Damien T Wojtowicz
email: damien.wojtowicz@irit.fr

Franck Morvan
email: morvan@irit.fr

SLA Definition for Multi-Cloud Queries

Keywords: Database-as-a-Service, Multi-Cloud, Service-Level Agreement

Public data availability in cloud-hosted databases raises interests in systems providing multi-cloud querying capabilities. Since data access in this context induces monetary costs, we suggest a method to compute SLAs for multi-cloud queries. It consists in decomposing queries into a directed graph of maximal sub-queries per provider, and finding a financially cheapest execution plan. This method yields SLAs with monetary costs lower than a download-all approach, granted that inter-provider data transfers are minimised.

INTRODUCTION

Cross-analysis of datasets is of key importance to researchers, as the accumulation of data in fields such as astronomy and biology dramatically increases the opportunities for new discoveries. Various data sharing methods are available. File provision, either through a web interface or in the cloud 1 , is popular and historically ingrained. Sharing can also be achieved by offering public read access to a database, which may be hosted in the cloud following the Database-as-a-Service (DBaaS) model 2 . In this case, users can leverage the services of public cloud providers in order to execute their queries. Alternatively, users can download datasets and run queries on self-administrated databases, implying sufficient skills and resources.

Unfortunately, providers do not offer out-of-the-box multi-cloud querying capabilities, leaving space for systems orchestrating query execution across multiple public databases in a DBaaS fashion. Since access to the providers' datasets is billed, such a service shall let users control their expenditures by means of Service-Level Agreement (SLA). Those contracts are known to play a key role in query optimisation [START_REF] Yin | SLA Definition for Multi-Tenant DBMS and its Impact on Query Optimization[END_REF], hence the importance of well-defined SLAs. In the context of DBaaS, a single performance objective cannot be retained for all queries due to different complexities. In addition, even for the same query, different tenants may have different performance expectations which are partially influenced by their budget (i.e. minimising response time may not be the goal). These challenges should be taken into account in the SLA definition process.

In Section 2, we briefly review literature about multi-cloud database systems. In Section 3, we propose a graph-based SLA definition method for multi-cloud relational queries. Its results are analysed in Section 4. We conclude in Section 5 by mentioning perspectives.

𝑄 𝑆𝑄 1 = Π 𝑖𝑑1,𝑥 𝑅 1 𝑆𝑄 2 = Π 𝑖𝑑1,𝑦 𝑅 2 𝑆𝑄 3 = Π 𝑥,𝑦 𝑆𝑄 1 𝑆𝑄 2 𝑆𝑄 4 = Π 𝑥,𝑦 𝑆𝑄 2 𝑆𝑄 1 𝑷 1 𝑷 2

RELATED WORK

Work on multi-cloud database services has mostly focused on federated databases. Indeed, several query processing systems involving different cloud providers exist. To name a few, SCOPE [START_REF] Rafique | SCOPE: Self-Adaptive and Policy-Based Data Management Middleware for Federated Clouds[END_REF] is the base of a collaborative document editing tool, MetaStorage [START_REF] Bermbach | MetaStorage: A Federated Cloud Storage System to Manage Consistency-Latency Tradeoffs[END_REF] operates as a key-value storage system and SHAMC [START_REF] Wang | SHAMC: A Secure and Highly Available Database System in Multi-Cloud Environment[END_REF] acts as a relational DBMS. Despite their seemingly differences, in terms of context, objectives and data models, they share the same approach.

Indeed, they all own their data, seeking an overall system optimisation, using for example data placement or replication strategies, with respect to an objective (e.g. response time, availability, financial cost) rather than solely focusing on optimising data access. These systems are based on the Infrastructure-as-a-Service (IaaS) model, and their SLAs encompass broader services than querying.

Research has also been carried on multi-objective cost models for multi-cloud queries [START_REF] Gounaris | A Bi-Objective Cost Model for Optimizing Database Queries in a Multi-Cloud Environment[END_REF], aiming at adding a monetary aspect to usual cost models. In this case, query execution is performed on a set of cloud-hosted virtual machines leveraging IaaS capabilities. Those cost models are best suited to scale up or down resources, and are therefore not suitable to help defining SLAs for DBaaS-based multi-cloud systems.

SLA DEFINITION METHOD

In this paper, we focus on the performance objective for a query and its relation to the monetary costs. Therefore, we model the SLA for a query as a couple 𝑆𝐿𝐴 =< C, 𝑅𝑇 >, with C the monetary cost of a query and 𝑅𝑇 its response time. This paper is exemplified by the query 𝑄 = Π 𝑥,𝑦 𝑅 1 𝑅 2 , assuming relations 𝑅 1 𝑖𝑑1, 𝑥 and 𝑅 2 𝑖𝑑2, #𝑖𝑑1, 𝑦 respectively hosted on providers 𝑃 1 and 𝑃 2 (see fares 3 in Table 1a). For the sake of simplicity, network bandwidth in our example is supposed to be constant at 1.0 GB/s.

Our method is a three-step procedure, starting by decomposing the input query, then generating SLAs for sub-queries and ending by aggregating the latter.

Query decomposition

Inspired by query decomposition techniques [START_REF] Gounaris | A Bi-Objective Cost Model for Optimizing Database Queries in a Multi-Cloud Environment[END_REF][START_REF] Wong | Decomposition -a Strategy for Query Processing[END_REF], we suggest that multi-cloud queries can be modelled as a directed acyclic graph (DAG), where vertices are maximal sub-queries involving a minimal set of providers. Query 𝑄 can be decomposed as depicted in Figure 1. 𝑆𝑄 1 and 𝑆𝑄 2 are maximal sub-queries involving a single provider, respectively 𝑃 1 and 𝑃2. 𝑆𝑄 3 and 𝑆𝑄 4 involve data from 𝑃 1 and 𝑃 2 respectively executed on 𝑃 1 and 𝑃 2 .

This decomposition creates two plans, one ending with 𝑆𝑄 3 and the other with 𝑆𝑄 4 . It is worth noticing that both are similar to execution plans in distributed databases. In this context, the best plans usually minimise network transfers [START_REF] Özsu | Principles of Distributed Database Systems[END_REF].

Mitigation of provider miscalculations

For each sub-query 𝑆𝑄 ★ , a SLA is generated as well as an estimation of the output relation's size 𝑆 (see Table 1d). Those might not reflect the actual sub-queries' output relation size due to internal cardinality estimation errors [START_REF] Leis | How Good Are Query Optimizers, Really?[END_REF]. We suggest to keep track of those estimation errors by computing a supposed error ratio for each query submitted to the provider as 𝑟 = 𝑆 (𝑅𝑒𝑎𝑙) 𝑆 (𝑆𝐿𝐴) . Those ratios are then used to compute 𝑟 , a sliding average of 𝑟 on the last 𝑛 queries exemplified in Table 1f. While being sensitive to the complexity of the last queries, using a sliding average let our system take into account changes of the provider's estimator.

SLA components aggregation

We use separate methods for each component of the SLA, using corrected values (see Table 1e). Monetary cost C is the sum of all sub-queries costs and all transfers costs (see the latter in Table 1b). Response time 𝑅𝑇 is the sum of the 𝑅𝑇 -maximal path in the DAG, taking into account cross-providers transfer time.

Due to space limitation, we cannot put the cost formulas in the paper. We only show the results for illustration purposes. Table 1c shows the costing for each plan. At the end of the procedure, the SLA that will be presented to the user, in the context of our example query 𝑄, is < 0.184 $, 7.287 𝑠 > stemming from 𝑆𝑄 4 .

RESULT ANALYSIS

Figure 2 depicts the breakdown of each scenario costs. The less expansive one minimises inter-provider transfers, which is unsurprising given the similarity of our setting with distributed systems. Moreover, there is no significant differences between 𝑆𝑄 3 and 𝑆𝑄 4 in storage and processing costs.

𝑆𝑄 4 is 1.8 times cheaper with an acceptable performance degradation (43%) compared to the download-and-process scenario, thus a multi-cloud query appears to be more competitive financially-wise than the download-all approach.

CONCLUSION

Our SLA computation method is a first step towards a middleware enabling multi-cloud querying in a DBaaS fashion. We showed that optimal multi-cloud query execution plans should minimise inter-providers transfers in order to limit costs.

Next steps will involve setting up a SLA-constrained execution engine. Given that sub-queries' output relation size is an estimation, the SLA-based optimal plan might not actually be the best. Hence, methods mitigating estimation errors, such as mobile-agent-based models [START_REF] Arcangeli | Mobile Agents Based Self-Adaptive Join for Wide-Area Distributed Query Processing[END_REF] implementing reinforcement learning, appear to be relevant for the execution of multi-cloud queries.

Figure 1 :

 1 Figure 1: DAG and minimal sub-queries 𝑆𝑄 ★ for query 𝑄. Two execution plans, both involving data transfer between providers 𝑃 1 and 𝑃 2 , are possible with 𝑆𝑄 3 and 𝑆𝑄 4 .

Figure 2 :

 2 Figure 2: Breakdown of each scenario cost. Inter-providers transfers can tremendously increase the price of a scenario.

Table 1 :

 1 Values used for SLA computations 𝒓 𝒓 for 𝑷 1 1.50 0.90 1.20 1.05 1.01 0.95 1.102 𝒓 for 𝑷 2 1.01 1.02 0.95 1.03 1.10 0.99 1.017 (f) Last SLA estimation error ratio for providers and 𝑟 computed using the last 𝑛 = 6 queries for each provider

		𝑷 1	𝑷 2				
	Export	0.060 0.075		𝑺𝑸 _ C ($) 𝑹𝑻 (s) 𝑺 (GB)
	Querying 0.006 0.008		𝑆𝑄 1 0.009 1.000	1.000
	Storage	0.003 0.002		𝑆𝑄 2 0.030 2.000	3.000
	(a) Providers' fares ($/GB)		𝑆𝑄 3 0.055 6.000	6.100
	Transfer 𝑆𝑄 1 → 𝑆𝑄 4	Time (s) C ($) 1.102 0.066	𝑆𝑄 4 0.061 5.000 (d) Provider-generated SLA of 6.120 each sub-query
	3.050 (b) Transfer times and fares 0.229 𝑆𝑄 2 → 𝑆𝑄 3	𝑺𝑸 _ C ($) 𝑹𝑻 (s) 𝑺 (GB)
	Scenario	C ($) 𝑹𝑻 (s)	𝑆𝑄 1 0.010 1.102 𝑆𝑄 2 0.031 2.033	1.102 3.050
	𝑆𝑄 3	0.353 10.762	𝑆𝑄 3 0.060 6.610	6.720
	𝑆𝑄 4	0.184 7.287	𝑆𝑄 4 0.062 5.083	6.222
	Download-all 0.335 5.083		(e) Corrected SLAs
	(c) Costs of all scenarios				
	Query	1	2	3	4	5	6

See examples of public datasets at Amazon (https://registry.opendata.aws/) or Google (https://cloud.google.com/public-datasets)

See examples at Google (https://cloud.google.com/bigquery/public-data). © 2020, Copyright is with the authors. Published in the Proceedings of the BDA 2020 Conference (October 27-29, 2020, En ligne, France). Distribution of this paper is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0. © 2020, Droits restant aux auteurs. Publié dans les actes de la conférence BDA 2020 (27-29 octobre 2020, En ligne, France). Redistribution de cet article autorisée selon les termes de la licence Creative Commons CC-by-nc-nd 4.0.

Inspired from BigQuery's pricing policy (https://cloud.google.com/bigquery/pricing)