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New method for determining the low-frequency Stability Limit of a 50 Hz electric traction power system

I. INTRODUCTION

In the early 2000s, many cases of voltage instability were observed in AC rail networks as a result of the massive introduction of traction vehicles equipped with four-quadrant rectifiers (4-Q). The phenomena occurred on both the electrified railway lines in 15 kV / 16.7 Hz and 25 kV / 50 Hz. In order to determine the origins of the phenomenon, several theoretical studies were carried out [START_REF] Danielsen | Electric Traction Power System Stability: Low Frequency interaction between advanced rail vehicles and a rotary frequency converter[END_REF], [START_REF] Suarez | Etude et modélisation des interactions électriques entre les engins et les installations fixes de traction électrique 25 kV/50 Hz[END_REF], [START_REF] Guillaume | Low frequency instability of electrical railways networks[END_REF].

Low frequency instability appears as an amplitude modulation of the catenary voltage and current at very low frequency (a few Hertz). Fig. 1. shows the waveforms of the first case of low frequency instability that appeared in northeastern France near the city of Thionville in 2008 [START_REF] Frugier | Voltage Disturbances on 25kV-50 Hz Railway Lines. Modelling Method and Analysis[END_REF]. In practice, these low-frequency oscillations can lead to train power supply shut down when current or voltage ripple reaches detection threshold.

The power system (composed of the power supply network and the traction chain) can be represented as a closed loop system as shown in Fig. 2. U0 and Z are the no load voltage and the impedance of the power supply network, respectively. Up and Y are the pantograph voltage and the admittance of the traction unit, respectively.

The traction chain controls consider a d-q frame referenced to the pantograph voltage in order to independently control the active and reactive components of the input current, noted respectively Id and Iq. The traction unit and the power supply have to be considered as a MIMO (Multiple-Input and Multiple-Output) system because each excitation in one axis (d or q) will give a system response in both axes (d and q).
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in the d-q frame, with R and L the resistance and inductance of the network and n  the nominal angular frequency of the network.  is the perturbation angular frequency (
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: admittance matrix of the simulated traction chain in the Alstom HIL (Hardware In the Loop) simulator (SITRA TM ) or in the PC simulation.

The traction chain simulated in SITRA is controlled by the traction control device used on the train (AGATE: Advanced Generic ALSTOM Transport Electronics). The simulated traction chain in the PC (Matlab) uses the same commands as those used on SITRA but these are implemented directly on the PC simulation.

According, to the method described in [START_REF] Suarez | Measurement of Locomotive Input Admittance to Analyze Low Frequency Instability on AC Rail Networks[END_REF], DQ Y components are obtained by injecting a low frequency f perturbation signal successively superimposed with the AC catenary voltage in the d-axis and the q-axis. The current components related to the perturbation frequency are extracted in both axes.

According to the study developed in [START_REF] Hachicha | Use of a HIL railway traction simulator for low frequency network stability studies[END_REF], the stability limit of a traction chain with a given installed power can be determined based on Bode diagram of the system's open-loop transfer function
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For a value of R chosen arbitrarily, three values of L were tested to obtain three stability cases (stable, stability limit and unstable). The coherence between frequency analysis and temporal analysis was also performed.

In this article, the stability study of a given traction chain (simulated in PC simulation) has been conducted for each value of (R, L) and only the values of this couple that verify the stability limit conditions are plotted to define the stability limit curve. This limit is therefore defined over a complete and significant range of R and L values. This stability study is based on a proven mathematical approach which allows defining a straightforward stability criterion which can be also represented through a graphical method that is easy to manage.

II. DETERMINATION OF THE POWER SYSTEM STABILITY LIMIT

The open-loop transfer function of the traction circuit is:  ). To study the stability of the traction system, it is sufficient to study the stability of each of these two SISO systems using the Revers criterion applied in the Bode plot: the system is at its stability limit if at the frequency
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, the module in dB of the open-loop transfer function is equal to 0 dB [START_REF] Guillaume | Low frequency instability of electrical railways networks[END_REF].

The stability limit calculation method is based on an iterative calculation process. The frequency discretization of the elements of the admittance matrix doesn't allow an exact extraction of corresponding values of R, L and fc.

For each frequency step (to which corresponds a calculated value of Y elements) from 1 Hz to 40 Hz, calculation of 1

 and 2

 is repeated for all the resistance values between 1 Ω and 200 Ω with 1Ω steps and for each value of resistance, the calculation is repeated for all values of inductance between 0,01 H to 2 H with 0,01 H steps. The stability criterion is tested for each value of 1 The train considered in this study is based on the traction chain presented in Fig. 3 and powered from a 25 kV / 50 Hz network. This traction chain was simulated in a PC simulation.
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The input stage is composed of a step-down transformer with two secondary windings and two 4-Q rectifiers. On the DC bus, a current source represents the current absorbed by the traction inverter and auxiliaries. The installed power of this traction chain, which corresponds to the power for which the electrical components are dimensioned, is 2.3 MW. Knowing the admittance matrix of this traction chain when the power consumed on the DC bus (Pdc) is 100kW and when the pantograph voltage is 25 kV, the stability limit of this system was determined and plotted in the network impedance plane   X R, with X = L.n (Fig. 4). As explained previously, the ripple of the stability limit curve is due to the gain and phase tolerances and the frequency step used to determine the admittance of the traction chain.

Stable Unstable

As shown in Fig. 4, the system is stable if the values of the network impedance parameters are below the stability limit curve, plotted in blue. The system is unstable for all coordinate points   X R, located above the blue curve. For all the points located on the curve, the system is at its stability limit.

The evolution of the oscillation frequency of the system when it is at its stability limit as a function of the network impedance is shown in Fig. 5. The order of magnitude of the oscillation frequency is coherent with the values observed in practice [START_REF] Danielsen | Electric Traction Power System Stability: Low Frequency interaction between advanced rail vehicles and a rotary frequency converter[END_REF].

To validate the stability study described above, three network impedance values were tested. These values were chosen to evaluate three different cases: one stable case where the chosen   X R, value is below the stability limit curve, one point on the stability limit curve and one unstable operating point with a   X R, value chosen above the stability limit curve. Then for each case, a time domain simulation was performed.

The admittance of this traction chain has been determined considering the pantograph is connected to an ideal voltage source of 25 kV. For time domain simulations, voltage source amplitude U0 has been adapted to always have a pantograph voltage equal to 25 kV for all impedance values. The equation used to calculate the amplitude of the catenary voltage is:
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 Stable system -R = 90  ; X = 254.47  (L = 0.81 H):

Frequency analysis based on admittance matrix measurement:

Figure 6 shows the Bode diagram of the system's eigenvalues. In the Bode diagram, the phase of eigenvalue 1 is always greater than -180°. On the other hand, when the phase of eigenvalue 2 is equal to -180°, its gain is negative. As a conclusion, this traction system is stable.

Time domain simulation:

The waveforms of the DC link voltage of the traction chain as well as the voltage and the current at the pantograph are presented in Fig. 7. Frequency analysis based on admittance matrix measurement:

Fig. 8 shows the Bode diagram of the system's eigenvalues. At the stability limit, the gain of a system eigenvalue is zero when its phase is equal to -180° and the phase of the second eigenvalue is always greater than -180°. The oscillation frequency is 4.5 Hz. 

Time domain simulation:

The waveforms of the DC link voltage of the traction chain as well as the voltage and the current at the pantograph are presented in Fig. 9. This power system is unstable since the gain in dB of one of its eigenvalues is positive when its phase is equal to -180°.

Time domain simulation:

The waveforms of the DC link voltage of the traction chain as well as the voltage and the current at the pantograph are presented in Fig. 11. For this grid impedance value, all curves diverge. All the results obtained by frequency analysis are validated by time-domain simulations.

III. EVOLUTION OF THE STABILITY LIMIT AS A FUNCTION OF THE POWER CONSUMED ON THE DC BUS AND THE PANTOGRAPH VOLTAGE

This section considers the influence of the power consumed on the DC bus and pantograph voltage on the stability limit.

Evolution of the stability limit as a function of the power consumption on the DC bus

The stability limit of the system has been determined for different values of the power consumed by the traction chain. This traction chain is powered from a 25 kV / 50 Hz network. The chosen operating points are summarized in Table . 1. The corresponding stability limits are plotted in Fig. 12. 
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The discriminant of this second-order equation is
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, this corresponds to the maximum transferable power in AC. The roots of equation ( 6) are:
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and according to (8) A is always negative
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For a given power P, U1 increases and U2 decreases when R decreases. The expression of U1 is used to calculate the pantograph voltage because this voltage must increase when R decreases: When the power consumption is 1200 kW and R is greater than 33.5 Ω (Fig. 14), the pantograph voltage is less than 22.5 kV. Therefore, the power absorbed by the traction chain will be reduced according to EN50388 current limitation diagram and as a consequence the stability limit curve for a lower power has to be used to study the stability of the system. Only the traction chain consuming 100 kW of power on the DC bus and powered by a 25 kV /50 Hz network will be studied in the following section.
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Evolution of the stability limit as a function of the pantograph voltage for low power consumption on the DC bus

Figure 15 presents the evolution of the stability limit as a function of the pantograph voltage {19 kV, 25 kV and 27.5 kV} when Pdc is equal to 100 kW. It can be noted that the stability limit curve moves upwards as the supply voltage increases.

IV. STABILITY CURVE USAGE 1. STUDY WITH ONE TRACTION CHAIN

This stability limit curve in (R, X) plane is then compared to power network impedance Z whose parameters depend on the distance between the train and the substation. Impedance Z is the sum of the upstream grid (UG) impedance (calculated on the low voltage side), the substation (SST) impedance and the catenary (CAT) impedance which is shown by the train at a given position.
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As covered in section II, where it is determined if the power system is stable or unstable. Thus, in Fig. 16, the blue curve shows the coordinate points   X R, corresponding to the stability limit considering a traction chain power consumption of 100 kW and a pantograph voltage at 25 kV. On the same figure, the red curve represents an example of linear variation of the network impedance versus the distance between the train and the substation considering the following parameters:
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The parameters considered here correspond to a three-phase grid with a short-circuit power of 1395 MVA, a substation transformer with a nominal power of 11 MVA and a double-track line.

Table. 2. Values of network impedance parameters

Thus, the stability limit of the power system corresponds to the intersection of the two curves. The corresponding network impedance parameters are The catenary parameters correspond to a train distance of about 586 km from the substation. This theoretical value is not realistic since in 25 kV lines the maximum sector length is much closer than 100 km. So, it means that a single traction chain (with the regulation parameters corresponding to a given train) is not able to generate instability. If we now consider several synchronized traction chains, we can easily understand that the blue curve will be translated downwards.
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STUDY WITH N TRACTION CHAINS

Equivalence between the number of traction chains and the value of the network impedance

If n identical traction chains are fed through the same network impedance ( Z ) and drawn the same current I then the resulting voltage drop in the network impedance is equal to

Z I n  
. As a result, the system composed of n identical traction chains is equivalent to a system with a single traction chain fed through the impedance Z n [START_REF] Suarez | Etude et modélisation des interactions électriques entre les engins et les installations fixes de traction électrique 25 kV/50 Hz[END_REF], [START_REF] Hachicha | Use of a HIL railway traction simulator for low frequency network stability studies[END_REF]. The blue curve in figure 18 represents the stability limit of a traction chain while the black curve represents the stability limit of a system with four traction chains; this limit is calculated by dividing the impedance values of the stability limit of one traction chain by four. This is verified by simulation multiplying the current drawn by a traction chain by four. ) gives the value of the network impedance corresponding to stability limit of a power system with four traction chains. The corresponding network impedance is equivalent to a train distance of about 136 km from the substation. As a result, it is clear that as the number of traction chains increases, the distance corresponding to the stability limit of the power system decreases. XT0 is a distinctive characteristic of a given traction chain which corresponds to the intersection of the stability limit curve and vertical axis.
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DEPOT MODE

If we consider that the network impedance in depot mode is close to the sum of the substation impedance ( SST R , SST X ) and the upstream grid impedance ( UG R , UG X ) then the maximum number of traction chains corresponding to the stability limit is, in a first approximation, equal to
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Let's take the example of the traction chain defined before and the impedance values of Table 2:
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Then in this case, the stability limit corresponds to 31 traction chains, of 2.3 MW installed power (72 MW), at standstill in the depot mode.

V. CONCLUSION

In paper [START_REF] Hachicha | Use of a HIL railway traction simulator for low frequency network stability studies[END_REF] we have presented a method to assess the low frequency stability of a railway power system based on the traction unit admittance obtained through a HIL simulator. In this paper, we have detailed how to generalize this method to calculate the limit of stability of the 25 kV / 50 Hz power system as a function of the network impedance (R, X).

This method provides a straight forward determination of the power system stability for a given traction unit and a corresponding installed power.

This characterization can then be used to evaluate the conditions leading to instability (number of trains, line impedance) and used as an acceptance criterion to ensure the compatibility between rolling stock and fixed installation.

The acceptance criterion could be a minimum value for the distinctive characteristics XT0 below which the power system is stable. That value XT0 covers also the following cases:

-Depot mode defining the maximum number of traction chains at standstill considering a given substation impedance.

-Normal operating mode defining the maximum number of traction chains to ensure the stability of the system for a maximum distance from the substation.

The next step in this work will be to extend the analysis for 15 kV / 16.7 Hz networks. 
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 1 Fig. 1. 25 kV AC power supply -Modulation of catenary voltage and current measured at the substation in Thionville -France.
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 2 Fig. 2. Closed-loop power system.
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  appendix 1 illustrates a practical example showing the criteria for R= 90 Ω; L = 0.89 H and fc = 4.5Hz.
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 3 Fig. 3. Traction chain with two 4-Q rectifiers and a common DC bus.
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 4 Fig. 4. Stability limit versus line reactance (X) and resistance (R) @ Pdc = 100 kW.
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 5 Fig. 5. Evolution of the oscillation frequency of the system as a function of the network impedance parameters (R and X).
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 6 Fig. 6. Bode diagram of the system's eigenvalues (Case 1).
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 7 Fig. 7. Time-domain simulation waveforms: pantograph voltage Up, pantograph current Icat, DC bus voltage Ubus (Case 1).

Fig. 8 .

 8 Fig. 8. Bode diagram of the system's eigenvalues (Case 2).
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 9 Fig. 9. Time-domain simulation waveforms: pantograph voltage Up, pantograph current Icat, DC bus voltage Ubus (Case 2).All the waveforms show a low frequency amplitude modulation at a frequency equal to 4.5 Hz,
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 10 Fig. 10. Bode diagram of the system's eigenvalues (Case 3).
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 11 Fig. 11. Time-domain simulation waveforms: pantograph voltage Up, pantograph current Icat, DC bus voltage Ubus (Case 3).
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 12 Fig. 12. Stability limit versus network reactance (X) and resistance (R) and plotted for different power level   kV U p 25  .
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 13 Fig. 13. Pantograph voltage versus network reactance (X) and resistance (R) and plotted for different power level.
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 14 Fig. 14. Pantograph voltage versus network reactance (X) and resistance (R) (Pdc = 1200 kW)
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 15 Fig. 15. Stability limit versus line reactance (X) and resistance (R) and plotted for different pantograph voltages @ Pdc = 100 kW.

Fig. 16 .

 16 Fig.16. Value of the network impedance which allows the traction system to be at its stability limit.
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 17 Fig. 17. Equivalence between the value of the network impedance and the number of traction chains.
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 18 Fig.18. Graphical representation of the stability limit of a power system with four traction chains.

Table . 1

 . . Power consumed by the traction chain

	Test	1	2	3	4	5	6	7
	Consumed power Pdc (kW)	100 200 300 500 700 1000 1200

  R

	(	2	)	9 . 88	/	/	1 . 587
	CAT		UG	SST	CAT	CAT	
		(	2	)	2 . 273	/	/	2 . 586
	CAT		UG	SST	CAT	CAT	

  R

	CAT	(	2	UG	SST	)		6 . 20	CAT	/	CAT	/	136
	CAT		(	2	UG	SST	)	5 . 63	CAT	/	CAT	/	2 . 136