
HAL Id: hal-03211098
https://ut3-toulouseinp.hal.science/hal-03211098

Submitted on 28 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

SLA Definition for Multi-Cloud Queries
Damien T Wojtowicz, Shaoyi Yin, Franck Morvan

To cite this version:
Damien T Wojtowicz, Shaoyi Yin, Franck Morvan. SLA Definition for Multi-Cloud Queries. 36ème
Conférence sur la Gestion de Données : Principes, Technologies et Applications (BDA 2020), LIP6
Sorbonne Université, Oct 2020, Paris (online), France. pp.80. �hal-03211098�

https://ut3-toulouseinp.hal.science/hal-03211098
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


SLA Definition for Multi-CloudQueries
Damien T. Wojtowicz
damien.wojtowicz@irit.fr

IRIT – Université Toulouse III

Shaoyi Yin
shaoyi.yin@irit.fr

IRIT – Université Toulouse III

Franck Morvan
morvan@irit.fr

IRIT – Université Toulouse III

ABSTRACT
Public data availability in cloud-hosted databases raises interests
in systems providing multi-cloud querying capabilities. Since data
access in this context induces monetary costs, we suggest a method
to compute SLAs for multi-cloud queries. It consists in decom-
posing queries into a directed graph of maximal sub-queries per
provider, and finding a financially cheapest execution plan. This
method yields SLAs with monetary costs lower than a download-all
approach, granted that inter-provider data transfers are minimised.

KEYWORDS
Database-as-a-Service, Multi-Cloud, Service-Level Agreement.

1 INTRODUCTION
Cross-analysis of datasets is of key importance to researchers, as
the accumulation of data in fields such as astronomy and biol-
ogy dramatically increases the opportunities for new discoveries.
Various data sharing methods are available. File provision, either
through a web interface or in the cloud1, is popular and historically
ingrained. Sharing can also be achieved by offering public read
access to a database, which may be hosted in the cloud following
the Database-as-a-Service (DBaaS) model2. In this case, users can
leverage the services of public cloud providers in order to execute
their queries. Alternatively, users can download datasets and run
queries on self-administrated databases, implying sufficient skills
and resources.

Unfortunately, providers do not offer out-of-the-box multi-cloud
querying capabilities, leaving space for systems orchestrating query
execution across multiple public databases in a DBaaS fashion. Since
access to the providers’ datasets is billed, such a service shall let
users control their expenditures by means of Service-Level Agree-
ment (SLA). Those contracts are known to play a key role in query
optimisation [8], hence the importance of well-defined SLAs. In the
context of DBaaS, a single performance objective cannot be retained
for all queries due to different complexities. In addition, even for
the same query, different tenants may have different performance
expectations which are partially influenced by their budget (i.e.
minimising response time may not be the goal). These challenges
should be taken into account in the SLA definition process.

In Section 2, we briefly review literature about multi-cloud data-
base systems. In Section 3, we propose a graph-based SLA definition

1See examples of public datasets at Amazon (https://registry.opendata.aws/) or Google
(https://cloud.google.com/public-datasets)
2See examples at Google (https://cloud.google.com/bigquery/public-data).

© 2020, Copyright is with the authors. Published in the Proceedings of the BDA
2020 Conference (October 27-29, 2020, En ligne, France). Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.
© 2020, Droits restant aux auteurs. Publié dans les actes de la conférence BDA 2020
(27-29 octobre 2020, En ligne, France). Redistribution de cet article autorisée selon les
termes de la licence Creative Commons CC-by-nc-nd 4.0.

𝑄

𝑆𝑄1 = Π𝑖𝑑1,𝑥
(
𝑅1

)
𝑆𝑄2 = Π𝑖𝑑1,𝑦

(
𝑅2

) 𝑆𝑄3 = Π𝑥,𝑦

(
𝑆𝑄1 Z 𝑆𝑄2

)
𝑆𝑄4 = Π𝑥,𝑦

(
𝑆𝑄2 Z 𝑆𝑄1

) 𝑷1

𝑷2

Figure 1: DAG and minimal sub-queries 𝑆𝑄★ for query 𝑄 .
Two execution plans, both involving data transfer between
providers 𝑃1 and 𝑃2, are possible with 𝑆𝑄3 and 𝑆𝑄4.

method for multi-cloud relational queries. Its results are analysed
in Section 4. We conclude in Section 5 by mentioning perspectives.

2 RELATEDWORK
Work on multi-cloud database services has mostly focused on feder-
ated databases. Indeed, several query processing systems involving
different cloud providers exist. To name a few, SCOPE [5] is the base
of a collaborative document editing tool, MetaStorage [2] operates
as a key-value storage system and SHAMC [6] acts as a relational
DBMS. Despite their seemingly differences, in terms of context,
objectives and data models, they share the same approach.

Indeed, they all own their data, seeking an overall system optimi-
sation, using for example data placement or replication strategies,
with respect to an objective (e.g. response time, availability, finan-
cial cost) rather than solely focusing on optimising data access.
These systems are based on the Infrastructure-as-a-Service (IaaS)
model, and their SLAs encompass broader services than querying.

Research has also been carried on multi-objective cost models
for multi-cloud queries [3], aiming at adding a monetary aspect to
usual cost models. In this case, query execution is performed on a
set of cloud-hosted virtual machines leveraging IaaS capabilities.
Those cost models are best suited to scale up or down resources, and
are therefore not suitable to help defining SLAs for DBaaS-based
multi-cloud systems.

3 SLA DEFINITION METHOD
In this paper, we focus on the performance objective for a query
and its relation to the monetary costs. Therefore, we model the
SLA for a query as a couple 𝑆𝐿𝐴 =< C, 𝑅𝑇 >, with C the monetary
cost of a query and 𝑅𝑇 its response time. This paper is exemplified
by the query 𝑄 = Π𝑥,𝑦

(
𝑅1 Z 𝑅2

)
, assuming relations 𝑅1

(
𝑖𝑑1, 𝑥

)
and 𝑅2

(
𝑖𝑑2, #𝑖𝑑1, 𝑦

)
respectively hosted on providers 𝑃1 and 𝑃2 (see

fares3 in Table 1a). For the sake of simplicity, network bandwidth
in our example is supposed to be constant at 1.0 GB/s.

Our method is a three-step procedure, starting by decomposing
the input query, then generating SLAs for sub-queries and ending
by aggregating the latter.

3Inspired from BigQuery’s pricing policy (https://cloud.google.com/bigquery/pricing)

https://registry.opendata.aws/
https://cloud.google.com/public-datasets
https://cloud.google.com/bigquery/public-data
https://cloud.google.com/bigquery/pricing


BDA 2020, October 2020, Paris (online), France Damien T. Wojtowicz, Shaoyi Yin, and Franck Morvan

3.1 Query decomposition
Inspired by query decomposition techniques [3, 7], we suggest that
multi-cloud queries can be modelled as a directed acyclic graph
(DAG), where vertices are maximal sub-queries involving a minimal
set of providers. Query𝑄 can be decomposed as depicted in Figure 1.
𝑆𝑄1 and 𝑆𝑄2 are maximal sub-queries involving a single provider,
respectively 𝑃1 and 𝑃2. 𝑆𝑄3 and 𝑆𝑄4 involve data from 𝑃1 and 𝑃2
respectively executed on 𝑃1 and 𝑃2.

This decomposition creates two plans, one ending with 𝑆𝑄3 and
the other with 𝑆𝑄4. It is worth noticing that both are similar to
execution plans in distributed databases. In this context, the best
plans usually minimise network transfers [9].

3.2 Mitigation of provider miscalculations
For each sub-query 𝑆𝑄★, a SLA is generated as well as an estima-
tion of the output relation’s size 𝑆 (see Table 1d). Those might not
reflect the actual sub-queries’ output relation size due to internal
cardinality estimation errors [4]. We suggest to keep track of those
estimation errors by computing a supposed error ratio for each
query submitted to the provider as 𝑟 = 𝑆 (𝑅𝑒𝑎𝑙 )

𝑆 (𝑆𝐿𝐴) .
Those ratios are then used to compute 𝑟 , a sliding average of 𝑟

on the last 𝑛 queries exemplified in Table 1f. While being sensitive
to the complexity of the last queries, using a sliding average let our
system take into account changes of the provider’s estimator.

3.3 SLA components aggregation
We use separate methods for each component of the SLA, using
corrected values (see Table 1e). Monetary cost C is the sum of all
sub-queries costs and all transfers costs (see the latter in Table 1b).
Response time 𝑅𝑇 is the sum of the 𝑅𝑇 -maximal path in the DAG,
taking into account cross-providers transfer time.

Due to space limitation, we cannot put the cost formulas in the
paper. We only show the results for illustration purposes. Table 1c
shows the costing for each plan. At the end of the procedure, the
SLA that will be presented to the user, in the context of our example
query 𝑄 , is < 0.184 $, 7.287 𝑠 > stemming from 𝑆𝑄4.

4 RESULT ANALYSIS
Figure 2 depicts the breakdown of each scenario costs. The less
expansive one minimises inter-provider transfers, which is unsur-
prising given the similarity of our setting with distributed systems.
Moreover, there is no significant differences between 𝑆𝑄3 and 𝑆𝑄4
in storage and processing costs.

𝑆𝑄4 is 1.8 times cheaper with an acceptable performance degra-
dation (43%) compared to the download-and-process scenario, thus
amulti-cloud query appears to bemore competitive financially-wise
than the download-all approach.

5 CONCLUSION
Our SLA computation method is a first step towards a middleware
enabling multi-cloud querying in a DBaaS fashion. We showed
that optimal multi-cloud query execution plans should minimise
inter-providers transfers in order to limit costs.

Next steps will involve setting up a SLA-constrained execution
engine. Given that sub-queries’ output relation size is an estimation,

Table 1: Values used for SLA computations

𝑷1 𝑷2
Export 0.060 0.075
Querying 0.006 0.008
Storage 0.003 0.002
(a) Providers’ fares ($/GB)

Transfer Time (s) C ($)
𝑆𝑄1 → 𝑆𝑄4 1.102 0.066
𝑆𝑄2 → 𝑆𝑄3 3.050 0.229
(b) Transfer times and fares

Scenario C ($) 𝑹𝑻 (s)
𝑆𝑄3 0.353 10.762
𝑆𝑄4 0.184 7.287
Download-all 0.335 5.083
(c) Costs of all scenarios

𝑺𝑸_ C ($) 𝑹𝑻 (s) 𝑺 (GB)
𝑆𝑄1 0.009 1.000 1.000
𝑆𝑄2 0.030 2.000 3.000
𝑆𝑄3 0.055 6.000 6.100
𝑆𝑄4 0.061 5.000 6.120

(d) Provider-generated SLA of
each sub-query

𝑺𝑸_ C ($) 𝑹𝑻 (s) 𝑺 (GB)
𝑆𝑄1 0.010 1.102 1.102
𝑆𝑄2 0.031 2.033 3.050
𝑆𝑄3 0.060 6.610 6.720
𝑆𝑄4 0.062 5.083 6.222

(e) Corrected SLAs

Query 1 2 3 4 5 6 𝒓
𝒓 for 𝑷1 1.50 0.90 1.20 1.05 1.01 0.95 1.102
𝒓 for 𝑷2 1.01 1.02 0.95 1.03 1.10 0.99 1.017

(f) Last SLA estimation error ratio for providers and 𝑟 computed
using the last 𝑛 = 6 queries for each provider

𝑆𝑄3 𝑆𝑄4 Download-all
0

0.1

0.2

0.3

0.023 0.019 0

0.101 0.103
0.04

0.229

0.066

0.295

Co
st
($
)

Storage Processing Transfer

Figure 2: Breakdown of each scenario cost. Inter-providers
transfers can tremendously increase the price of a scenario.

the SLA-based optimal plan might not actually be the best. Hence,
methods mitigating estimation errors, such as mobile-agent-based
models [1] implementing reinforcement learning, appear to be
relevant for the execution of multi-cloud queries.

REFERENCES
[1] J.-P. Arcangeli, F. Morvan, A. Hameurlain, and F. Migeon. 2004. Mobile Agents

Based Self-Adaptive Join for Wide-Area Distributed Query Processing. Journal of
Database Management 15, 4 (2004), 25–44.

[2] D. Bermbach, M. Klems, S. Tai, and M. Menzel. 2011. MetaStorage: A Federated
Cloud Storage System to Manage Consistency-Latency Tradeoffs. IEEE CLOUD,
452–459. Washington, USA.

[3] A. Gounaris, Z. Karampaglis, A. Naskos, and Y. Manolopoulos. 2014. A Bi-Objective
Cost Model for Optimizing Database Queries in a Multi-Cloud Environment.
Journal of Innovation in Digital Ecosystems 1, 1 (2014), 12–25.

[4] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. 2015. How
Good Are Query Optimizers, Really? Proc. VLDB Endow. 3, 9 (2015), 204–215.

[5] A. Rafique, D. van Landuyt, E. Truyen, V. Reniers, andW. Joosen. 2019. SCOPE: Self-
Adaptive and Policy-Based Data Management Middleware for Federated Clouds.
Journal of Internet Services and Applications 10, 1 (2019), 2.

[6] L Wang, Z Yang, and X Song. 2020. SHAMC: A Secure and Highly Available
Database System in Multi-Cloud Environment. FGCS 105 (2020), 873–883.

[7] E. Wong and K. Youssefi. 1976. Decomposition — a Strategy for Query Processing.
ACM TODS 1, 3 (1976), 223–241.

[8] S. Yin, A. Hameurlain, and F. Morvan. 2018. SLA Definition for Multi-Tenant
DBMS and its Impact on Query Optimization. IEEE TKDE 30, 11 (2018), 2213–2226.

[9] M. T. Özsu and P. Valduriez. 2020. Principles of Distributed Database Systems (4
ed.). Springer International Publishing.


	Abstract
	1 Introduction
	2 Related Work
	3 SLA Definition Method
	3.1 Query decomposition
	3.2 Mitigation of provider miscalculations
	3.3 SLA components aggregation

	4 Result analysis
	5 Conclusion
	References

