
HAL Id: hal-03158703
https://ut3-toulouseinp.hal.science/hal-03158703

Submitted on 11 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Upregulation of Bone Morphogenetic
Protein-1/Mammalian Tolloid and Procollagen
C-Proteinase Enhancer-1 in Corneal Scarring

François Malecaze, Dawiyat Massoudi, Pierre Fournié, Cyrielle Tricoire,
Myriam Cassagne, Marilyne Malbouyres, David J. S. Hulmes, Catherine

Moali, Stéphane Galiacy

To cite this version:
François Malecaze, Dawiyat Massoudi, Pierre Fournié, Cyrielle Tricoire, Myriam Cassagne, et al..
Upregulation of Bone Morphogenetic Protein-1/Mammalian Tolloid and Procollagen C-Proteinase
Enhancer-1 in Corneal Scarring. Investigative Ophthalmology & Visual Science, 2014, 55 (10),
pp.6712-6721. �10.1167/iovs.13-13800�. �hal-03158703�

https://ut3-toulouseinp.hal.science/hal-03158703
https://hal.archives-ouvertes.fr


Cornea

Upregulation of Bone Morphogenetic Protein-1/
Mammalian Tolloid and Procollagen C-Proteinase
Enhancer-1 in Corneal Scarring

Francois Malecaze,1,2 Dawiyat Massoudi,1 Pierre Fournié,1,2 Cyrielle Tricoire,1
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PURPOSE. To characterize the expression of the bone morphogenetic protein-1 (BMP-1)/tolloid-
like proteinases (collectively called BTPs), which include BMP-1, mammalian tolloid (mTLD),
and mammalian tolloid-like 1 (mTLL-1) and 2 (mTLL-2), as well as the associated proteins
procollagen C-proteinase enhancers (PCPE-1 and -2), in corneal scarring.

METHODS. Using a mouse full-thickness corneal excision model, wound healing was followed
for up to 28 days by transmission electron microscopy, immunohistology (BMP-1/mTLD and
PCPE-1), and quantitative PCR (Q-PCR: collagen III, BMP-1/mTLD, mTLL-1, mTLL-2, PCPE-1,
PCPE-2). Bone morphogenetic protein-1/mTLD and PCPE-1 were also immunolocalized in
cases of human corneal scarring following injuries.

RESULTS. In the mouse model, throughout the follow-up period, there was a large increase in
collagen III mRNA expression in the stroma. By transmission electron microscopy, there was
marked cellular infiltration into the wound as well as disorganization of collagen fibrils, but no
significant difference in fibril diameter. In control corneas, by Q-PCR, BMP-1/mTLD showed
the highest expression, compared to low levels of mTLL-1 and undetectable levels of mTLL-2,
in both epithelium and stroma. Following wounding, both BMP-1/mTLD and PCPE-1 mRNA
and protein increased, while PCPE-2 mRNA decreased. Finally, by immunofluorescence, BMP-
1/mTLD and PCPE-1 were strongly expressed in the scar region in both mouse and human
corneas.

CONCLUSIONS. Bone morphogenetic protein-1/mTLD and PCPE-1 are upregulated in corneal
scars. Both proteins may therefore contribute to the process of corneal scarring.
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Corneal scars are associated with a loss of visual acuity and
with blindness in the most severe cases. Corneal scarring is

the major complication of refractive surgery and has become an
important concern in ophthalmology.1–5 Such scarring results
from poor wound healing following surgery but also from other
forms of trauma or infections. Due to the difficulties in
anticipating and treating corneal scar, corneal transplantation
remains the most efficient treatment available so far but also
suffers from major drawbacks (lack of donors, graft rejection).

Corneal wound healing is a complex process orchestrated
mainly by growth factors, cytokines, and extracellular proteas-
es. Among growth factors, IL-1a, TGF-b2, and platelet-derived
growth factor (PDGF) have been assigned important roles and,
in the case of basement membrane disruption, can diffuse from
their site of production, in the epithelial layer, toward the
stroma.6 However, persistent epithelial–stromal interactions are
known to have deleterious effects on the healing process and
are often responsible for the observed failures of photo-
refractive keratectomy (PRK).

Extracellular proteases have also been implicated in wound
healing, where they can play various roles, ranging from
synthesis/degradation of extracellular matrix proteins and
activation/inactivation of cytokines and growth factors to the
modulation of cell–matrix interactions and cell phenotype.7

During the healing response, these proteases are provided by
the tear fluid, sparse inflammatory cells invading the cornea
from the surrounding limbus, injured epithelial cells, and
stromal cells, which, depending on their state of activation,
are called keratocytes, fibroblasts, or myofibroblasts. While
matrix metalloproteinases (MMPs) and serine proteases from
the plasmin system have attracted most attention,2,8,9 the
proteases involved in the reconstitution of the basement
membrane, in the synthesis of the provisional extracellular
matrix allowing cell migration, and, at later stages, in the
formation of the mature scar tissue, have been studied to a
much lesser extent. The main proteases involved in matrix
protein maturation are the bone morphogenetic protein-1
(BMP-1)/tolloid-like proteinases (collectively called BTPs), a
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small family of four metalloproteinases10: BMP-1, mammalian
tolloid (mTLD), mammalian tolloid-like 1 (mTLL-1), and
mammalian tolloid-like 2 (mTLL-2). Bone morphogenetic
protein-1 and mTLD are alternatively spliced products of the
same gene. In particular, these proteinases are involved in the
proteolytic maturation of the fibrillar procollagens. In cornea,
these include procollagens I and V, the most abundant
components of corneal stroma, as well as procollagen III, a
transient marker of the fibrotic evolution of corneal healing.
More specialized roles in procollagen processing are played
by the procollagen N-proteinase ADAMTS-211 and by the
meprin proteinases, which have recently also been shown to
be involved in propeptide processing of procollagens I and
III.12,13

It is noteworthy that the BTPs are assisted during collagen
maturation by two enhancing proteins, the procollagen C-
proteinase enhancers (PCPE-1, PCPE-2), which lack intrinsic
catalytic activity but can activate C-propeptide removal by
BTPs by up to 20-fold.14–16 Despite the prominent roles played
by BMP-1/tolloid-like proteinases in collagen fibril formation,
their direct implication in wound healing and scarring has
never been studied. However, there is some evidence that BTPs
could be involved in the excessive accumulation/disorganiza-
tion of collagen fibrils that is the hallmark of fibrotic disease.
For example, these enzymes have been found to be upregu-
lated in a model of cardiac fibrosis,17 and recombinant mTLD
seems to promote renal fibrosis in rats with chronic kidney
disease.18 It has also recently been observed that human
trabecular meshwork cells express BMP-1 in culture in which
expression was increased when cells were of glaucomatous
origin,19 thereby possibly contributing to increased matrix
stiffness.

In addition, PCPE-1 has also been found to be upregulated
in a model of cardiac fibrosis,20 as well as in carbon
tetrachloride–induced liver fibrosis.21 Furthermore, ablation
of PCPE-2 expression in mouse results in decreased myocardial
collagen accumulation in chronic pressure overload induced
by transverse aortic constriction.22

Besides their role in collagen maturation, BTPs cleave a
number of other proteins potentially important for collagen
deposition, especially the pro-forms of lysyl oxidases involved
in the formation of cross-links in collagen fibrils, and also
several small leucine-rich proteoglycans (including decorin,
biglycan, and mimecan/osteoglycin),7,10,23 which associate
with collagen fibrils and regulate their diameter and spacing.
In addition, these proteinases are involved in basement
membrane and anchoring filament assembly through the
cleavage of laminin 33224 and procollagen VII,25 respectively.
More recently, BMP-1/tolloid-like proteinases were shown to
play a major role in the activation of TGF-b26 and in the control
of the angiogenic properties of perlecan,27 two potentially
important activities during corneal wound healing.

In view of these multiple substrates, it can be predicted that
BTPs could be crucial in multiple aspects of wound healing.
This, however, has never been experimentally demonstrated.
In the present study, we monitored the expression of the
various isoforms of these proteinases and their enhancers
(PCPE-1 and -2) in normal and wounded mouse corneas. For
the first time, the most important isoforms involved in corneal
wound healing and scarring could be identified. Their
expression was monitored up to 28 days post injury and was
found to be very specific to the remodeling zone. In addition,
we demonstrated strong immunostaining for BMP-1/mTLD and
PCPE-1 in the injured areas of corneas from human patients,
thereby confirming that BMP-1/tolloid-like proteinases and
PCPEs are important players in corneal wound healing and
could potentially participate in the development of stable
corneal scars.

MATERIALS AND METHODS

Animals and Corneal Scarring Model

C57BL/6 female mice aged from 12 to 16 weeks were used in
this study. All experimental procedures were approved by the
Ethical Committee of the Centre of Physiopathology Toulouse
Purpan and conducted in accordance with the ARVO
Statement for the Use of Animals in Ophthalmic and Vision
Research.

Anesthesia was performed by intraperitoneal injection of 20
mg/kg ketamine hydrochloride (Panpharma, Luitré, France)
and 8.8 mg/kg xylazine hydrochloride (Bayer Healthcare, Loos,
France). Before surgery, atropine sulfate ophthalmic solution
1% (Alcon Laboratories, Inc., Fort Worth, TX, USA), as well as
0.4% oxybuprocaine (Novartis Pharma Schweiz AG, Rotkreuz,
Switzerland), was applied topically. Euthanasia was performed
after inhalation of isoflurane, followed by dislocation of
cervical vertebrae. All surgical procedures were performed
by the same surgeon to ensure consistency across specimens.

The murine full-thickness excision model was adapted from
the penetrating keratectomy model described by Stramer et
al.28 Surgery was performed on the left eyes. Briefly, a 0.75-mm
full-thickness button of central cornea tissue including all three
corneal tissue layers (epithelium, stroma, and endothelium)
was ablated. A 26-gauge needle was used to mark the area that
was then removed with microdissecting scissors.

The animals were then euthanized at specific intervals of
healing (day 7, 14, 21, or 28). Each left eye was removed and
embedded in Tissue-Tek optimum cutting temperature (OCT)
compound (Sakura Finetek Europe B.V., Zoeterwoude, The
Netherlands) for histology procedures. Alternatively, the left
eyes were dissected to collect the corneal epithelium and
corneal stroma for mRNA extraction and subsequent RT–
quantitative (Q)-PCR analysis. Control samples were collected
from left and right eyes of mice, following the same
experimental procedure (anesthesia, atropine, oxybupro-
caine), but no surgery was performed.

Human Corneas

Five corneas were included in this study: Four human corneas
presenting permanent stromal scars were collected after
transplantation, and one normal human cornea obtained after
enucleation for melanoma was also collected. Control cornea
was processed within 6 hours after death and immediately after
enucleation. Table 1 summarizes clinical conditions and
parameters of the different corneas.

Datas on cornea from patients P1, P2, and C1 were
previously published, and we discussed that in the case of
P2, this type of condition presented traumatic areas following
the infectious phase, with presence of alpha smooth muscle–
positive cells.29 Corneas were embedded in Tissue-Tek OCT
compound (Sakura Finetek Europe B.V.) just after surgery.
Corneal samples were intended for destruction after surgery.
This study adhered to the tenets of the Declaration of Helsinki.

Electron Microscopy

For transmission electron microscopy, corneas were first
briefly rinsed twice in PBS and then fixed overnight at room
temperature in 2.5% glutaraldehyde and 2% paraformaldehyde
in 0.1 M sodium cacodylate pH 7.4. After a few washes in 0.1 M
sodium cacodylate pH 7.4, specimens were postfixed in 1%
osmium tetroxide 0.1 M cacodylate pH 7.4 for 45 minutes, then
dehydrated in a graded ethanol series (30%–100%) and
embedded in epoxy resin. To locate areas of interest, semithin
sections (0.3 lm) stained with methylene blue/Azur II were
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first observed histologically using a Leica (Wetzlar, Germany)
light microscope equipped with a digital camera (Nikon,
Champigny sur Marne, France). Ultrathin 65-nm sections were
stained with uranyl acetate and lead citrate and then examined
in a Philips (Suresnes, France) CM120 electron microscope
equipped with a GATAN Orius 200 2Kx2K digital camera
(Centre Technique des Microstructures, Université Claude
Bernard Lyon I, Villeurbanne, France). Collagen fibril diameters
were measured with ImageJ software (National Institute of
Mental Health, Bethesda, MD, USA), selecting fibrils in (near)
transverse section using the ellipse function, with the
minimum dimension used as a measure of fibril diameter.

Immunohistochemistry

The following antibodies and dilutions were used. Mouse
samples: rat monoclonal IgG1 anti-mouse PCPE-1 (MAB2239;
R&D Systems, Minneapolis, MN, USA) 1:100, AlexaFluor 555
goat anti-rat IgG 1:400 (Invitrogen Molecular Probes, Eugene,
OR, USA), rat monoclonal IgG2b anti-human BMP-1 (MAB1927;
R&D Systems) 1:100, rat IgG1 isotype control (MAB005; R&D
Systems), rat IgG2b isotype control (MAB0061; R&D Systems),
and rabbit serum (R9133; Sigma, Saint-Quentin Fallavier,
France). Human samples: rat monoclonal IgG2b anti-human
BMP-1 (MAB1927; R&D Systems) 1:100, rabbit polyclonal IgG
anti-human PCPE-1 (P6243; Sigma) 1:200, and AlexaFluor 546
goat anti-rabbit IgG (Invitrogen Molecular Probes) 1:400.

Briefly, corneal cryostat sections (7–10 lm thick) were
used. Samples were fixed with paraformaldehyde 4% at 48C,
then permeabilized with Triton X-100. Primary and secondary
antibodies were incubated for 2 and 1 hour(s), respectively, at
room temperature in a humidified dark chamber. No primary
antibody or appropriate isotype control immunolabeling was
performed at the same time. Final mounting of tissue sections
was performed with ProLong Gold antifade reagent with 40,6-
diamidino-2-phenylindole (DAPI; Molecular Probes). Sections
were observed 24 hours later, using the 310 or 340 objective
of a Leica DMR microscope. Images were acquired using a
Leica DFC 300 FX camera and IM50 software (Leica) at 400 ms
for the 310 objective and 260 ms for the 340 objective. These
exposure times were determined from the control conditions
(unwounded) and applied to the other samples.

Alpha smooth muscle actin (aSMA) staining was performed
as previously described.29

Reverse Transcriptase–Real-Time Polymerase
Chain Reaction

Total RNA was extracted using the Qiagen MicroRNA
extraction kit according to the manufacturer’s recommenda-
tions (Qiagen, Valencia, CA, USA). The RNA integrity number
(RIN) was determined with an Agilent 2000 nanochip kit
(Agilent, Waldbronn, Germany). Each sample used had an RIN
of at least 7.

Reverse transcriptase–PCR was performed using the Invitro-
gen Superscript III VILO kit according to the manufacturer’s
recommendations (Invitrogen, Carlsbad, CA, USA). Real-time PCR

was performed on 50 pg cDNA in a Roche LightCycler 480 using
Roche supermix for PCR (Roche, Boulogne-Billancourt, France).
Polymerase chain reaction efficiency was determined for each
primer set to calculate the expression ratio. For the stroma,
normalization was performed using three housekeeping genes
(vimentin, tyrosine 3 monooxygenase, b2-microglobulin), as
previously described.30 Primer sequences were BMP-1/mTLD
(F: GTCTAT
GAAGCCATTTGCGG, R: GACGCTCAATCTCAAAGGAC), PCPE-1
(F: CTCAAACCAGGTGATCATGC, R: AGAGATGGGGC
TAGGGGCCT), PCPE-2 (F: CGCCAGAGAGACCTGTTTTC, R:
CCTCAGGAACTGTGATTTTC), TLL-1 (F: GGCTGGAGTTCTTA
CATCTACG, R: CTTATCTCCCCTCCACAAATCG), TLL-2 (F: GTA
TATGAAGCCATGTGTGG, R: GCCTTTCGATCTCGAAGGAC),
COL1A1 (F: CGGCTCCTGCTCCTCTTAG, R: CTGTCCAGG
GATGCCATCT), COL3A1 (F: GGCCCTCCTGGTATTCCTG, R:
GCCAATTCCTCCTATGCCAG), vimentin (F: CAAGTC
CAAGTTTGCTGACC, R: CTCCGGTACTCGTTTGACTC), tyrosine
3 mono-oxygenase (F: TGGATAAGAGTGAGCTGGTACA, R:
CGTGTCCCTGCTCTGTTACG), b2-microglobulin (F:
TTCTGGTGCTTGTCTCACTGA, R: CAGTATGTTCGGCTTCC
CATTC). For the epithelium, we used three other housekeeping
genes for normalization as previously described29: ubiquitin C (F:
AACCCACAGTATATCTTTGGCG, R: CCCTCACTAGGTTCGAT
GACTTC), tatabox (F: TGCCGAAAGATGCACAGATGA, R:
T G T T G T C AC ATAT C G G A AG G C ) , a n d b- a c t i n ( F :
CGGTCCACCCGCCACCAGTTCGCCA, R: TCCCACCATCA
CACCCTGGTGCCTA). The fold change in gene expression was
calculated using the 2 DDCT ratio according to a previously
described method.31 All PCR products were checked by
sequencing (Millegen, Toulouse, France).

Statistical Analysis

For all experiments, group-to-group comparisons were per-
formed using a nonparametric Wilcoxon test.

RESULTS

Wound healing was followed in mouse corneas after full-
thickness excision, using the model described by Stramer et
al.28 As previously described,29,30 by microscopic examination,
histology, and immunolabeling for aSMA, this model shows
scar formation with differentiation of keratocytes into myofi-
broblasts and maximum corneal opacity occurring 14 days post
surgery. Opacity could still be observed at least 7 months post
injury.

We also examined control and wounded corneas (day 14)
by transmission electron microscopy (Fig. 1). In control
corneas, the epithelial basement membrane was well defined
and was associated with numerous hemidesmosomes underly-
ing epithelium (Fig. 1A). The stroma showed the typical
multilayer organization (Fig. 1C) with collagen fibrils, of 27.4
6 3.9-nm (n ¼ 288) uniform diameter (Fig. 1E), interspersed
by extended quiescent keratocytes. In the wounded corneas,
both the epithelium and endothelium had reformed well (not
shown). There was also an almost continuous basement

TABLE 1. Description of Human Corneas

Number Age Sex Etiology Age of Scar, y Scar Characteristics

P1 40 M Physical trauma, barbed wire 1.5 Central opacity, all stromal depth, perforating trauma

P2 22 F Herpetic keratitis 5 Central anterior stroma opacity

P3 36 M Physical trauma, tree branch 14 Complete stromal opacity, all stromal depth, perforating trauma

P4 38 F Physical trauma, knife 24 Central anterior opacity, perforating trauma

C1 75 M No history of corneal pathology
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FIGURE 1. Transmission electron microscopy of control (A, C, E) and wounded corneas (B, D, F), the latter 14 days after surgery. (A, B) Epithelial
basement membrane region, showing the epithelium (ep), stroma (st), basement membrane (bm), and hemidesmosomes (hd). Scale bars: 200 nm.
(C, D) Stroma, showing collagen fibrils and a keratocyte (ke). Scale bars: 2 lm. (E, F) High-magnification view of collagen fibrils in the stroma. Scale

bars: 200 nm.
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membrane, which in some areas seemed somewhat diffuse
compared to that in control corneas (Fig. 1B). The collagen
fibrils in the stroma of the wounded corneas were relatively
disorganized and less tightly packed, and there was widespread
cellular infiltration and keratocyte activation (Fig. 1D). In
contrast, there were no significant differences, compared to
control corneas, in the appearance or diameter of the collagen
fibrils (diameter 28.1 6 3.9 nm, n¼ 245; Fig. 1F).

In initial studies by Q-PCR on control corneas, expression of
BMP-1/mTLD and mTLL-1 was detected in both epithelium and
stroma (Table 2). Expression of mTLL-1 was relatively weak,
however, while mTLL-2 was not detected at all. In addition,
both PCPE-1 and PCPE-2 were detected in both epithelium and
stroma. In control stroma, PCPE-1 mRNA levels were 4-fold
higher than levels of PCPE-2 mRNA, and approximately 5-fold
higher than for BMP-1/mTLD. In control epithelium, PCPE-1
was still the most expressed mRNA with levels approximately
2-fold higher than for PCPE-2 and approximately 3-fold higher
than for BMP-1/mTLD.

As previously described,29,30 we used type III collagen
expression as a positive marker of scar formation. Here we
found that collagen III expression remained high throughout
the follow-up period after surgery, starting to decrease at 28
days (Fig. 2A).

Bone morphogenetic protein-1/mTLD stromal expression
was significantly increased by factors of 1.61 6 0.17, 1.51 6
0.15, and 1.36 6 0.05, respectively, at days 7, 14, and 28 after
wounding (P < 0.01, Fig. 2B). Expression of PCPE-1 in the
stroma was also consistently increased, by factors of 1.44 6
0.08, 1.40 6 0.15, and 1.63 6 0.14 at days 14, 21, and 28,
respectively (P < 0.01, Fig. 2B). Surprisingly, expression of
PCPE-2 (albeit starting from a relatively low level; Table 2) was
markedly reduced by factors of 0.21 6 0.03, 0.50 6 0.08, 0.38
6 0.09, and 0.42 6 0.08 of control levels at days 7 to 28 (P <
0.001, Fig. 2B). It should be noted that entire stroma were used
for the Q-PCR analysis, including both the wound region and
the surrounding tissue.

Similar changes in expression were seen in the corneal
epithelium, though the increase in BMP-1/mTLD expression
was much greater than in the stroma (Fig. 2C). Bone
morphogenetic protein-1/mTLD expression was significantly
increased by factors of 3.00 6 0.65, 3.83 6 0.96, and 2.60 6
0.44 at days 7, 14, and 21, respectively (P < 0.001, Fig. 2C).
Expression of PCPE-1 was also significantly increased by
factors of 1.59 6 0.18, 2.08 6 0.30, and 1.64 6 0.19 at days
14, 21, and 28, respectively (P < 0.001, Fig. 2C). As in the

stroma, PCPE-2 expression was significantly decreased by
factors of 0.30 6 0.11, 0.17 6 0.04, 0.21 6 0.05, and 0.33 6

0.08 of control levels at days 7 to 28 (P < 0.0001, Fig. 2C).
By immunohistochemistry, relatively high levels of BMP-1/

mTLD protein were detected in the epithelium of control
corneas, with only weak labeling in the stroma (Fig. 3A). Seven
days after surgery, there was a strong increase in BMP-1/mTLD
expression in the stroma that was localized to the wound area
(Fig. 3B) and persisted until days 21 and 28, albeit to a lower
extent (Figs. 3C, 3D). Throughout the follow-up period,
expression of BMP-1/mTLD in the epithelium remained strong.

For PCPE-1 (Fig. 3E), there was only weak labeling in the
stroma of control corneas. Following surgery, as for BMP1/
mTLD, there was a strong increase in protein expression,
confined to the wound area of the stroma, at day 7 (Fig. 3F).
Expression of PCPE-1 remained high throughout days 21 and
28 (Figs. 3G, 3H). Finally, there was no detectable expression
of PCPE-1 protein in the epithelium, in contrast to the results
from Q-PCR analysis (see above).

Finally, we asked whether BMP-1/tolloid-like proteinases
were also upregulated in corneal scarring in human patholo-
gies (Fig. 4). Several types of lesion were investigated:
mechanical traumas (P1, P3, and P4) and following herpetic
keratitis (P2). All mechanical traumas were perforating. The P2
cornea was affected by herpetic keratitis and was used to
evaluate the consequences of persistent inflammation on the
expression of BMP-1/mTLD and PCPE-1. As in the mouse
model, increased expression of both BMP-1 and PCPE-1 was
seen in the scar area in all cases (white arrows point toward
the wound area). Interestingly, in contrast with our observa-
tions in mouse corneas, PCPE-1 immunostaining was also seen
in the epithelium of human corneas.

DISCUSSION

Here we show, for the first time, that corneal repair is
associated with an upregulation, in the wound region, of the
expression of both BMP-1/mTLD proteinase and its enhancer
PCPE-1. Considering their substrate specificity toward extra-
cellular matrix components, such an upregulation would be
expected for the reconstitution of the extracellular matrix
following injury. However, the extent to which this contributes
to the observed corneal scar is unclear. Various phenomena are
thought to contribute to the appearance of corneal scar-
ring.32–35 One factor is the increased light scattering due to the

TABLE 2. Messenger RNA Expression Levels in Mouse Corneal Epithelium and Stroma, Normalized to a Set of Housekeeping Genes (HKG), for
Control (Unwounded) and Wounded Corneas up to 28 Days Post Surgery

mRNA Expression Levels, % HKG (6SEM)

Name Control 7 d 14 d 21 d 28 d

Epithelium

BMP-1/mTLD 3.07 (0.1) 8.78 (1.26)* 11.58 (2.89)* 7.86 (1.32)* 3.98 (0.62)

TLL-1 <0.03 <0.03 <0.03 <0.03 <0.03

TLL-2 NA NA NA NA NA

PCPE-1 8.47 (0.32) 9.06 (1.96) 13.18 (1.47)* 17.24 (2.49)* 13.61 (1.59)*

PCPE-2 4.39 (0.21) 1.25 (0.48)* 0.72 (0.15)* 0.90 (0.23)* 1.41 (0.34)*

Stroma

BMP-1/mTLD 4.05 (0.32) 6.25 (0.66)* 5.87 (0.56)* 4.61 (0.53) 5.12 (0.24)*

TLL-1 <0.03 <0.03 <0.03 <0.03 <0.03

TLL-2 NA NA NA NA NA

PCPE-1 19.88 (1.11) 25.88 (2.62) 27.96 (1.88)* 27.17 (2.93)* 30.84 (2.59)*

PCPE-2 5.76 (0.67) 1.09 (0.13)* 2.57 (0.41)* 1.94 (0.46)* 1.95 (0.44)*

* Significant changes (P < 0.05).
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FIGURE 2. Quantitative-PCR analysis of fold change in gene expression in the stroma (A, B) and (C) epithelium during mouse corneal wound repair.
(A) Collagen III, (B, C) BMP-1/mTLD, PCPE-1, and PCPE-2. Significant changes (P < 0.05) are indicated by asterisk.
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presence of inflammatory cells and activated keratocytes,
involving changes in cell crystallins that alter their refractive
properties.33 In the mouse model described here, keratocyte
differentiation into myofibroblasts was previously demonstrat-
ed by the expression of aSMA,29,30 and the electron
microscopy analysis carried out here also shows clear evidence
of cellular infiltration into the wound zone. Differentiation of
corneal keratocytes into myofibroblasts is triggered by TGF-b;
and since BMP-1 is known to be involved in the activation of
TGF-b,26 this is one way in which overexpression of BMP-1/
mTLD could contribute to corneal scar.

Another factor contributing to scarring is the increased
disorganization of the normally highly organized stromal
collagen network that results in increased destructive interfer-
ence of scattered light and hence reduced transparency.35–37

This might involve increase in collagen fibril diameter and in
the interfibrillar spacing, both of which are regulated by the

small leucine-rich proteoglycans (including lumican, kerato-
can, mimecan/osteoglycin, decorin, and biglycan in the
cornea38). Changes in the relative proportions of these
proteoglycans during corneal wound healing in a rabbit model
have been observed.39 In addition, increased corneal thickness
and amount of extracellular matrix deposition, including
collagen, could also increase scattering, though again in the
rabbit model there is no evidence of excessive collagen
deposition.40,41 In the observations reported here using the
mouse model, there were no differences in fibril diameter
compared to controls. There was, however, increased disorga-
nization of the collagen fibrils, probably in relation to the
upregulation of BMP-1, which is known to intervene at several
levels in collagen fibril assembly7,10 (procollagen processing,
proteoglycan maturation, lysyl oxidase–induced cross-linking).

All in all, there are a number of ways by which increased
BMP-1 and PCPE-1 expression might lead to corneal scarring.

FIGURE 3. Immunohistochemistry of BMP-1/mTLD (A–D) and PCPE-1 (E–H) expression in control (A–E) and wounded corneas, the latter at days 7
(B, F), 21 (C, G), and 28 (D, H), respectively. DAPI-staining nuclei in blue. Scale bar: 25 lm.
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Further studies are required (currently in progress) using
specific inhibitors and gene inactivation to study the effects of
reducing proteolytic activity through this proteinase/enhancer
system.

The relatively strong expression of BMP-1 in the corneal
epithelium is intriguing. Since control corneas also display
strong BMP-1/mTLD immunostaining, it seems likely that BMP-
1/mTLD plays a role in corneal epithelial homeostasis.
Somewhat different observations have been made in fetal and
adult skin, where BMP-1/mTLD expression is found mainly in
the basal layer of the epidermis.24,25 Such an epithelial
localization would be consistent with the known roles of
BMP-1 in cleavage of the basement membrane proteins
perlecan27 and laminin 332,24,42 as well as in the processing
of procollagen VII leading to the formation of anchoring fibrils
linking the basement membrane to the underlying dermis.25

Surprisingly, while previous studies43 have shown that human
skin keratinocytes do not express PCPE-1, we report here
mRNA expression for PCPE-1 in the corneal epithelium. These
observations also differ from our immunohistochemical data in
mice, which show expression of BMP-1/mTLD, but not PCPE-1,
in the epithelium. This difference is probably due to poor
antibody sensitivity.

Expression of PCPE-1 mRNA in the cornea was found to
increase during wound healing. However, expression of PCPE-2,
albeit present at much lower levels than PCPE-1 in normal
cornea, is decreased. Previous studies suggest that PCPE-1 and -2
show tissue-specific expression.15,44 Our data strengthen these
observations and suggest that PCPE-1 is corneal specific, while

PCPE-2 could be specific to other tissues/functions with, for
example, a prominent role in lipid metabolism.45

Finally, we confirmed that BMP-1/mTLD and PCPE-1
overexpression was also found in humans. Several studies
have previously identified these proteins in normal cor-
neas.46–48 We confirmed and observed a weak expression in
the unwounded human cornea. In contrast, we observed that
both BMP-1/mTLD and PCPE-1 expression were increased in
the stromal scar areas and in inflammatory situations (here
herpetic keratitis). This suggests that BMP-1/mTLD and PCPE-1
are as active in human scars as they are during mouse corneal
repair. While the precise mechanisms involved remain to be
elucidated, the clear association of BMP-1/mTLD and PCPE-1
with corneal scarring in both the mouse and human situations
suggests that these proteins may represent future therapeutic
targets.
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Centre de Recherche de Chirurgie Expérimentale Claude Bernard
(Centre Hospitalier Universitaire, Purpan, Toulouse, France) for
animal care and experiments. We also thank Talal Al Saati and
Florence Capilla from the histopathology core facility for their
technical assistance (Anexplo/GenoToul; UMS 06). Finally, we
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