrium equations 

The composition of the medium is simplified and considered 

as a set of segments along the length, illustrated in Fig. 4. 

 

 
Fig. 4 Discretization of the membrane 

 

The Cauchy equation (1) may be simplified using the static 

equilibrium of each plane section 𝑆𝐽  (at coordinate 𝑥 ) 

belonging to a segment (𝐽) thanks to the equalities of internal 

resultant force 𝑅𝑗⃗⃗  ⃗(𝑥) and moment 𝑀𝑓,𝑗
𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥)  at point 𝑃  as 

follows: 

∀𝐽 ∈ ⟦1,𝑀⟧ ∀𝑥 ∈ 𝐼𝐽 

{
 
 

 
 𝑑𝑅𝑗⃗⃗  ⃗(𝑥)

𝑑𝑥
+ 𝑞𝑗⃗⃗  ⃗(𝑥) = 0⃗ 

𝑑𝑀𝑓,𝑗
𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥)

𝑑𝑥
+ 𝑥 ∧ 𝑅𝑗⃗⃗  ⃗(𝑥) + 𝑚𝑗⃗⃗ ⃗⃗  (𝑥) = 0⃗ 

 
(9) 

 

With 𝑞𝑗⃗⃗  ⃗(𝑥) and 𝑚𝑗⃗⃗ ⃗⃗  (𝑥) the distributed forces and moments 

respectively. 

 

Moreover, the invariant problem in the 𝑦-direction leads to 

only consider the resultant force according to 𝑥  and the 

moment according to 𝑦 . It finally comes the simplified 

expression of the resultant force and moment depending on 

the axial stress 𝜎11  and projected on the axis 𝑥  and 𝑦   
respectively 

𝑅𝑗⃗⃗  ⃗(𝑥). 𝑥 = ∬𝜎11(𝑥, 𝑧). 𝑑𝑦𝑑𝑧

𝑆𝑗

= 𝑁𝐽(𝑥) (10) 

𝑀𝑓,𝑗
𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑦 = ∬𝑧. 𝜎11(𝑥, 𝑧). 𝑑𝑦𝑑𝑧

𝑆𝑗

= 𝑀𝐽(𝑥) (11) 

In addition, it is possible to consider the different layers 

stacked in the thickness, as shown in Fig. 5. Each layer k may 

be a passive (no voltage) or an active piezoelectric layer, with 

distinct material properties. As a consequence, the second 

term −𝑒31𝐸3 of the right-hand term of (5) only exists for 

active piezoelectric layers. Let 𝒫 be the mathematical set of 

all active piezoelectric layers of a section J. 

 
Fig. 5 Multilayer wall thickness and its discretization 

 

From this discretization, the surface of the segment may be 

expressed as : 

∬𝑑𝑦𝑑𝑧

𝑆𝑗

=∑𝑙𝑘 ∫ 𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝛾

𝑘=1

  

with 𝑙𝑘 the width of the layer 𝑘. 

 

 

Considering active and passive layers of section J, (10) and 

(11) yields: 

 

{
  
 

  
 

𝑁𝐽(𝑥) = ∑ 𝑙𝑘𝑐𝑘 ∫ 𝜀11(𝑥, 𝑧). 𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝛾

𝑘=1

−∑𝑙𝑘𝑒𝑘 ∫ 𝐸3(𝑥, 𝑧). 𝑑𝑧

𝑧𝑘

𝑧𝑘−1𝑘𝜖𝒫

𝑀𝐽(𝑥) = ∑ 𝑙𝑘𝑐𝑘 ∫ 𝑧. 𝜀11(𝑥, 𝑧). 𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝛾

𝑘=1

−∑𝑙𝑘𝑒𝑘 ∫ 𝑧. 𝐸3(𝑥, 𝑧). 𝑑𝑧

𝑧𝑘

𝑧𝑘−1𝑘𝜖𝒫

 

with 𝑒𝑘 the piezoelectric coefficient of the 𝑘𝑡ℎ piezoelectric 

layer. 

Substituting (7) in the couple of equations above, it comes: 

∑𝑙𝑘𝑐𝑘 ∫ 𝜀11(𝑥, 𝑧). 𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝛾

𝑘=1

= 𝐴𝑗
𝑑𝑢1,𝑗(𝑥)

𝑑𝑥
− 𝐵𝑗

𝑑2𝑢3,𝑗(𝑥)

𝑑𝑥2
 

∑𝑙𝑘𝑐𝑘 ∫ 𝑧. 𝜀11(𝑥, 𝑧). 𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝛾

𝑘=1

= 𝐵𝑗
𝑑𝑢1,𝑗(𝑥)

𝑑𝑥
− 𝐷𝑗

𝑑2𝑢3,𝑗(𝑥)

𝑑𝑥2
 

 

With the respective coefficients 

𝐴𝑗 =∑𝑙𝑘ℎ𝑘𝑐𝑘

𝛾

𝑘=1

 𝐵𝑗 =∑𝑐𝑘𝑙𝑘
(𝑧𝑘

2 − 𝑧𝑘−1
2)

2

𝛾

𝑘=1

 

 

𝐷𝑗 =∑𝑐𝑘𝑙𝑘
(𝑧𝑘

3 − 𝑧𝑘−1
3)

3

𝛾

𝑘=1

 

The coefficients 𝐴𝐽 and 𝐷𝐽 correspond to the longitudinal 

tensile stiffness and flexural stiffness respectively. 

The coefficient 𝐵𝑗  is associated to the nonsymmetrical 

property of the membrane according to its thickness. Thus, it 

associates the longitudinal displacement to the bending 

moment, and the bending displacement to the normal force. 

𝐵𝑗  becomes null if the layers are symmetrical on both sides 

of the median plane. 

 

 

According to the reasonable assumption of constant and 

unidirectional electric field 𝐸3(𝑥, 𝑧)  in a piezo element it 

comes: 

∑𝑙𝑘𝑒𝑘 ∫ 𝐸3(𝑥, 𝑧). 𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝛾

𝑘𝜖𝒫

= −∑𝑐𝑘𝑙𝑘 . 𝑑𝑉𝑘
𝑘𝜖𝒫

 

∑𝑙𝑘𝑒𝑘 ∫ 𝑧.𝐸3(𝑥, 𝑧). 𝑑𝑧

𝑧𝑘

𝑧𝑘−1

𝛾

𝑘𝜖𝒫

= −∑𝑙𝑘
(𝑧𝑘 + 𝑧𝑘−1)𝑒𝑘

2
𝑑𝑉𝑘

𝑘𝜖𝒫

 

 

∀𝐽 ∈ ⟦1,𝑀⟧ ∀𝑥 ∈ 𝐼𝐽 (12) 



 

 

 

{
 
 

 
 

𝑑𝑁𝐽(𝑥)

𝑑𝑥
+ 𝑞𝑗⃗⃗  ⃗(𝑥). 𝑥 = 0

𝑑𝑀𝐽(𝑥)

𝑑𝑥
+ [𝑥 ∧ (

𝑁𝐽
𝑇𝑦,𝐽
𝑇𝑧,𝐽

)] . 𝑦 + 𝑚𝑗⃗⃗ ⃗⃗  (𝑥). 𝑦 = 0

 

 

{
 

 
𝑑𝑁𝐽(𝑥)

𝑑𝑥
+ 𝑟𝐽 = 0

𝑑𝑀𝐽(𝑥)

𝑑𝑥
− 𝑇𝑧,𝐽 + 𝑝𝐽 = 0

 

Differentiating the second equation (12) and substituting 

the expressions of 𝑁𝐽(𝑥) and 𝑀𝐽(𝑥), it finally gives: 

∀𝐽 ∈ ⟦1,𝑀⟧ ∀𝑥 ∈ 𝐼𝐽 
 

{
 

 𝐴𝑗
𝑑2𝑢1,𝑗(𝑥)

𝑑𝑥2
+ 𝑟𝐽 = 0

−𝐷𝑗
𝑑4𝑢3,𝑗(𝑥)

𝑑𝑥4
−
𝑑𝑇𝑧,𝐽
𝑑𝑥

+
𝑑𝑝𝐽
𝑑𝑥

= 0

 

(13) 

  

F.   Relations of continuity between segments and 

boundary conditions 

Every segment 𝐼𝐽 must satisfy the relations of continuity 

with the adjacent segment 𝐼𝐽+1 as follows 

 

∀𝐽 ∈ ⟦1,𝑀⟧ ∀𝑥 ∈ 𝐼𝐽 ,     

{
 
 

 
 
𝑢3,𝐽(𝑥𝐽) = 𝑢3,𝐽+1(𝑥𝐽)

𝜃2,𝐽(𝑥𝐽) = 𝜃2,𝐽+1(𝑥𝐽)

𝑀𝐽(𝑥𝐽) = 𝑀𝐽+1(𝑥𝐽)

𝑇3,𝐽(𝑥𝐽) = 𝑇3,𝐽+1(𝑥𝐽)

 

 

with 𝜃2,𝐽  and 𝑇3,𝐽  the angular displacement according 𝑦 

and the normal force according 𝑧 respectively. 

At the boundary coordinates along x (𝑥0  and  𝑥𝑀 ), the 

bending wall is mechanically maintained fixed. The 

membrane can be fixed according to different boundary 

conditions, i.e. clamped or supported.  

The vertical displacement 𝑢3 is null at 𝑥0 and  𝑥𝑀  

{
𝑢3,1(𝑥0) = 0

𝑢3,𝑀−1(𝑥𝑀) = 0
 

If the ends of the wall are supported, the bending moments 

are null 

{
𝑀1(𝑥0) = 0

𝑀𝑀−1(𝑥𝑀) = 0
 

While if the ends of the wall are clamped, the angular 

displacements are null 

 

{
𝜃2,1(𝑥0) = 0

𝜃2,𝑀−1(𝑥𝑀) = 0
 

 

The complete set of equations is finally solved numerically 

using Matlab® with a discretization along 𝑥  and by 

respecting the relations of continuity and boundary 

conditions. The results are illustrated for a custom voltage 

supply of the 15 segments, presented in Fig. 6. The Fig. 6.a 

shows the multiple layers composing the membrane.  

 
Fig. 6 Vertical displacement of the wall for a specific voltage 

distribution 

 

The voltage distribution is illustrated by the resulting 

piezoelectric moment in Figure 7.b. Then, the vertical force 

distribution 𝑇𝑧(𝑥)  and finally the corresponding vertical 

displacement are given.  

 

This theoretical displacement of the membrane is obtained for 

a static voltage supply. The dynamic bending is obtained by 

successive static steps if the frequency is sufficiently low. 

The next step consists of appropriately supplying the wall to 

generate a travelling wave-like displacement in x direction. 

This oriented wave movement is expected to promote the 

transfer momentum to the fluid. 

IV.   GENERATION OF THE TRAVELLING WAVE  

A.   Definition of the set of voltage supply signals 

As mentioned in introduction, the objective is now to 

derive the optimal voltage supply law to maximize the mass 

flow rate. From preliminary studies, a deformation of the 

membrane as a travelling wave is expected to be the optimal 

waveform to enhance the transfer momentum to the fluid. 

However, several technical requirements prevent the 

generation of an ideal travelling wave: (i) the edges of the 

membrane must be clamped, (ii) the wavelength must be 

roughly a centimeter long in a finite flat domain and (iii) due 

to different tensile strengths in compression and tension the 

MFC transducers require a non-symmetrical voltage supply. 

Consequently, to promote a preferred direction of 

propagation of the pseudo-travelling wave, an appropriate 

sequence of voltage supply must be defined so that the 

deformation of the membrane will fit as much as possible to 

a natural travelling wave. For this purpose, an optimization 

procedure is used from Matlab® pattern search function. 

This results in a set of nontrivial voltage waveforms giving a 

good control of the wave shape at every time step. 

a 

b 

c 

d 



 

 

B.   Experimental validation of the membrane 

displacement model 

The model of the mechanical displacement of the 

membrane is experimentally validated, using a test bench 

specifically developed to: 

1) Supply the piezoelectric segments with various and 

custom voltage waveforms, 

2)  Map the resulting deformation of the membrane, 

3) Monitor the entire test bench from a computer. 

 

In order to measure the vertical displacement of multiple 

points on the deformed surface, a class 2 laser sensor LK-

H052 (spot diameter of 50 𝜇𝑚 , Resolution 0.025 𝜇𝑚 ) is 

mounted on an XY-table. The 15 piezoelectric segments are 

driven with a four channels linear amplifier with a range of 

−500 𝑉  up to +1500 𝑉 . The limited number of voltage 

channels implies to wisely group subsets of piezo segments. 

The input voltage of the linear amplifier, the drive of the 

XY-table positioning, and the data acquisition are fully 

managed from a computer with Matlab®Simulink 

programme associated with a OPAL-RT OP4510 real-time 

simulator equipped with multiple analog and digital 

Inputs/Outputs (I/O). 

The test bench is briefly described by the scheme on Fig. 7. 

 

A slight discrepancy observed along the width is induced 

by the necessary wires and welding of piezo segments. 

Nevertheless, a good accuracy is observed between the 

experimental average displacement along x in Fig. 8.b 

compared to the model in Fig. 8.a. 

 

 
Fig. 7 Scheme of the complete test bench 

 

 

 

 
Fig. 8 Membrane wave shapes at successive step time during a full 

electrical period (a) theoretical (b) experimental 

C.   Evaluation of mass flow capability 

After validating the membrane model and the 

experimental test bench, the mass flow rate is estimated 

without considering the fluid-structure interaction (no effect 

of the fluid on the mechanical). This flow rate is estimated 

considering an ideal water (no viscosity) which can be an 

acceptable assumption at low operating frequency. Thus, an 

iterative algorithm [8] is used to evaluate the mass flow 

depending on the periodic membrane deformation. It consists 

of respecting the volume conservation at every step of the 

wave change and evaluating the mass flow (through the 

outlet) and reverse mass flow (through the inlet). The Fig. 9 

illustrates the theoretical pump. 

 

 
Fig. 9 Description of the peristaltic pump 

 

The deformable membrane is clamped on its edges by 

respecting a distance with the bottom of the channel. Because 

the fluid is considered as ideal, the mass flow is theoretically 

proportional to the frequency of the periodic deformation. 

Preliminary investigation consists in estimating the mass 

flow of water at 1Hz in function of the height of the channel. 

The selected deformation sequence is the one given in 

Fig. 8.a. This parametric study gives the results in Fig. 10. 

It is calculated from 100 m of the height channel which 

corresponds to the wave shape amplitude under the neutral 

position. 

 

 
Fig. 10 Mass flow at 1Hz in function of the height of channel 

 

The algorithm is not able to take into account the contact 

a 

b 



 

 

of the membrane with the channel bottom and it will be 

extended in future. The results show a nonlinear and 

decreasing relation of the mass flow with the height of the 

channel. This trend is explained by the fact that the larger the 

height, the less the capability to promote the fluid movement 

in a direction. The maximal mass flow is less than 1g/s for 

1 Hz. Even if the real fluid behavior implies losses with the 

increasing of the frequency, it is reasonable to consider that 

the mass flow can be significantly increased with this latter. 

V.   CONCLUSION 

This paper presents the preliminary model and 

development of a peristaltic pump relying on a deformable 

membrane actuated by MFC piezoelectric actuators. Its main 

interest consists in its very compact design. A pseudo-

analytical model of the coupled electromechanical behavior 

of the electroactive membrane is first derived in order to 

design the optimal voltage supply law. Indeed, the 

piezoelectric actuators must be driven with a specific voltage 

law to generate a deformation of the membrane similar to a 

travelling wave with a significant amplitude, high enough to 

realize a flat peristaltic pump and maximize the mass flow 

rate. Then, the experimental measurements of the 

electroactive membrane in deformation have demonstrated a 

satisfactory accuracy with the theoretical predictions in free 

displacement, up to 300 μm of maximal flexion amplitude at 

1Hz. Moreover, preliminary pumping capabilities are 

promising. Nevertheless, the theoretical results need to be 

consolidated by simulations taking into account the dynamic 

properties of the moving fluid and its interaction with the 

deformable structure. Beyond the pumping application, it 

obviously appears possible to use this deformable membrane 

as a morphing surface, inchworm actuator, powder transport 

or many other applications. 
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