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Abstract

Loss in intraspecific diversity can alter ecosystem functions, but the underlying mechanisms

are still elusive, and intraspecific biodiversity–ecosystem function (iBEF) relationships have

been restrained to primary producers. Here, we manipulated genetic and functional richness

of a fish consumer (Phoxinus phoxinus) to test whether iBEF relationships exist in consumer

species and whether they are more likely sustained by genetic or functional richness. We

found that both genotypic and functional richness affected ecosystem functioning, either

independently or interactively. Loss in genotypic richness reduced benthic invertebrate

diversity consistently across functional richness treatments, whereas it reduced zooplank-

ton diversity only when functional richness was high. Finally, losses in genotypic and func-

tional richness altered functions (decomposition) through trophic cascades. We concluded

that iBEF relationships lead to substantial top-down effects on entire food chains. The loss

of genotypic richness impacted ecological properties as much as the loss of functional rich-

ness, probably because it sustains “cryptic” functional diversity.

Introduction

Human disturbances associated with global change are increasingly altering worldwide pat-

terns of species diversity, as well as the functions and services provided by ecosystems [1–3].

Nonetheless changes observed at the species and ecosystem levels are always preceded by

changes in phenotypic and genotypic composition within plant and animal populations [4–6].

Accordingly, extremely rapid changes in intraspecific diversity are currently occurring world-

wide [7–10]. Changes in intraspecific diversity can affect species turnover and composition

[11,12], as well as ecosystem functioning [13,14]. For instance, the loss of genotypes within pri-

mary producers can reduce ecosystem process rates and species diversity [15–17], suggesting

the existence of biodiversity–ecosystem functioning relationships at the intraspecific level
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(iBEF) [14,18,19], in addition to the more widely studied BEF relationships at the interspecific

level.

The relationships between intraspecific diversity and ecosystem functioning are challenging

to study, and this is primarily because of the confusion between genetic and functional trait

diversity. iBEF studies have initially manipulated genotypic richness within experimental pop-

ulations [16,20,21]. Genetic variability is expected to encapsulate a large proportion of trait

variability, and thus higher genotypic richness should maintain higher functional diversity

[18]. Although this approach allows deciphering the general effects of intraspecific diversity on

ecosystem functioning, it does not provide mechanisms since ecological interactions are sup-

ported by functional traits that are—partly—genetically encoded. As a consequence, parallel

studies have directly manipulated functional trait richness within populations, which enabled

to determine a direct mechanistic linkage between functional richness and community struc-

ture and ecosystem functioning [22,23]. For instance, individual body mass (and traits covary-

ing with body mass) has strong ecological effects because of the associated functional

differences and resource use complementarity among individuals [24–28]. Focusing on spe-

cific traits, such as body mass, might conversely blur the ecological effects of “cryptic” trait var-

iation (i.e., unmeasured functional traits such as metabolic rate, feeding behavior and activity

[29,30]) that is likely supported by genotypic richness. We therefore argue that manipulating

simultaneously genotypic richness and the diversity of key functional traits such as body mass

should allow assessing whether cryptic trait diversity is ecologically important and could pro-

vide a better mechanistic understanding of iBEF relationships.

The ecological effects of biodiversity changes can be particularly strong when the later

occur at high trophic levels such as secondary consumers or predators [31–33]. Changes in the

diversity and abundance of predatory species can trigger important effects in functions sup-

ported by lower trophic levels, especially in regulating the abundance of the lower trophic lev-

els and indirectly ecosystem functioning, such as biomass production [34,35]. High predator

species richness can sometimes favor resource use complementarity and decrease prey abun-

dance [33,36]. In some cases, however, increasing predator richness increases prey abundance

through mechanisms such as predator interference [37,38] and can modify multiple ecosystem

functions along food webs [35,39]. These mechanisms have all been investigated at the inter-

specific level, but they may also apply within a predatory species (intraspecific diversity), and

we can expect relationships—either positive or negative—between predator intraspecific diver-

sity and the structure of prey communities, which could subsequently cascade down on eco-

system functions such as decomposition rate or primary production [31,40]. However, it is

still difficult to forecast how loss in intraspecific diversity in consumer species could affect eco-

system functioning, because iBEF studies have primarily focused on primary producers

[14,19]. This is despite the fact that human activities strongly affect predator and consumer

populations, for instance, through harvest or fisheries activities, which may alter ecosystem

functioning through intraspecific changes in traits and genotypes [41–44].

In this study, we investigated whether a loss in genotypic and functional diversity within a

consumer species at the top of a three-level trophic chain could mediate top-down effects on

key ecosystem functions. In a 9-month pond mesocosm experiment, we simultaneously

manipulated genotypic richness (number of genetic entities) and the functional richness (vari-

ance in individuals body mass) of experimental populations of a freshwater fish, the European

minnow (Phoxinus phoxinus), a common and abundant species with important ecosystems

effects [45,46]. We predicted that increased functional richness should affect ecological func-

tions; if functional richness captures the entire functional differences among genotypes, then

increasing genotypic richness should not impact ecological functions further (Fig 1A). Alter-

natively, if functional richness does not capture all the functional differences among genotypes,
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then increasing genotypic richness should increase functional diversity and affect ecological

functions (Fig 1B). The ecological effects of genotypic and functional richness might display

different shape following different conceptual predictions to which we compared our experi-

mental findings (Fig 1): (i) “additive” effects when loss in genotypic richness affects ecological

functions regardless of changes in functional richness; (ii) “enhancing” effects when loss in

genotypic richness affect ecological functions solely at higher levels of functional richness; or

(iii) “compensatory” effects when high genotypic richness compensates for the loss of func-

tional richness, maintaining higher ecological functions at lower levels of functional richness.

Finally, we investigated the mechanistic basis of the ecological effects of genotypic and func-

tional richness. In particular, we expected that genotypic and functional richness affect directly

community structure through trophic interactions and indirectly ecosystem functions at lower

trophic levels through trophic cascades. Hence, we specifically tested whether the loss in geno-

typic and functional richness directly affected population performance and community struc-

ture, and indirectly ecosystem functioning mediated by changes in community structure of

benthic and pelagic food web.

Results

Both genotypic and functional richness of experimental populations significantly affected sev-

eral ecological processes (Table 1). At the population level, we found that the interaction

between genotypic and functional richness tended (p = 0.057) to alter fish biomass production

(i.e., population performance) of experimental populations (Table 1 and Fig 2A). Specifically,

the less diversified experimental populations (low genotypic richness and low functional rich-

ness) displayed a lower biomass production than all other treatments (Fig 2A). At the commu-

nity level, the diversity of benthic invertebrates was significantly higher in the high genotypic

richness treatment (mean D-inv ± SE = 0.64 ± 0.04) than in the low genotypic richness treat-

ment (D-inv ± SE = 0.53 ± 0.03), and this pattern was repeatable across functional richness

treatments (Fig 2D and Table 1). Irrespective of the genotypic richness treatment, mesocosms

containing fish populations with low functional richness had higher diversity of benthic inver-

tebrates than mesocosms containing fish populations with high functional diversity (Fig 2D

Fig 1. Predicted ecological effects of genotypic richness in relation with functional richness. Functional richness is assumed to positively affect ecological functions,

whereas genotypic richness might have different effects depending on it supports cryptic functional diversity. First, if functional richness does capture the essential of the

functional differences among genotypes, then genotypic richness would have no ecological effects (a). Second, if genotypic richness supports cryptic functional diversity,

the effects could be (b) additive, (c) enhancing, or (d) compensatory.

https://doi.org/10.1371/journal.pbio.3001145.g001
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and Table 1). In contrast, the diversity of zooplankton (D-zoo) was affected by the interaction

between genotypic and functional richness (Fig 2E and Table 1). Zooplankton diversity was

strikingly higher in populations with both high genotypic richness and high functional rich-

ness (Fig 2E and Table 1), suggesting that, in this case, the effect of genotypic richness

depended on the functional richness of experimental fish populations. Benthic invertebrates

and zooplankton abundances were consistently (i.e., across genotypic richness treatment)

enhanced when increasing functional richness (Fig 2F and 2G and Table 1). Genotypic rich-

ness of populations did not affect benthic invertebrates and zooplankton abundances (Fig 2F

and 2G and Table 1). A weak but significant negative effect of functional richness on the

pelagic algae stock was detected (Table 1 and Fig 2C), and there was no significant effects

genotypic and functional richness on decomposition rate (Table 2). Overall, genotypic and

functional richness induced ecological effects of similar intensity (mean |ggenotypic| = 0.356,

CIs = 0.043 to 0.669, and mean |gfunctional| = 0.564, CIs = 0.247 to 0.882; see S1 Fig for details).

Confirmatory path analyses revealed that effects of intraspecific diversity on ecosystem

functioning were primarily mediated by trophic cascades through changes in community

structure (Fig 3). First, genotypic and functional richness affected the diversity and abundance

of benthic invertebrates (Fig 3), which subsequently and positively affected the decomposition

rate (p< 0.001, Fig 4A and 4B and S1 Table). Second, functional richness positively affected

abundance of zooplankton, leading to a decrease in pelagic algae stock (p< 0.001, Fig 4C and

4D and S1 Table). Overall, the confirmatory path analysis confirmed the key role of

Table 1. Results of the mixed effect linear models quantifying the relationships between genotypic richness, functional richness, and ecological parameters. Signifi-

cant—and near-significant—p-values are displayed in bold; R2 are shown into brackets. Interaction terms were removed from the model when not significant.

Response Effect p-value χ2, d.f.

Fish biomass production (0.38) Genotypic richness 0.301 (1.071, 1)

Functional richness 0.634 (0.227, 1)

Genotypic richness�

Functional richness

0.057 (3.621, 1)

Mortality 0.023 (5.196, 1)

Benthic invertebrates diversity (0.45) Genotypic richness 0.007 (7.152, 1)

Functional richness 0.002 (9.484, 1)

Mortality 0.212 (1.551, 1)

Zooplankton diversity (0.25) Genotypic richness 0.052 (3.756, 1)

Functional richness 0.004 (8.163, 1)

Genotypic richness�

Functional richness

0.038 (4.287, 1)

Mortality 0.851 (0.035, 1)

Benthic invertebrates abundance (0.23) Genotypic richness 0.300 (1.072, 1)

Functional richness 0.031 (4.667, 1)

Mortality 0.238 (1.392, 1)

Zooplankton abundance (0.29) Genotypic richness 0.885 (0.021, 1)

Functional richness 0.004 (8.154, 1)

Mortality 0.220 (1.503, 1)

Decomposition rate (0.11) Genotypic richness 0.140 (2.169, 1)

Functional richness 0.690 (0.158, 1)

Mortality 0.893 (0.018, 1)

Algae stock (0.16) Genotypic richness 0.834 (0.044, 1)

Functional richness 0.053 (3.742, 1)

Mortality 0.412 (0.673, 1)

https://doi.org/10.1371/journal.pbio.3001145.t001
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intraspecific diversity for both food chains and its indirect effects for ecosystem functions (Fig

3 and Table 2). Indeed, models including genotypic and functional richness reproduced ade-

quately the causal pathways (Table 2), and their Akaike information criteria (AICs) were better

than that of both alternative and simplified models for each ecosystem function (Table 2).

Discussion

The present study demonstrates that loosing intraspecific diversity in a secondary consumer

species has substantial top-down consequences for community structure and ecosystem

Fig 2. Effects of genotypic and functional richness on population biomass production index (a), decomposition rate (b), algae stock (c), diversity of benthic

invertebrates (e), diversity of zooplankton (f), abundance of benthic invertebrates (g), and abundance of zooplankton (h). Error bars represent ± 1 SE. The data

underlying this Figure can be found at https://doi.org/10.6084/m9.figshare.12459065.v7.

https://doi.org/10.1371/journal.pbio.3001145.g002

Table 2. Model fits of the 2 confirmatory path analyses explaining decomposition rate and algae stock variation. C, df, and p-value are given for full models as

indication.

Variable C df p-value AIC full model AIC alternative model AIC simplified model

Decomposition rate 8.555 6 0.200 26.555 30.555 53.042

Algae stock 6.745 10 0.749 26.746 28.367 49.679

AIC, Akaike information criteria; C, C statistic; df, degree of freedom.

https://doi.org/10.1371/journal.pbio.3001145.t002
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Fig 3. Causal pathways between genotypic richness, functional richness, community structure, and ecosystem functioning. Two models have been run separately

on decomposition rate (a) and pelagic algae stock (b). Only significant links are drawn, blue arrows represent positive links, yellow arrows negative links.

https://doi.org/10.1371/journal.pbio.3001145.g003

Fig 4. Effects of the diversity (a) and the abundance (b) of benthic invertebrates on decomposition rate and effects of

the diversity and the abundance of zooplankton on pelagic algae stocks (c and d, respectively). Points are partial

residuals extracted from models described in the statistical analysis section (see also S1 Table). Straight lines represent

the slope predicted by the models (see statistical analyses) when significant (α< 0.05), and gray shadows represent

95% CIs. The data underlying this Figure can be found at https://doi.org/10.6084/m9.figshare.12459065.v7.

https://doi.org/10.1371/journal.pbio.3001145.g004
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functioning in food webs. We showed that both losses in functional (mass) and genotypic rich-

ness sustained these iBEF relationships, suggesting that differences in mass among individuals

(an important functional trait for food web dynamics [24]) did not capture the entire func-

tional space, and thus that genotypic richness encapsulates important and “cryptic” (unmea-

sured) functional diversity. The loss of genotypes within consumer populations can affect both

the community structure and the abundance of lower trophic levels, as well as ecosystem func-

tions with a similar strength than the loss of functional entities (i.e., body mass). Specifically,

we found that diversity loss (genotypic and functional) within populations indirectly affects

primary producer biomass and organic matter recycling, 2 ecosystem functions forming the

bases of food chains. This suggests that intraspecific diversity is a key but understudied facet of

biodiversity as it indirectly sustains BEF relationships, even when changes in intraspecific

diversity occur in a single species at the top of the food chains.

Our study suggests that genotypic richness can support nonnegligible cryptic functional

diversity. Cryptic functional traits, such as physiological and behavioral traits, can affect inter-

actions in food webs and ecological functions. As such, behavioral variation within popula-

tions is widespread in nature and can be genetically encoded [47,48]. For instance, personality

traits (e.g., activity or boldness) can determine foraging activity and diet, ultimately affecting

trophic interactions and ecosystem functioning in food webs [30,49]. Additionally, metabolic

and stoichiometric traits can also strongly differ within species and can be functionally impor-

tant in shaping energetic needs both quantitatively and qualitatively (i.e., specific elemental

needs) [29,50,51]. Hence, fish with different genotypes may share obvious functional traits

(such as body mass) but may subtly differ in other cryptic functional traits, making them

unique ecologically [52]. Although such “ecological dissimilarity-despite-morphological simi-

larity” has rarely been demonstrated within species, there is now ample evidence that cryptic

species (species being morphologically and phylogenetically similar) can actually be ecolog-

ically unique regarding their influence on ecosystems (e.g., [53]).

Interestingly, this cryptic diversity can interact with functional richness in various ways

(i.e., additive, enhancing, or compensatory; Fig 1) depending on the ecological parameter con-

sidered (i.e., benthic invertebrate diversity, zooplankton diversity, and fish biomass produc-

tion, respectively). For instance, we found that genotypic richness can compensate for the loss

of functional diversity for population performance (i.e., increase fish biomass production),

with high genotypic richness maintaining high biomass production even when the distribution

of body mass in the population is limited. We speculate that genotypic richness can increase

niche variation among individuals, thereby limiting the loss of biomass production when

decreasing functional richness [54]. These findings echo and expand on studies at the interspe-

cific level demonstrating that phylogenetic diversity among species explains variance in ecosys-

tem functions that is not explained either by species or functional diversity, suggesting that

phylogenetic diversity sustains unmeasured functional differences among species [55–57]. We

argue that iBEF relationships are sustained by differences in functional traits among individu-

als that can be directly measured (e.g., mass) and/or indirectly captured through quantification

of the genetic pool of individuals composing populations.

Accordingly, we showed that genotypic and functional richness can affect independently

(i.e., additively) and consistently community structure, demonstrating that multiple facets of

intraspecific diversity can regulate lower trophic levels. First, genotypic richness increased ben-

thic invertebrate diversity. This effect was very robust, as it was repeatable and consistent

across functional richness treatments. Genotypic richness probably enhanced resource parti-

tioning, allowing individuals to forage on a more diverse array of resources, regulating the

abundance of each taxonomic group and leading to a higher diversity [15,31]. Second, func-

tional richness led to increased prey abundance that was repeatable across both communities
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of benthic invertebrates and zooplankton. Previous studies at the inter- and intraspecific lev-

els provide nonconsistent predictions, since an increase in consumer diversity can affect

either positively or negatively resource abundance [28,33,35,37,39]. Our results indicate that

functionally rich populations did not consume fewer resources than functionally poor popu-

lations since they had higher biomass production. This suggests that the increase in prey

abundance was not due to an increase in interindividual competition in functionally rich

populations. At the opposite, flexible exploitation of resources might occur in functional rich

populations because European minnows are omnivorous [58,59]; their diet probably

included some periphyton, decreasing the predation risk on animal resources, and hence

increasing invertebrate abundance. Because the top-down control of intraspecific diversity

on community structure is likely driven by trophic mechanisms, quantifying individual diet

(e.g., using gut content, eDNA, or stable isotope analysis) and its temporal dynamic in such

experiments would allow making more accurate predictions regarding trophic niche

partitioning.

Our results further revealed how changes in top consumers’ genotypic and functional rich-

ness percolate through the food web and alter ecosystem functions at the base of the food

chains. Such trophic cascade induced by intraspecific diversity could be driven by a “classical”

(i.e., interspecific) BEF relationship between benthic invertebrate diversity and decomposition

rate [60,61]. Specifically, fish genotypic richness increased benthic invertebrate diversity that

accelerated litter decomposition rate. The higher decomposition rate of organic matter is likely

produced by higher consumption efficiency through trophic complementarity among clades

of invertebrates in diverse community [61]. Invertebrate community with a high diversity

probably harbored a high functional diversity [62], and focusing on the functional type of

invertebrates might allow a more precise understanding of this link. These results echo those

reported at the community level and those manipulating richness within primary producer

species [16,63], while implying a modification of top-down effects by intraspecific diversity in

consumers.

Biodiversity within consumer species is largely impacted by anthropogenic activities [8].

Multiple drivers of global change (including habitat loss and fragmentation, emerging diseases,

or climate change) can alter the genetic diversity and uniqueness of populations [64,65]. While

genetic loss is notoriously detrimental for the adaptive potential of species [66], our results

show that genetic loss within a single species can further lead to underestimated cascading

impacts on ecosystem functioning. Maintaining the genetic integrity of populations (i.e., the

diversity and frequency of genes within a population) can hence be highly beneficial to all bio-

diversity components in the ecosystem. Importantly, these benefits of genetic diversity for the

ecological dynamics of ecosystems apply to all trophic levels through cascading interactions.

Our results therefore have major implications for the conservation of natural ecosystems and

are actually strengthening recent calls [67] that developing conservation strategies targeting

intraspecific genetic diversity is urgently needed for preserving not only the adaptive potential

of species but also the integrity of ecosystems in which they live.

In conclusion, we demonstrated that both genetic and functional richness within consumer

populations are important facets of biological diversity, inducing effects on prey community

structure and trophic cascades mediating ecosystem functions. These results are consistent

with previous synthetic works [14,19], reinforcing the call for considering changes of intraspe-

cific diversity in consumer species as an important ecological predictor. Importantly, geno-

typic richness can sustain important cryptic functional diversity, and future investigations

should aim at developing a general framework from genes to ecosystems to better understand

the global links existing among the multiple facets of biodiversity and ecosystem functioning

and, ultimately, ecosystem services.
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Material and methods

Model species

The European minnow (P. phoxinus) is a common species occurring across Western Europe,

living in relatively cold water (summer water temperature generally lower than 24˚C) includ-

ing mountain lakes, small rivers at intermediate altitude, and mountain streams [68]. It is a

small-bodied cyprinid fish species (<12 cm long, 4 to 8 cm long as an adult in general) playing

the role of secondary consumer in most ecosystems [69], with a generalist diet composed of

small invertebrates, algae, or zooplankton [58,59]. Populations of European minnows differed

in their genetic and phenotypic richness [70], and previous works revealed that genetically and

phenotypically unique populations differently affect prey community abundance and ecosys-

tem functions [46].

We selected 10 populations from a large river basin in southern France (the Garonne catch-

ment) based on a priori knowledge to maximize both genetic and functional differentiations

among populations [70,71] (S2 Fig). Specifically, the 10 selected populations displayed a high

level of genetic differentiation (mean pairwise Fst = 0.133, range = 0.029 to 0.320) and greatly

varied in the number of alleles they harbor (from 5.470 alleles in average for the less diverse

population to 10.176 alleles for the most diverse population) according to data measured using

17 microsatellite markers (from [70–72]). Moreover, we selected 5 populations mainly com-

posed of small-bodied adults (mean body mass ± standard error (SE) = 1.03 g ± 0.02) and 5

populations mainly composed of large-bodied adults (mean body mass ± SE = 3.06 g ± 0.07)

(S3A Fig). These differences in adult body mass are due to selective pressures from the local

environment such as mean water temperature; the higher the mean water temperature, the

smallest the adult body mass due to increased metabolic rate and an accelerated pace of life

[71]. Finally, populations are geographically distant one from each other, and they were con-

sidered as functionally and genetically unique entity, and intraspecific richness will be manipu-

lated by varying the number of populations in independent mesocosms (see details below).

In September 2017, individuals were collected in each river by electrofishing a 200-m sec-

tion and visually selecting 30 to 50 individuals reflecting the size range of adults. Fish collec-

tions and husbandry were done in accordance with permit from local authorities (sampling:

E-2017-146, PE-2017-031, 2017–858, PE-2017-032, AP-25-04-2017, AP-04-05-2017, AP-31-

01-2017; husbandry: SA-013-PB-092, 09–273). Fish were maintained at similar density in out-

door tanks for 3 weeks before the start of the experiment. Fish were fed ad libitum with frozen

Chironomidae during this period.

Mesocosm experiment

In October 2016, 24 outdoor mesocosms were filled with 900 L of water and 3 cm of gravel.

Nutrients were added to the mesocosms using 10 mL of solution containing nitrogen and

phosphorus (ratio N:P:K = 3.3:1.1:5.8). Each mesocosm was then inoculated twice (October

2016 and May 2017) with 200 mL of a concentrated solution of phytoplankton and 200 mL of

concentrated solution of zooplankton collected from a unique lake nearby (Lamartine Lake,

France 43˚ 300 21.5@N, 1˚ 200 32.7@ E). In May 2017, we introduced 3 adult pond snails (Lym-

naeidae) and 10 adult isopods (Asellidae) in each mesocosms. They were let uncovered to

allow natural colonization by other invertebrates and community assemblage until the start of

the experiment that occurred approximately 6 months later.

In October 2017, 8 fish were weighted and introduced in each mesocosm, which were

assigned to 1 of 4 treatments according to a full-factorial design with genotypic richness (2 lev-

els, high and low genotypic richness) and functional richness (2 levels, high and low functional
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richness) as the main factors. Genotypic richness was manipulated by introducing individuals

sourced from either 2 (low genotypic richness, 4 individuals from each population) or 4 (high

genotypic richness, 2 individuals from each population) out of the 10 populations displaying

significant genetic differentiation [70,71]. These 2 levels of genotypic richness were selected as

it has previously been shown in a meta-analysis that the effect of intraspecific richness on eco-

system functioning increases linearly until approximately 4 genotypes and then reaches a pla-

teau beyond that [14]. Since we aimed at testing the effect of richness while minimizing the

effects of population identity, each replicate of each treatment of richness contained a different

(unique) assemblage of populations. Functional richness consisted in manipulating the body

mass of the individuals present in the mesocosms; hence, experimental populations contained

individuals sourced either from large or small populations (i.e., 1 functional entity, low func-

tional richness) or from both small and large populations (i.e., 2 functional entities, high func-

tional richness; see S2 Table and S3 Fig for details on the different experimental populations).

It is noteworthy that populations containing only either small or large individuals were actu-

ally more functionally redundant than populations containing large and small individuals.

Experimental populations hence varied simultaneously according to their genotypic and func-

tional richness, leading to 4 treatments.

The experiment lasted 30 weeks (210 days) after fish were introduced. Mesocosms were

checked daily for mortality, which was rarely observed over the course of the experiment. At

the end of the experiment, we measured several ecological parameters to assess effects of geno-

typic and functional richness on population performance, community structure, and ecosys-

tem functioning:

Population performance. All tanks were emptied and we recaptured all remaining fish to

estimate mortality rate (1 �
remaining fish
introduced fish; mean per tank ± SE = 0.22 ± 0.01). Fish were weighted

to assess fish biomass production (biomass production = averaged final weight − averaged ini-

tial weight) of each experimental population during the experiment. Since individuals with

small initial body mass intrinsically displayed a higher growth rate than large individuals, a

standardized biomass production index was calculated as the residuals of the relationship

between biomass production and initial fish size.

Community structure. Zooplankton community structure was quantified by filtering 5 L

of water through a 200-μm sieve. Samples were conserved in a 70% ethanol solution and subse-

quently identified to the order or family levels, including Cyclopoida, Calanoida, Daphniidae,

Chydoridae, and Bosminidae. The diversity of zooplankton was calculated as the Simpson

diversity (D-zoo) representing the probability that 2 randomly chosen individuals belong to

different clades. D-zoo was calculated as 1 �

P
Ni�ðNi � 1Þ

Ntot�ðNtot � 1Þ
, where Ntot was the total number of

sampled individuals, and Ni the number of sampled individuals for each group [73,74]. Zoo-

plankton abundance was quantified as the total number of individuals for all taxa pooled at the

tank level.

Benthic invertebrates were collected from the mesh bags used to measure decomposition

rates (see below), conserved in a 70% ethanol solution, and identified as Isopoda, Diptera, Gas-

tropoda, Ephemeroptera, Plecoptera, Odonata, Copepoda, Cladocera, and Ostracoda. The

diversity of benthic invertebrates was calculated as the Simpson diversity (D-inv). The abun-

dance of benthic invertebrates was quantified as the total number of individuals for all taxa

pooled at the tank level.

Ecosystem functioning. Decomposition rate was measured by quantifying the mass loss

of black poplar (Populus nigra, a dominant riparian tree in southern France) abscised leaves

[75]. On 7 March 2018 (19 weeks after the introduction of fish), 4 g of air-dried leaves were

put in each mesocosm within a coarse mesh (1 × 1 cm) bag. At the end of the experiment, the
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remaining leaf material was removed from the mesocosms, rinsed with tap water, oven dried

at 60˚C for 3 days, and weighed to the nearest 0.001 g to assess the loss of biomass. The decom-

position rate was calculated as k ¼ � ln ðXÞ
t [75], where X is the proportion of litter remaining,

and t is the elapsed time in days.

Pelagic algae stock was measured as the chlorophyll-a concentration (μg.L−1) in the water

column using a multiparametric probe (OTT, Hydrolab DS5). Five measurements were taken

in each mesocosm and averaged for subsequent analyses. Since phytoplankton are the main

primary producers in these mesocosms [63], pelagic algae stock can be considered as a proxy

for the biomass of primary producers.

Statistical analyses

Prior to analysis, the pelagic algae stock (i.e., the chlorophyll-a concentration), zooplankton

and benthic invertebrate abundances were log-transformed to reach normality of models’

residuals. After analyses of outliers using Cook distance, we removed 1 mesocosm from the

final analyses that displayed outliers for several of the measured variables (S4 Fig). Analyses

were hence run on 23 replicates.

We first assessed the ecological effects of genotypic and functional richness using mixed

effects linear models (LMMs). We ran one model for each ecological parameter as a dependent

variable, and the genotypic richness, functional richness, and the resulting two-term interaction

(that was removed when nonsignificant) as explanatory variables. Fish mortality rate during the

experiment was included as a fixed effect to control for a potential effect of final density on eco-

logical processes. To control for the disposition of the tanks during the experiment, the position

of tanks was added as a random term. To compare the relative strength of a loss in genotypic

and functional richness on ecological parameters, we calculated effect sizes. Hedges g were com-

puted as follow: g ¼ X2 � X1

spooled
, where X1 and X2 are means of treatments (for each genotypic or

functional richness treatment separately) measured for each ecological parameters respectively,

and spooled is the pooled standard deviation computed as spooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � 1Þs2

2
þðn1 � 1Þs2

1
Þ

n1þn2 � 2

q

, where n is

sample size, and s2 is variance [76]. An effect size was hence measured for each variable

response (n = 7), and each treatment independently. These individual effect sizes were then

averaged for genotypic (gG) and functional richness (gS), respectively, so as to get an absolute

mean effect sizes that were compared visually based on 95% confidence intervals (CIs).

Secondly, we ran confirmatory path analysis [77] to assess the direct and indirect links

among intraspecific diversity (genotypic and functional richness), prey (invertebrates and zoo-

plankton) community structure, and ecosystem functioning. We expected that intraspecific

diversity in European minnows affects directly invertebrate community (both diversity and

abundance) through predation, and indirectly ecosystem functions (decomposition rate, algae

stock) through trophic cascades. Specifically, benthic invertebrates consume leaf litter, affect-

ing decomposition rate [61,78], while zooplankton forages on phytoplankton, affecting pelagic

algae stock (brown and green trophic food chain, respectively). Because genotypic and func-

tional richness likely interact to shape processes (see Fig 1), we initially included in all models

the interaction term between genotypic and functional richness on community structure. As

above, interaction terms were removed when not significant. Specifically, we computed 2 path

analyses: one for the benthic food chain (fish-invertebrates-decomposition), and one for the

pelagic food chain (fish-zooplankton-algae stock) (S5 Fig). The fits of the structural models

were assessed using the C statistic (see independent claims in S3 Table), that follows a χ2 distri-

bution and whose associated p-value indicates whether the models adequately fit the data or

not. Alternative models including direct effects of fish intraspecific diversity on community
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components and ecosystem functions were performed (S5 Fig) to test whether genotypic and

functional richness affected ecosystem functions through unmeasured parameters (e.g., other

community parameters, nutrient recycling). This approach allows testing whether the pre-

dicted indirect effects are the most likely effects that explain the data. Finally, the structural

models were further compared to simplified models that did not include the effects of geno-

typic and functional richness on community parameters (see S5 Fig) using AIC [79,80]. This

later test allows assessing whether the indirect effects of genotypic and functional richness lead

to a better explanation of the data, and whether trophic cascades were important or not.

All statistical analyses were run using R software [81]; LMM were run using the R-package

lme4 [82]; and confirmatory path analyses were run using the R-package ggm [83].

Supporting information

S1 Fig. Effect size (Hedges g) of genotypic and functional richness for each ecological

parameter and their overall means. Error bars represent ± 1 SE. The data underlying this

Figure can be found at https://doi.org/10.6084/m9.figshare.12459065.v7.

(EPS)

S2 Fig. Geographical distribution of the 10 populations of European minnows (Phoxinus
phoxinus) used in this study. This map was drawn based on data from http://www.

geoinformations.developpement-durable.gouv.fr/bd-carthage-r363.html.
(PNG)

S3 Fig. Relationships between fish body mass and (a) population of origin, (b) genotypic richness

treatments (high = 4 populations, and low = 2 populations), and (c) functional richness. The data

underlying this Figure can be found at https://doi.org/10.6084/m9.figshare.12459065.v7.

(EPS)

S4 Fig. Analysis of outliers using Cook distance [84,85]. The higher the distance, the more

influential the points on the variable. The horizontal bar, representing the mean across all

tanks multiplied by 4, is given as an indicative threshold above which a point may be consid-

ered as influential. Tank 13 was influential in all variable and was therefore discarded from

analyses. The data underlying this Figure can be found at https://doi.org/10.6084/m9.figshare.

12459065.v7.

(PDF)

S5 Fig. Diagram of the causal pathways used to explain variation in (a) decomposition rate

and (b) algae stock. These models were compared to alternative models ((c) and (d), respec-

tively) including direct effects of genotypic and functional richness on ecosystem functions.

Finally, simplified models were performed, in which the effects of genotypic and functional

richness on community structure were excluded ((e) and (f)). “G x F” denotes the interaction

between genotypic and functional richness.

(PDF)

S1 Table. Linkages between community and ecosystem variables. Significant p-values are

displayed in bold; R2 are shown in brackets.

(XLSX)

S2 Table. Population origin of minnows (Phoxinus phoxinus) used in each experimental

treatment.

(XLSX)
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S3 Table. D-separation claims implied in the structural models shown in S4 Fig. Alg, Algae

stock; Dec, decomposition rate; Frich, functional richness; Grich, genotypic richness; Int, FxG

interaction; Invab, benthic invertebrates abundance; Invdiv, benthic invertebrates diversity;

Zooab, zooplankton abundance; Zoodiv, zooplankton diversity.

(XLSX)
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53. Fišer Ž, Altermatt F, Zakšek V, Knapič T, Fišer C. Morphologically Cryptic Amphipod Species Are “Eco-

logical Clones” at Regional but Not at Local Scale: A Case Study of Four Niphargus Species. PLoS

ONE. 2015; 10:e0134384. https://doi.org/10.1371/journal.pone.0134384 PMID: 26226375

54. Duffy JE, Macdonald KS, Rhode JM, Parker JD. Grazer diversity, functional redundancy, and productiv-

ity in seagrass beds: an experimental test. Ecology. 2001; 82:2417–2434.

55. Cadotte MW, Dinnage R, Tilman D. Phylogenetic diversity promotes ecosystem stability. Ecology.

2012; 93:S223–S233. https://doi.org/10.1890/11-0426.1

PLOS BIOLOGY Top-down effects of intraspecific diversity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001145 March 11, 2021 15 / 17

https://doi.org/10.1046/j.1461-0248.2003.00494.x
https://doi.org/10.1890/13-0179.1
http://www.ncbi.nlm.nih.gov/pubmed/24358704
https://doi.org/10.1016/j.tree.2017.12.007
http://www.ncbi.nlm.nih.gov/pubmed/29325921
https://doi.org/10.1038/nature05202
https://doi.org/10.1038/nature05202
http://www.ncbi.nlm.nih.gov/pubmed/17066035
https://doi.org/10.1016/s0169-5347%2898%2901437-2
http://www.ncbi.nlm.nih.gov/pubmed/21238339
https://doi.org/10.1111/j.1365-2656.2009.01533.x
http://www.ncbi.nlm.nih.gov/pubmed/19261036
https://doi.org/10.1111/ele.12873
http://www.ncbi.nlm.nih.gov/pubmed/29098798
https://doi.org/10.1111/j.1461-0248.2005.00808.x
https://doi.org/10.1073/pnas.172242899
http://www.ncbi.nlm.nih.gov/pubmed/12185245
https://doi.org/10.1126/science.1205106
http://www.ncbi.nlm.nih.gov/pubmed/21764740
https://doi.org/10.1111/j.1752-4571.2011.00212.x
https://doi.org/10.1111/j.1752-4571.2011.00212.x
http://www.ncbi.nlm.nih.gov/pubmed/25568040
https://doi.org/10.1002/fee.1743
https://doi.org/10.1002/fee.1743
https://doi.org/10.1016/j.biocon.2017.12.030
https://doi.org/10.1101/332619
https://doi.org/10.1101/332619
https://doi.org/10.1016/j.tree.2004.04.009
http://www.ncbi.nlm.nih.gov/pubmed/16701288
https://doi.org/10.1146/annurev-genet-112618-043536
http://www.ncbi.nlm.nih.gov/pubmed/31487469
https://doi.org/10.1007/s00442-016-3648-8
http://www.ncbi.nlm.nih.gov/pubmed/27170290
https://doi.org/10.1016/j.tree.2016.11.006
http://www.ncbi.nlm.nih.gov/pubmed/28017452
https://doi.org/10.1016/j.tree.2016.09.009
http://www.ncbi.nlm.nih.gov/pubmed/27726943
https://doi.org/10.1126/science.1064088
http://www.ncbi.nlm.nih.gov/pubmed/11679658
https://doi.org/10.1371/journal.pone.0134384
http://www.ncbi.nlm.nih.gov/pubmed/26226375
https://doi.org/10.1890/11-0426.1
https://doi.org/10.1371/journal.pbio.3001145


56. Mouquet N, Devictor V, Meynard CN, Munoz F, Bersier L-F, Chave J, et al. Ecophylogenetics:

advances and perspectives. Biol Rev. 2012; 87:769–785. https://doi.org/10.1111/j.1469-185X.2012.

00224.x PMID: 22432924

57. Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT. Phylogenetic, func-

tional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality.

Proc Natl Acad Sci. 2019; 116:8419–8424. https://doi.org/10.1073/pnas.1815727116 PMID: 30948639

58. Frost WE. The natural history of the minnow, Phoxinus phoxinus. J Anim Ecol. 1943; 12:139. https://doi.

org/10.2307/1374

59. Collin H, Fumagalli L. Evidence for morphological and adaptive genetic divergence between lake and

stream habitats in European minnows (Phoxinus phoxinus, Cyprinidae). Mol Ecol. 2011; 20:4490–

4502. https://doi.org/10.1111/j.1365-294X.2011.05284.x PMID: 21951706

60. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, et al. Effects of biodiversity on eco-

system functioning: a consensus of current knowledge. Ecol Monogr. 2005; 75:3–35. https://doi.org/10.

1890/04-0922

61. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, et al. Diversity meets decomposi-

tion. Trends Ecol Evol. 2010; 25:372–380. https://doi.org/10.1016/j.tree.2010.01.010 PMID: 20189677

62. Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: functional diversity and the maintenance

of ecological processes and services. J Appl Ecol. 2011; 48:1079–1087. https://doi.org/10.1111/j.1365-

2664.2011.02048.x

63. Downing AL, Leibold MA. Ecosystem consequences of species richness and composition in pond food

web. Nature. 2002; 416:837–841. https://doi.org/10.1038/416837a PMID: 11976680

64. De Kort H, Prunier JG, Ducatez S, Honnay O, Baguette M, Stevens VM, et al. Life history, climate and

biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat Com-

mun. 2021; 12:516. https://doi.org/10.1038/s41467-021-20958-2 PMID: 33483517

65. Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and

population genetics. Trends Ecol Evol. 2003; 18:189–197. https://doi.org/10.1016/S0169-5347(03)

00008-9

66. Eizaguirre C, Baltazar-Soares M. Evolutionary conservation-evaluating the adaptive potential of spe-

cies. Evol Appl. 2014; 7:963–967. https://doi.org/10.1111/eva.12227

67. Laikre L, Hoban S, Bruford MW, Segelbacher G, Allendorf FW, Gajardo G, et al. Post-2020 goals over-

look genetic diversity. Science. 2020; 367:1083.2–1085. https://doi.org/10.1126/science.abb2748

PMID: 32139534

68. Keith P, Persat H, Feunteun E, Allardi J. Les poissons d’eau douce de France. Paris and Mèze:
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