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2Octogone-Lordat, Université de Toulouse, UT2J, Toulouse, France

robin.vaysse@irit.fr, jerome.farinas@irit.fr, corine.astesano@univ-tlse2.fr,
regine.andre-obrecht}@irit.fr

Abstract
The temporal dimension of speech acoustics is rarely taken into
account in automatic models for Speech Intelligibility evalua-
tion, although the rhythmic recurrence of phonemes, syllables
and prosodic groups are allegedly good predictors of speech in-
telligibility. The present study aims at unravelling those auto-
matic parameters that best account for the different levels of the
speech signal’s rhythmic structure, and to evaluate their corre-
lation with a perceptual intelligibility measure. The parameters
are extracted from the Fourier Transform of the amplitude mod-
ulation of the signal (Envelope Modulation Spectrum) [1, 2].
A Lasso linear model for feature selection is first implemented
to select the most relevant parameters, and a SVR regression
analysis is run to reveal the best parameters’ combination. Our
analyses of EMS, using data from the French corpora of cancer
speech C2SI [3], show strong performances of the automatic
prediction, with a correlation of 0.70 between our model and an
intelligibility evaluation score by speech-pathologists. In par-
ticular, the highest correlation with speech intelligibility lies in
the ratio between the energy in the low frequency band (0.5-
4 Hz that represents slow rhythmic modulations indicative of
prosodic groups) and in the higher one (4-10 Hz that represents
fast rhythmic modulations like phonemes).
Index Terms: Automatic Speech Processing, speech rhythm
modeling, perceptual speech intelligibility, pathological speech

1. Introduction
Radiation and/or surgical procedures following Head and Neck
Cancers (H&NC) can have an impact on speech production.
They generally result in an alteration of speaker’s intelligibility,
which affects the patient’s quality of life on a daily basis. Scor-
ing and monitoring the evolution of speech intelligibility is an
important step in building a therapeutic protocol and ensuring
an effective follow-up of speech remediation protocols adapted
to patients’ lesions. It is thus of importance to find operational
measures of speech intelligibility.

Defining speech intelligibility has always been a challenge
[4], since it alternatively refers to the performance of telecom-
munication systems, sound systems or human speech. In this
paper, we refer to intelligibility as ”listeners’ ability to rec-
ognize words and/or speech sounds produced by the speaker”
[3]. Our goal is to uncover the link between some phonetic-
acoustic and perceptual features of speech intelligibility, and
to propose automatic metrics both replicable and less prone to
variability. Indeed, listeners’ judgment exhibits large inter- and
intra-listeners’ variability [5].

In response to the quest for objectivity, automatic speech
processing has proposed various lines of research. Automatic

speech recognition systems (ASR) and speaker identification
systems (SIS) address speech intelligibility at an acoustic-
phonetic level. Intelligibility scores can be correlated to word-
error rates of an ASR system [6, 7] or calculated through rep-
resentative features for speakers’ characteristics ”i-vectors” or
”x-vectors” in SIS [8, 9].

These methods however do not take into account higher-
level speech cues to speech intelligibility (such as syllables,
prosodic prominence, rhythmic groups coherence), nor the tem-
poral dimension of speech. But these rhythmic features play
an important role in speech fluency. H&NC patients may in-
deed have difficulties reaching some articulatory targets, hence
resulting in non-fluent speech (eg. slower speech rate, diffi-
cult/slower phoneme and syllable coarticulation). In turn, non-
fluent speech leads to disruption of prosodic grouping and sen-
tence structuring, which impairs speech intelligibility.

Because periodicity allows for speech structuring and per-
ceptual prediction [10], rhythm is a major characteristic of
speech. Speech rhythm can be defined as the recurrence of
strong elements, typically prominent syllables, and their tem-
poral organisation against unstressed syllables [11]. Prominent
syllables are perceived as ’beats’ delimiting speech units (typi-
cally rhythmic groups), while syllables are perceived as ‘semi-
beats’ [12]. Rhythmic groups are also hierarchically organized,
revealing the depth of prosodic structuring according to bound-
ary strength. In French, two prosodic levels have been pro-
posed: the Accentual Phrase (AP) and the Intonational Phrase
(IP) [13]. Note that IPs may also correspond to breath groups.

Another line of work in automatic speech processing con-
sists in tracking temporal and rhythmic features of speech,
through the analysis of intervocalic or interconsonantic dura-
tion variations [14, 15, 16, 17]. These methods however require
precise manual or automatic annotations of speech segments in
order to extract reliable duration measurements. In the context
of pathological speech, these may not become available in case
of strongly degraded speech.

An alternative to this problem lies in another type of meth-
ods relying on the automatic extraction of the signal envelope
modulations, or Envelope Modulation Spectrum (EMS), first
proposed by [1] and since then used in several studies on speech
rhythm [18, 2, 19, 20]). EMS provides spectral analysis of
the low-rate amplitude modulations This line of studies is of
paramount interest to encompass the whole picture of speech
intelligibility. Taking into account the temporal structuring of
speech enables to explain the different levels of speech cues that
partake in intelligibility, be it at the lowest levels of phonemes
or articulatory traits, syllables or the higher levels of prosodic



grouping. On a temporal plane, phonetic segments have a pe-
riodicity between 6 and 10 Hz, syllables of roughly 4 to 6 Hz,
APs of 2 to 4 Hz and IPs 1 to 2 Hz [21].

The present study wishes to investigate these rhythmic EMS
bands with automatic methods in order to account for speech
intelligibility in H&NC patients. More specifically, we wish
to uncover the potential predictability of the different rhythmic
features in the automatic modelling of intelligibility.

2. Extraction of statistical rhythm features
The proposed method used to extract rhythmic parameters of
speech signals rely on a few successive steps. The amplitude
envelope of the signal is obtained by applying adequate suc-
cessive Butterworth filters. Empirical step-wise investigation
showed that 5 second window frames with a time-lag of 0.5 s
are the best configuration for this type of dysfluent speech to
extract the relevant envelope signal. A Fourier Transform is ap-
plied to the envelope and we extract, from each frame, parame-
ters like the amplitude and frequency of the highest peak or the
relative energy on different frequency bands. Follows the com-
putation of basic statistics to characterize their average and their
temporal stability across the different 5 second frames. We se-
lect the most pertinent statistics through a Lasso regression and
use the selected ones with a Support Vector Machine regressor
to define an intelligibility score.

2.1. Envelop Modulation Spectrum processing

In order to extract the envelope of the raw signal, [22] proposed
a method, adopted in several studies [1, 2]. Two successive But-
terworth filters were applied: the first one is a bandpass filter
between 700 and 1300 Hz in order to reduce the impact of fun-
damental frequency and fricative noise [22]; and the second one
is a low pass filter with a cutoff at 10 Hz on the magnitudes to
constraint the study at the frequency band related to the rhythm.
We noticed that the resulting envelope was not correctly corre-
lated to the intensity of the signal. As shown in Figure 1, the
envelope of the open vowels like [a] is emphasized compared to
the other vowels. An explanation is that the first two formants
of [a] are included in this frequency band while only the second
(or neither) formant is included for the others. We propose to
use a frequency band of 300 - 1000 Hz in order to focus on the
first formant of the french vowels. Fig. 1 presents a comparison
of the two resulting envelopes.

Figure 1: Comparison between the two filtering methods for
amplitude envelope extraction. The upper one uses a band-pass
filter of 700-1300 Hz followed by a low-pass filter with cut-off
frequency at 10 Hz on the magnitudes of the filtered signal. The
second one uses a band-pass filter of 300-1000 Hz and the same
low-pass filter

The following processing is inspired by the study [2]. First
a Discrete Fourier Transform (DFT) is applied to each frame
of 5s of the envelope, using a Tukey windowing [23], with a
time delay of 0.5s between each frame, in order to analyse the
periodic information of syllables, words and phrases, and their
temporal stability. we choose to limit our analysis to frequen-
cies above 0.5 Hz to avoid periodicity linked to large groups
like sentences or larger discourse units. In line with [2], a set of
eight parameters are extracted from each EMS frame in order to
cover some relevant parts of rhythm relevant rhythmic cues:

• The magnitudes and frequencies of the two most promi-
nent peaks above 0.5 Hz in the EMS, corresponding to
the dominant rhythms of the envelope.

• The normalized energy in the 0.5-4 Hz frequency band
corresponding to slow variations of the envelope like IPs
and APs.

• The normalized energy in the 4-10 Hz frequency band
corresponding to faster variations like syllables and
phonemes.

• The normalized energy in the 3-6 Hz frequency band,
which, according to [24] is a frequency band related to
intelligibility.

• The ratio between 0.5-4 and 4-10 Hz which shows which
strategy the speaker favors between a good isochrony
of syllables and phonemes, and a segmentation of his
speech into larger prosodic units.

An example of EMS is illustrated in Figure 2 : three main
peaks are emphasized. The first one corresponds to a frequency
of 1.97 Hz (patterns of about 500 ms duration) which represents
the periodicity of rhythmic groups (APs). The second highest
peak at 4.4 Hz (227 ms) shows the duration of syllables, and
the last one at 5.8 Hz (172 ms) corresponds to the periodicity of
sustained phonemes. The higher the peak of a given frequency
F (in Hz), the more patterns of duration 1

F
(in seconds) are

repeated.

Figure 2: Example of the Envelope Modulation Spectrum cor-
responding to the signal in Figure 1

To characterize these 8 parameters across the 5 seconds
sliding windows, we compute their average, standard deviation,
skewness and kurtosis, resulting in 32 features to represent the
studied speech signal.

2.2. Selection of pertinent features and intelligibity score
proposition

As said in the introduction, our purpose is to propose a score,
function of these features, which correctly predicts the percep-
tual intelligibility measure. We worked in two stages to achieve
this result. The first step consisted in working on features’ se-
lection using the Lasso method [25]. This allowed us to reduce



the number of features and yield better qualitative interpretation
on relevant rhythmic features.

In a second step, with these selected set of features, we pro-
duced a regression score using a Support Vector machine Re-
gressor (SVR) [26, 27]. This method performs well with small
datasets and has already been successfully tested on this kind
of task [9]. It consists in finding a linear combination of the
features, which values differ by at most a predefined ε deviation
from target reference values, for all the training data. When
this is not feasible, trade-off and slack variables are introduced
to solve the optimization problem [28]. In our case, the target
reference values are the perceptual intelligibility scores, and the
function gives its prediction on the basis of the extracted fea-
tures.

3. Experimental protocol and evaluation
3.1. Corpus description

The current study is based on the French H&NC speech cor-
pus C2SI [3]. This corpus includes patients suffering from oral
cavity or oropharyngeal cancer and healthy speakers, perform-
ing different tasks. We used the reading task, where speakers
read the first paragraph of the french text la chèvre de Monsieur
Seguin, a tale by Alphonse Daudet. Our test corpus is thus se-
mantically homogeneous throughout speakers. A total of 105
speakers (24 controls, 81 patients) were used in this study.
A set of 6 different health professionals were asked to assess the
intelligibility of each speaker from 0 (unintelligible) to 10 (high
intelligibility). The final score for one speaker is computed as
the mean of the 6 scores given by the experts.

3.2. Experimental protocol

First of all, features are normalized by subtracting their mean
and dividing by their standard deviation across all speakers. For
the feature selection process described in Section 2.2, Lasso re-
gression uses an α variable which determines the level of reg-
ularization on the features’ coefficients: the higher α, the more
features will be remove. Several tests with α values belong-
ing to the interval [0.01, 1] are performed to choose the one that
yields the best performance of our global system. Regarding the
prediction of the intelligibility score, the SVR is implemented
using the scikit-learn python toolkit [29]. In order to give the
more reliable results on our speech corpora which is relatively
small (105 recordings) in the context of machine learning, we
use a Leave One Out methodology. The Leave One Out consists
of using all the recordings with their perceptual intelligibility
scores minus one, in order to train the SVR model and then test
the model on the excluded recording. We then repeat this pro-
cedure with each recording in order to test the performances of
our model on all speakers. The procedure was done using a lin-
ear kernel on the SVR; the regularisation parameter C was set
to 4 and the ε deviation tolerance was set to 0.01 (see [28] for
detailed information on these parameters).

To evaluate the relevance of the obtained predicted intelli-
gibility values, two metrics are used, Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (1)

MAE =
1

N

N∑
i=1

|yi − ŷi| (2)

Where N is the number of speakers, yi the perceptual intelligi-
bility measurement of the i-th speaker and ŷi his/her predicted
intelligibility.

To assess the relevance of the feature selection, a sequence
of 10 experiments were performed with the SVR approach, one
for α values between 0.01 and 1. Another experiment was run
on the global set of 32 features.

3.3. Relevance of the selected features

To unravel the contribution of each parameters selected by the
Lasso method, we can look at the generated coefficients. Due
to the introduction of the parameter normalisation, the higher a
coefficient of a parameter, the more it contributes to predict the
target value (intelligibility).

The best results in terms of RMSE and MAE for the global
system is obtained for α = 0.1; this reduced the number of pa-
rameters from 32 to 5. The selected parameters with their Lasso
coefficient and Pearson correlation with perceptual intelligibil-
ity are listed in Table 1.

Table 1: List of selected features with their associated coeffi-
cient generated by the Lasso regression and the Pearson corre-
lation of the feature with the perceptual intelligibility

Feature Linear regression
coefficient

Pearson
Correlation

Mean of ratio 0.5-4
Hz energy over 4-10
Hz energy

-0.52 -0.65

Skewness of
frequency from most
prominent EMS peak

0.10 0.3

Mean frequency of
2nd most prominent
EMS peak

0.06 0.52

Mean of 0.5-4 Hz
energy

0.02 -0.08

Kurtosis of 3-6 Hz
energy

0.01 -0.31

It appears that the most important parameter is the mean
ratio between low frequency (0.5-4 Hz) and higher frequency
(4-10 Hz) energy. This parameter is the one with the best
correlation with perceptual intelligibility (Pearson correlation
= -0.65). This high negative correlation means that the higher
the ratio, the more degraded perceptual intelligibility is. Other
important features like standard deviation of the ratio and the
mean energy in the 4-10 Hz band are removed by Lasso regres-
sion because of their high correlation with the mean of the ratio.

The second best parameter is the skewness of the most
prominent EMS frequency peak. We have verified that for all
speakers, this skewness is positive so the distribution shape
remains quite similar with a majority of low frequencies and
a minority of higher ones, synonymous to median and mode
values lower than the average. The ampler the skewness, the
more important the mode-average delay is.
The third selected parameter is the mean frequency of the sec-
ond most prominent peak in the EMS. As this parameter shows
a strong positive correlation with perceptual intelligibility, this



Figure 3: Automatically predicted intelligibility computed per
speaker according to perceptual evaluation.

means that speakers with good intelligibility have a relative
high frequency for the second most prominent frequency. A
major issue with this feature is that it can be influenced by the
speech rate. We will focus on this particular problem in future
works (see 4).

3.4. Validation of the predicted intelligibility score

Table 2: Root Mean Square Error (RMSE) and Mean Abso-
lute Error (MAE) from the predicted intelligibility using Support
Vector Machine regression with and without feature selection

RMSE MAE

SVR with all features 0.91 0.56
SVR with selected features 0.83 0.51

As said in 3.2, many experiments are performed to find the
good association between the selected parameters and the SVR.
Only the results of two configurations are reported in Table 2,
the worst one with all the 32 parameters and the best one with
the 5 selected features : it turns out that this selection marginally
improves the quality of our prediction, with RMSE went from
0.91 to 0.83.

To confirm the adequacy between perceptual and predicted
intelligibility measures, Figure 3 depicts our predicted intelli-
gibility score estimated by the SVR compared to the reference
perceptual evaluation from speech-therapists. We observe that
the automatic approach gives a good approximation of intelli-
gibility by only using 5 features extracted from the EMS spec-
trum. Indeed, we have a strong Pearson correlation of 0.706
between our predictions and the reference values.

However, we can notice that for the two speakers with the
least intelligibility, our predictions result in an incorrect estima-
tion. Indeed, both of them have a perceptual intelligibility of
3.5 while our estimations are approximately of 9. The reason
behind the misplacement of these speakers is that they have a

low value for the mean of the energy ratio compared to other
speakers with low intelligibility. Usually, speakers with good
intelligibility have a low ratio because their energy between 0.5
to 4 Hz and between 4 to 10 Hz are both high, indicative of
regular periodicity at low rhythmic levels (phonemes, syllables)
and high rhythmic levels (APs, IPs). On the contrary, for unin-
telligible speakers, the low frequency energy is strong while the
higher is weak. For those two speakers, 4-10 Hz energy is low,
but 0.5 to 4 Hz energy is also low, so it results in a small ra-
tio. After listening to their recordings, they show poor syllable
and phoneme articulation and they also produce irregular IP and
AP duration. Further work needs to be done on this issue using
corpora containing more numerous speakers with poor intelli-
gibility in order to compensate for the imbalanced intelligibility
distribution.

4. Conclusion and future work

This study aimed at investigating the feasibility of auto-
matic prediction on speech intelligibility scores on pathological
speech. We aimed at showing that rhythmic features above the
phonetic segment are important predictors of perceived speech
intelligibility, especially on the acoustically degraded speech of
H&NC patients. Our results confirm that EMS is a particu-
larly relevant analysis, as it allows for investigating all levels
of speech units, from phonemes to large prosodic phrases. Our
results show an interestingly strong correlation with intelligibil-
ity (0.70 Pearson correlation) using a fully automatic method
(without manual annotations). Our method is based on rhyth-
mic features, that are usually marginally explored in this type
of research. The choice of the Lasso method also allowed us to
reduce rhythmic predictors to 5 relevant rhythmic features, al-
lowing to produce global interpretations on the rhythmic char-
acteristics of the speakers. Typically, the ratio between the en-
ergy bands ([0.5, 4] Hz: large prosodic units, IPs) and ([4, 10]
Hz: syllables and phonemes) is relevant to discriminate rhyth-
mic characteristics of the speech signal.

These results are promising and validate our choice of
rhythmic features for pathological speech. Further analyses on
the distribution of each speaker will be carried out to refine
the interpretation of this ratio: we hypothesize that the strong
relevance of this ratio may be indicative of compensatory phe-
nomena of the pathological speakers. Our next step is to take
into account speaking rate variability, and to test more precise
EMS frequency bands. It will allow us to better characterise
the rhythmic levels responsible for the intelligibility loss of our
H&NC speakers. Another important research path is to test our
model on the spontaneous speech tasks available in the corpus.
In the long term, we would like to merge our model with oth-
ers based on different speech levels, such as those based on i-
vectors or x-vectors.
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