

Performance evaluation of the Vela Dx Sentosa next-generation sequencing system for HIV-1 DNA genotypic resistance

Stéphanie Raymond, Florence Nicot, Florence Abravanel, Luce Minier, Romain Carcenac, Caroline Lefebvre, Agnès Harter, Guillaume Martin-Blondel, Pierre Delobel, Jacques Izopet

▶ To cite this version:

Stéphanie Raymond, Florence Nicot, Florence Abravanel, Luce Minier, Romain Carcenac, et al.. Performance evaluation of the Vela Dx Sentosa next-generation sequencing system for HIV-1 DNA genotypic resistance. Journal of Clinical Virology, 2020, 122, pp.104229. 10.1016/j.jcv.2019.104229 . hal-03155829

HAL Id: hal-03155829 https://ut3-toulouseinp.hal.science/hal-03155829v1

Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S1386653219302598 Manuscript_d7d7dbb3f582d2edd910902302d173fe

1 Performance Evaluation of the Vela Dx Sentosa Next-Generation Sequencing 2 System for HIV-1 DNA Genotypic Resistance 3 4 Running title: NGS for HIV-1 DNA genotyping 5 Stéphanie RAYMOND^{1,2*}, Florence NICOT², Florence ABRAVANEL^{1,2}, Luce 6 7 MINIER², Romain CARCENAC², Caroline LEFEBVRE², Agnès HARTER², Guillaume 8 MARTIN-BLONDEL^{1,3}, Pierre DELOBEL^{1,3} and Jacques IZOPET^{1,2} 9 ¹ INSERM U1043 – CNRS UMR 5282 – Toulouse University Paul Sabatier, CPTP, 10 Toulouse, F-31300 France 11 12 ²CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300 13 France 14 ³CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, 15 Toulouse, F-31300 France 16 17 *Corresponding author: Stéphanie Raymond, CHU de Toulouse, Hôpital Purpan, 18 Laboratoire de Virologie, 330 avenue de Grande Bretagne, Toulouse, F-31300, 19 France 20 Tel: +33 5 67 69 04 24; Fax: +33 5 67 69 04 25; E-mail: raymond.s@chu-toulouse.fr 21 22 23 Abstract word count: 246 24 Text word count: 1300 25

20

27 Highlights

- HIV-1 DNA resistance genotyping may help guiding treatment simplification
- We compared the Sentosa NGS assay with Sanger sequencing for DNA
 genotyping
- Automated DNA extraction and NGS accurately predicted HIV DNA drug
 resistance
- Further investigation should clarify the clinical impact of resistance in DNA

34 **Abstract**

Background: Patients on antiretroviral therapy could benefit from HIV-1 DNA
 resistance genotyping for exploring virological failure with low viral load or to guide
 treatment simplification. Few new generation sequencing data are available.

38 **Objective:** To check that the automated deep sequencing Sentosa platform (Vela 39 DX) detected minority resistant variants well enough for HIV DNA genotyping.

Study design: We evaluated the Sentosa SQ HIV genotyping assay with automated
extraction on 40 DNA longitudinal samples from treatment-experienced patients by
comparison with Sanger sequencing. HIV drug resistance was interpreted using the
ANRS algorithm (v29) at the threshold of 20% and 3%.

44 **Results:** The Sentosa SQ HIV genotyping assay was 100% successful to amplify 45 and sequence PR and RT and 86% to amplify and sequence IN when the HIV DNA load was >2.5 log copies/million cells. The Sentosa and Sanger sequencing were 46 47 concordant for predicting PR-RT resistance at the threshold of 20% in 14/18 samples 48 successfully sequenced. A higher level of resistance was predicted by Sentosa in three samples and by Sanger in one sample. The prevalence of resistance was 7% 49 50 to PI, 59% to NRTI, 31% to NNRTI and 20% to integrase inhibitors using the Sentosa 51 SQ genotyping assay at the threshold of 3%. Seven additional mutations <20% were 52 detected using the Sentosa assay.

53 **Conclusion:** Automated DNA extraction and sequencing using the Sentosa SQ HIV 54 genotyping assay accurately predicted HIV DNA drug resistance by comparison with 55 Sanger. Prospective studies are needed to evaluate the clinical interest of HIV DNA 56 genotyping.

57 Keywords: next-generation sequencing; drug resistance; reverse transcriptase;
58 integrase; DNA genotyping

59 **1. Background**

Human immunodeficiency virus (HIV) genotypic resistance testing is recommended 60 61 before treatment initiation and to optimize antiretroviral treatment after treatment 62 failure [1]. Testing usually involves Sanger sequencing or deep sequencing of 63 plasma samples to detect minority resistant variants (<15-20%) [2-6]. Sequencing of 64 proviral DNA can provide useful information for individuals with a low virus load at the 65 time of virological failure or with undetectable plasma HIV RNA and no previous 66 genotype to guide treatment simplification [7–9]. Drug-resistant mutations identified in 67 DNA can predict virological rebound in patients switching treatments [8]. The lack of automation of Illumina sequencing platforms limits its use for HIV genotyping in 68 69 clinical practice [10,11]. The semi-automated Sentosa platform (Vela DX) has been 70 developed for routine HIV-1 genotyping on plasma RNA [12-14] but a recent study 71 has shown a high failure rate of the runs [15]. Thus, the performance of an 72 automated extraction and HIV DNA genotyping must be assessed in the context of 73 an increasing routine use of those tests.

74

75 **2. Objective**

We aimed to evaluate the performance of the Sentosa next-generation sequencing (NGS) system for genotyping HIV DNA samples by comparison with Sanger sequencing. We also evaluated an external DNA automated extraction before introduction of nucleic acids on the platform.

80

3. Study design

We tested longitudinal samples from 40 patients with HIV-1 infection treated at the Toulouse University Hospital for HIV DNA genotypic resistance. The plasma HIV RNA was below 30 copies/mL (Aptima HIV-1 Quant Dx assay; Hologic, Roissy,
France) (35) or below 200 copies/mL (5) at the time of genotyping.

HIV-1 DNA was extracted from 250µL of buffy coat (PBMC-enriched blood 86 fraction) using the DNA and Viral NA Small Volume Kit on the MagNA Pure 96 87 88 instrument (Roche Diagnostics, Meylan, France). The 100µL eluate was used for 89 parallel amplification and sequencing with Sanger and Sentosa genotyping (Vela 90 Diagnostics, Hamburg, Germany) techniques. Cell-associated HIV-1 DNA was 91 quantified by real-time PCR with the Generic HIV DNA CELL assay kit (Biocentric, 92 Bandol, France) as previously described [16]. The Sentosa SQ HIV Genotyping 93 Assay generated two amplicons, PR-RT (protease-reverse transcriptase) and IN 94 (integrase). The limit of detection of the assay is 5% at 15,000 copies/mL and 20% at 95 1,000 copies/mL; all the mutations identified by the Sentosa SQ reporter (>3%) were 96 considered for the analysis. The PR and RT sequences were obtained by Sanger 97 sequencing using the ANRS protocol (http://www.hivfrenchresistance.org/ANRS-98 procedures.pdf). We used the ANRS resistance algorithm (2018, v29, available at 99 http://www.hivfrenchresistance.org) to identify resistance-associated mutations 100 (RAMs) after NGS and Sanger sequencing. Categorical variables were tested by the 101 Fisher's exact test.

We first used HIV-1 DNA samples with known concentrations to estimate thesuccess rate of genotyping (Table 1).

104

105 **4. Results**

106 The HIV-1 subtype distribution was: 26 B, 6 CRF02-AG, 1 A6, 1 F1, 1 URF (unique 107 recombinant form) and 5 unknowns. The PR-RT amplification and genotyping was 108 72.5% (29/40) successful using the Vela platform and 45% (18/40) successful using

109 Sanger sequencing. We compared the RAMs identified at the threshold of 20% (NGS 20%) for 18 samples that have been sequenced by both methods (Table 2). The 110 111 level of drug resistance predicted by Sanger and NGS 20% was similar in 14/18 112 samples. A higher level of resistance was predicted by NGS 20% in three samples 113 and by Sanger in one sample (P=0.6). Five RAMs detected only by NGS accounted 114 for more than 20% of the virus guasispecies (138K 24%, 184I 28%, 179I 65%, 41I 115 90% and 230I 95%). The positions and frequencies of mutations are shown in Figure 116 1. The prevalence of resistance to at least one protease inhibitor (PI) was 7% 117 whatever the genotyping method. The prevalence of resistance to at least one nucleos(t)ide RT inhibitor (NRTI) was 59% and to at least one non-NRTI (NNRTI) 118 119 was 31% using NGS at the threshold of 3%. Seven additional RAMs accounting for 120 less than 20% of the virus quasispecies (138K 3%, 115F 4%, 215F 4%, 230I 9%, 41L 121 12%, 101E 18% and 184V 19%) were detected using NGS.

122 We assayed integrase resistance genotyping only by NGS; it was 75% 123 successful. The prevalence of resistance to INSTI was 20% (6 samples) according to 124 the ANRS algorithm (Table 3). Three patients had been treated with integrase 125 inhibitors while the other three patients harboured polymorphic mutations (one 157Q 126 and one 74M) [17,18] and a commonly observed G-to-A hypermutation (118R) [19]. 127 The patients 046 15 and 042 16 had an undetectable viral load despite resistance to 128 INSTI probably because they received three more active drugs according to the DNA 129 genotype.

A modification on the Sentosa program enabled us to use DNA extracts that are added at the step of PCR set-up by the instrument. The automated DNA extraction and Vela NGS took 4 hours to handle 15 samples and the results were obtained in 3 days while Sanger sequencing took 7 hours to handle and the results were obtainedin 2 days.

135

136 **5. Discussion**

We found that a HIV DNA load of at least 1.6 log copies/10⁶ cells was sufficient for resistance genotyping using the Sentosa NGS platform with success rates of 82% and 94% for the PR-RT and IN regions, respectively. As the median HIV DNA was 2.5 log copies/10⁶ cells (IQR, 2.1-2.9) in a cohort of patients on suppressive antiretroviral therapy [20], HIV DNA genotyping should be successfully performed in patients eligible for a regimen change.

143 The Vela platform was more successful (72.5%) than Sanger sequencing (45%) 144 for detecting resistance in the PR-RT region in DNA samples from our 40 patients. 145 The success rate was close to the one previously published (80%) using the 454 GS-146 FLX [21]. The Vela platform and Sanger sequencing performed similarly for 147 identifying RAMs at the threshold of 20%. NGS provided identification of RAMs below 148 20% and determination of the proportion of resistant variants in the guasispecies. 149 These mutations were associated with antiretroviral resistance to at least one PI in 150 7% of patients, to at least one NRTI in 59%, and to at least one NNRTI in 31% using 151 the threshold of 3%. The prevalence of resistance was similar according to ANRS 152 and IAS algorithms. Our results were consistent with exposure of these patients to 153 antiretroviral drugs and with a previous study that found 40.5% of resistance to NRTI 154 and 21.6% to NNRTI in HIV DNA using Sanger sequencing [9]. Our prospective 155 study included 40 DNA samples over one year during which a total of 45 runs were performed and 18% failed because of technical problems, as previously described by 156 157 another group [15]. For the first time, we optimized automated nucleic acid extraction on the MagNA Pure 96 instrument for HIV DNA genotyping on the Sentosa NGS platform. Only one study evaluated this platform without automation of nucleic acid extraction [22]. Automation reduces hands-on time and risk of errors but we showed that it failed to improve the sequencing performance of the three regions PR, RT and IN (success rate of 65% in our study versus 58% in the study by Alidjinou et al.).

Prevalence of INSTI resistance was 20% in HIV DNA samples which could influence the choice of drugs for treatment simplification [23–26]. This prevalence was similar using the IAS list (17%) that differed only by the absence of the E157Q mutation (other differences had no impact on resistance). One limitation of our study is that we did not compare NGS and Sanger sequencing of the integrase. Nor did we analyze patient follow-up data to determine the impact of the RAMs on the virological response to combined therapy.

We conclude that the Vela NGS platform is suitable for automation of HIV-1 DNA deep sequencing, including the nucleic acid extraction, and provides valuable information about drug resistance in patients eligible for treatment simplification when prior genotypic data are not available. Further investigation is needed to clarify the clinical impact of resistance in cellular DNA.

175

176

177 **Funding**

This research did not receive any specific grant from funding agencies in the public,commercial, or not-for-profit sectors.

180

181 **Transparency declaration**

182 The authors declare no competing interest.

183 **References**

- 184 [1] H.F. Günthard, V. Calvez, R. Paredes, D. Pillay, R.W. Shafer, A.M. Wensing, D.M.
 185 Jacobsen, D.D. Richman, Human Immunodeficiency Virus Drug Resistance: 2018
 186 Recommendations of the International Antiviral Society-USA Panel, Clin. Infect. Dis.
 187 68 (2019) 177–187. https://doi.org/10.1093/cid/ciy463.
- 188 [2] H.R. Lapointe, W. Dong, G.Q. Lee, D.R. Bangsberg, J.N. Martin, A.R. Mocello, Y. Boum,
 189 A. Karakas, D. Kirkby, A.F.Y. Poon, P.R. Harrigan, C.J. Brumme, HIV drug resistance
 190 testing by high-multiplex "wide" sequencing on the MiSeq instrument, Antimicrob.
 191 Agents Chemother. 59 (2015) 6824–6833. https://doi.org/10.1128/AAC.01490-15.
- [3] K. Thys, P. Verhasselt, J. Reumers, B.M.P. Verbist, B. Maes, J. Aerssens, Performance
 assessment of the Illumina massively parallel sequencing platform for deep
 sequencing analysis of viral minority variants, J. Virol. Methods. 221 (2015) 29–38.
 https://doi.org/10.1016/j.jviromet.2015.04.022.
- [4] S. Mohamed, G. Penaranda, D. Gonzalez, C. Camus, H. Khiri, R. Boulmé, C. Sayada, P.
 Philibert, D. Olive, P. Halfon, Comparison of ultra-deep versus Sanger sequencing
 detection of minority mutations on the HIV-1 drug resistance interpretations after
 virological failure, AIDS. 28 (2014) 1315–1324.
- 200 https://doi.org/10.1097/QAD.00000000000267.
- [5] J. Archer, M.S. Braverman, B.E. Taillon, B. Desany, I. James, P.R. Harrigan, M. Lewis,
 D.L. Robertson, Detection of low-frequency pretherapy chemokine (CXC motif)
 receptor 4 (CXCR4)-using HIV-1 with ultra-deep pyrosequencing, AIDS (London,
 England). 23 (2009) 1209–18.
- [6] J.Z. Li, D.R. Kuritzkes, Clinical implications of HIV-1 minority variants, Clin. Infect.
 Dis. 56 (2013) 1667–1674. https://doi.org/10.1093/cid/cit125.
- [7] C. Allavena, A. Rodallec, A. Leplat, N. Hall, C. Luco, L. Le Guen, C. Bernaud, S.
 Bouchez, E. André-Garnier, D. Boutoille, V. Ferré, F. Raffi, Interest of proviral HIV-1
 DNA genotypic resistance testing in virologically suppressed patients candidate for
 maintenance therapy, J. Virol. Methods. 251 (2018) 106–110.
 https://doi.org/10.1016/j.jviromet.2017.10.016.
- [8] D. Armenia, M. Zaccarelli, V. Borghi, W. Gennari, D. Di Carlo, A. Giannetti, F. Forbici,
 A. Bertoli, C. Gori, L. Fabeni, C. Pinnetti, R. Marocco, A. Latini, F. CeccheriniSilberstein, C.M. Mastroianni, C. Mussini, A. Antinori, C.F. Perno, M.M. Santoro,
 Resistance detected in PBMCs predicts virological rebound in HIV-1 suppressed
 patients switching treatment, J. Clin. Virol. 104 (2018) 61–64.
 https://doi.org/10.1016/i.jcy.2018.04.001.
- [9] N. Boukli, A. Boyd, M. Collot, J.-L. Meynard, P.-M. Girard, L. Morand-Joubert, Utility
 of HIV-1 DNA genotype in determining antiretroviral resistance in patients with
 low or undetectable HIV RNA viral loads, J. Antimicrob. Chemother. 73 (2018)
 3129–3136. https://doi.org/10.1093/jac/dky316.
- [10] D.M. Dudley, A.L. Bailey, S.H. Mehta, A.L. Hughes, G.D. Kirk, R.P. Westergaard, D.H.
 O'Connor, Cross-clade simultaneous HIV drug resistance genotyping for reverse
 transcriptase, protease, and integrase inhibitor mutations by Illumina MiSeq,
 Retrovirology. 11 (2014) 122. https://doi.org/10.1186/s12977-014-0122-8.
- [11] D. Ram, D. Leshkowitz, D. Gonzalez, R. Forer, I. Levy, M. Chowers, M. Lorber, M.
 Hindiyeh, E. Mendelson, O. Mor, Evaluation of GS Junior and MiSeq next-generation
 sequencing technologies as an alternative to Trugene population sequencing in the
 clinical HIV laboratory, J. Virol. Methods. 212 (2015) 12–16.
- 230 https://doi.org/10.1016/j.jviromet.2014.11.003.

- [12] S. Raymond, F. Nicot, R. Carcenac, C. Lefebvre, N. Jeanne, K. Saune, P. Delobel, J.
 Izopet, HIV-1 genotypic resistance testing using the Vela automated nextgeneration sequencing platform, J. Antimicrob. Chemother. (2018).
 https://doi.org/10.1093/jac/dky003.
- [13] G. Dessilly, L. Goeminne, A.-T. Vandenbroucke, F.E. Dufrasne, A. Martin, B.
- Kabamba-Mukadi, First evaluation of the Next-Generation Sequencing platform for
 the detection of HIV-1 drug resistance mutations in Belgium, PLoS ONE. 13 (2018)
 e0209561. https://doi.org/10.1371/journal.pone.0209561.
- [14] P.L. Tzou, P. Ariyaratne, V. Varghese, C. Lee, E. Rakhmanaliev, C. Villy, M. Yee, K. Tan,
 G. Michel, B.A. Pinsky, R.W. Shafer, Comparison of an In Vitro Diagnostic NextGeneration Sequencing Assay with Sanger Sequencing for HIV-1 Genotypic
 Resistance Testing, J. Clin. Microbiol. 56 (2018).
 https://doi.org/10.1128/JCM.00105-18.
- [15] J. Weber, I. Volkova, M.K. Sahoo, P.L. Tzou, R.W. Shafer, B.A. Pinsky, Prospective
 Evaluation of the Vela Diagnostics Next-Generation Sequencing Platform for HIV-1
 Genotypic Resistance Testing, J Mol Diagn. (2019).
- 247 https://doi.org/10.1016/j.jmoldx.2019.06.003.
- [16] V. Avettand-Fènoël, M.-L. Chaix, S. Blanche, M. Burgard, C. Floch, K. Toure, M.-C.
 Allemon, J. Warszawski, C. Rouzioux, French Pediatric Cohort Study ANRS-CO 01
 Group, LTR real-time PCR for HIV-1 DNA quantitation in blood cells for early
 diagnosis in infants born to seropositive mothers treated in HAART area (ANRS CO
 01), J. Med. Virol. 81 (2009) 217–223. https://doi.org/10.1002/jmv.21390.
- [17] C. Charpentier, I. Malet, E. Andre-Garnier, A. Storto, L. Bocket, C. Amiel, L. MorandJoubert, C. Tumiotto, T. Nguyen, A. Maillard, A. Rodallec, M. Leoz, B. Montes, V.
 Schneider, J.-C. Plantier, J. Dina, C. Pallier, A. Mirand, C. Roussel, A. Signori-Schmuck,
 S. Raymond, V. Calvez, C. Delaugerre, A.-G. Marcelin, D. Descamps, Phenotypic
 analysis of HIV-1 E157Q integrase polymorphism and impact on virological
 outcome in patients initiating an integrase inhibitor-based regimen, J. Antimicrob.
 Chemother. 73 (2018) 1039–1044. https://doi.org/10.1093/jac/dkx511.
- [18] S.-Y. Rhee, M.J. Gonzales, R. Kantor, B.J. Betts, J. Ravela, R.W. Shafer, Human
 immunodeficiency virus reverse transcriptase and protease sequence database,
 Nucleic Acids Res. 31 (2003) 298–303.
- [19] S.-Y. Rhee, K. Sankaran, V. Varghese, M.A. Winters, C.B. Hurt, J.J. Eron, N. Parkin, S.P.
 Holmes, M. Holodniy, R.W. Shafer, HIV-1 Protease, Reverse Transcriptase, and
 Integrase Variation, J. Virol. 90 (2016) 6058–6070.
- 266 https://doi.org/10.1128/JVI.00495-16.
- [20] L. Cuzin, P. Pugliese, K. Sauné, C. Allavena, J. Ghosn, J. Cottalorda, A. Rodallec, M.L.
 Chaix, S. Fafi-Kremer, C. Soulié, M. Ouka, C. Charpentier, L. Bocket, A. Mirand, M.
 Guiguet, Dat'AIDS study group, Levels of intracellular HIV-DNA in patients with
 suppressive antiretroviral therapy, AIDS. 29 (2015) 1665–1671.
 https://doi.org/10.1097/QAD.00000000000723.
- [21] C. Rodriguez, M.L. Nere, V. Demontant, I. Charreau, M. Mercier-Darty, H.
 Delagreverie, M. Salmona, N. de Castro, M.L. Chaix, J.M. Molina, C. Delaugerre, Ultradeep sequencing improves the detection of drug resistance in cellular DNA from
 HIV-infected patients on ART with suppressed viraemia, J. Antimicrob. Chemother.
 73 (2018) 3122–3128. https://doi.org/10.1093/jac/dky315.
- [22] E.K. Alidjinou, P. Coulon, C. Hallaert, O. Robineau, A. Meybeck, T. Huleux, F. Ajana, D.
 Hober, L. Bocket, Routine drug resistance testing in HIV-1 proviral DNA, using an

- automated next- generation sequencing assay, J. Clin. Virol. 121 (2019) 104207.
 https://doi.org/10.1016/j.jcv.2019.104207.
- [23] J.M. Llibre, C.-C. Hung, C. Brinson, F. Castelli, P.-M. Girard, L.P. Kahl, E.A. Blair, K.
 Angelis, B. Wynne, K. Vandermeulen, M. Underwood, K. Smith, M. Gartland, M.
 Aboud, Efficacy, safety, and tolerability of dolutegravir-rilpivirine for the
 maintenance of virological suppression in adults with HIV-1: phase 3, randomised,
 non-inferiority SWORD-1 and SWORD-2 studies, Lancet. 391 (2018) 839–849.
 https://doi.org/10.1016/S0140-6736(17)33095-7.
- [24] V. Joly, C. Burdet, R. Landman, M. Vigan, C. Charpentier, C. Katlama, A. Cabié, A.
 Benalycherif, G. Peytavin, P. Yeni, F. Mentre, A.-L. Argoud, I. Amri, D. Descamps, Y.
 Yazdanpanah, LAMIDOL Study Group, Dolutegravir and lamivudine maintenance
 therapy in HIV-1 virologically suppressed patients: results of the ANRS 167 trial
 (LAMIDOL), J. Antimicrob. Chemother. 74 (2019) 739–745.
 https://doi.org/10.1093/jac/dky467.
- 293 [25] L. Ciaffi, S. Koulla-Shiro, A.B. Sawadogo, C.T. Ndour, S. Eymard-Duvernay, P.R. 294 Mbouyap, L. Ayangma, J. Zoungrana, N.F.N. Gueye, M. Diallo, S. Izard, G. Bado, C.T. 295 Kane, A.F. Aghokeng, M. Peeters, P.M. Girard, V. Le Moing, J. Revnes, E. Delaporte, 296 MOBIDIP study group, Boosted protease inhibitor monotherapy versus boosted 297 protease inhibitor plus lamivudine dual therapy as second-line maintenance 298 treatment for HIV-1-infected patients in sub-Saharan Africa (ANRS12 299 286/MOBIDIP): a multicentre, randomised, parallel, open-label, superiority trial, 300 Lancet HIV. 4 (2017) e384-e392. https://doi.org/10.1016/S2352-3018(17)30069-301 3.
- 302 [26] F. Pulido, E. Ribera, M. Lagarde, I. Pérez-Valero, R. Palacios, J.A. Iribarren, A. 303 Payeras, P. Domingo, J. Sanz, M. Cervero, A. Curran, F.J. Rodríguez-Gómez, M.J. 304 Téllez, P. Ryan, P. Barrufet, H. Knobel, A. Rivero, B. Alejos, M. Yllescas, J.R. Arribas, DUAL-GESIDA-8014-RIS-EST45 Study Group, Dual Therapy With Darunavir and 305 306 Ritonavir Plus Lamivudine vs Triple Therapy With Darunavir and Ritonavir Plus 307 Tenofovir Disoproxil Fumarate and Emtricitabine or Abacavir and Lamivudine for 308 Maintenance of Human Immunodeficiency Virus Type 1 Viral Suppression: 309 Randomized, Open-Label, Noninferiority DUAL-GESIDA 8014-RIS-EST45 Trial, Clin.
- 310 Infect. Dis. 65 (2017) 2112–2118. https://doi.org/10.1093/cid/cix734.
 311

313 **FIGURE**

Figure 1. Resistance mutations identified using the Vela NGS platform and

315 **Sanger sequencing.** Mutations responsible for resistance to at least one

- antiretroviral drug according to the ANRS algorithm are represented on the graph.
- 317 The number of times each mutation occurs is indicated on the ordinate. The first bar
- 318 stands for the Vela platform and the second bar stand for Sanger sequencing. Three
- 319 categories of mutation frequency were distinguished with the Vela platform: below
- 5%, between 5 and 20%, and over 20% of the virus quasispecies. The asterisk
- indicates the mutations that are not listed by the International AIDS Society (IAS;
- 322 https://www.iasusa.org/resources/hiv-drug-resistance-mutations/).

TABLES

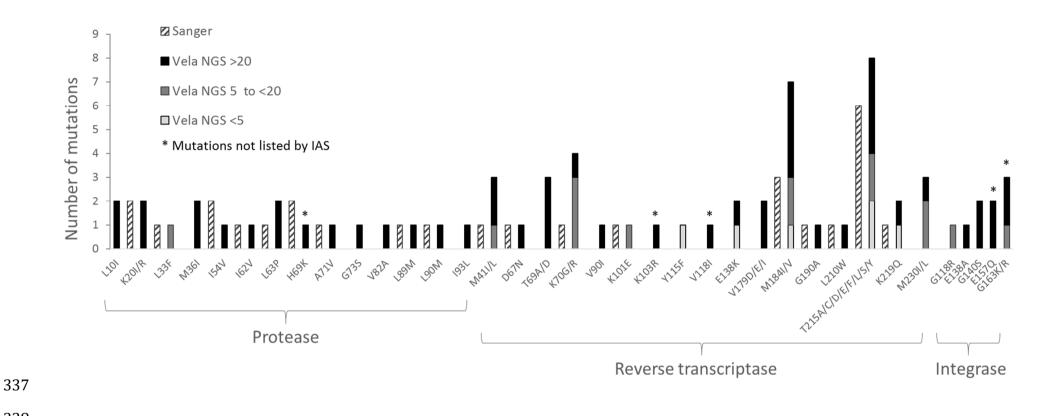
Table 1. Impact of HIV-1 DNA load on the global success rate of the Vela NGS for resistance genotyping

	HIV-1 DNA load				
	<1.5 log cp/10 ⁶ cells (N=3)	1.6-2.5 log cp/10 ⁶ cells (N=10)	>2.5 log cp/10 ⁶ cells (N=7)		
PR genotyping	0 (0%)	7 (70%)	7 (100%)		
RT genotyping	0 (0%)	7 (70%)	7 (100%)		
IN genotyping	1 (33%)	10 (100%)	6 (86%)		

ID region	Subtype	Sanger and NGS RAMs	Sanger RAMs alone	NGS RAMs alone >20%	NGS RAMs 5%-20%	NGS RAMs <5%	Resistance Sanger vs NGS at 20%
Samples wit	h more RA	Ms using NGS at 20% threshold					
277-PR,RT	В	PR: 10I 36I 54V 62V 63P 71V 82A 90M 93L RT: 62V 67N 70R/S/K/N 184V/M 215F 219Q		PR: 20R 73S RT: 69D 179I	PR: 33F RT: 70G		Sanger = NGS
283-PR,RT	В	PR: 63P 77I RT: 69N 184V 190A		RT: 69A/D	RT: 101E		Sanger = NGS
257-RT	A6			RT: 41I 184I 230I			Sanger < NGS
Samples wit	h more RA	Ms using Sanger					
708-PR,RT	В	PR: 63P 77I 93L	PR: 20R		PR: 62V	RT: 215F 219Q	Sanger = NGS
432-RT	В		RT: 184V 227Y		RT: 184I 230I		Sanger = NGS
454-PR,RT	В	PR: 36I 62V 63P	PR: 10I				Sanger = NGS
241-PR,RT	В	PR: 63P 77I 93L	PR: 20R 30N 33V 82I RT: 210I				Sanger > NGS
Samples wit	h discorda	nces using Sanger and NGS					
373-PR,RT	В	PR: 361 RT: 1061	PR: 77G				Sanger = NGS
556-PR,RT	В	PR: 36I 62V 63P RT: 41L 210W 215D	PR: 77M	PR: 93L RT: 90I 179I			Sanger < NGS
615-PR,RT	URF	PR: 20I 36I	PR: 15V 73S RT: 2301	PR: 35G 64M	RT: 184V		Sanger = NGS
992-PR	CRF02	PR: 20I 64L	PR: 16R 30N 60N 86M	PR: 361			Sanger = NGS
693-PR,RT	CRF02	PR: 16E 20I 36I RT: 103R	PR: 771	RT: 138K 184I			Sanger < NGS
Samples wit	h concord	ant RAMs at 20% threshold					
941-PR,RT	В	PR: 63P			PR: 361 RT: 2301	RT: 115F 138K 184I	Sanger = NGS
657-RT	F1				RT: 41L 70R 215C		Sanger = NGS
		PR: 63P 77I 93L					
422-PR,RT	В	RT: 215D/E 181C/Y 98S 215D/E			RT: 70R 215C	RT: 215A	Sanger = NGS
497-PR,RT	В	PR: 36I 63P 64V 93L RT: 215L					Sanger = NGS
177-PR	CRF02	PR: 10I 20I 36I 63P					Sanger = NGS
335-PR,RT	В	PR: 36I					Sanger = NGS

Table 2. Resistance mutations identified by Sanger and NGS methods

^asample identification and region sequenced by Sanger and NGS (PR for protease, RT for reverse transcriptase) ^bRAMs: resistance associated mutations


Table 3. Virological description of six patients harbouring resistance to INSTI

Patient	HIV-1 subtype	INSTI RAMs ^a	Drug resistance (ANRS) ^b	Ongoing treatment ^c	Previous INSTI exposure
001_14	В	E138A 24% G163R 11%	DTGqd, BIC	TDF+FTC+DRV/r	RAL /EVG
046_15	В	G140S 42% G163R 71% G163K 27%	RAL, EVG, DTGqd, BIC	TDF+FTC+DRV+ RAL	RAL
042_16	В	G140S 66%	RAL, EVG, DTGqd, BIC	ABC+3TC+RPV+ DTG	EVG / DTG
029_16	CRF02	E157Q 96% L74M 99%	RAL, EVG, DTGqd, BIC, CAB	TDF+FTC+DRV/r	None
044_15	Non B	E157Q 100%	RAL, EVG, DTGqd, BIC, CAB	TDF+FTC+ATV/r	None
040_15	CRF02	G118R 5%	RAL, EVG, DTG, BIC	TDF+FTC+EFV	None

332 aRAMs: resistance-associated mutations with the frequency in the virus population; bRAL=raltegravir, EVG=elvitegravir, DTG=dolutegravir, qd=once daily, 333 BIC=bictegravir, CAB=cabotegravir; cTDF=tenofovir, FTC=emtricitabine, DRV/r=ritonavir-boosted darunavir, 3TC=lamivudine, RPV=rilpivirine, ATV/r=ritonavir-334 boosted atazanavir, EFV=efavirenz

Figure 1

