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Abstract

The Pyrenees represent a natural laboratory for biogeographic, evolutionary and ecological

research of mountain fauna as a result of the high variety of habitats and the profound effect

of the glacial and interglacial periods. There is a paucity of studies providing a detailed

insight into genetic processes and better knowledge on the patterns of genetic diversity and

how they are maintained under high altitude conditions. This is of particular interest when

considering the course of past climate conditions and glaciations in a species which is con-

sidered site tenacious, with long generation times. Here we analyzed the genetic patterns of

diversity and structure of the endemic Pyrenean brook newt (Calotriton asper) along its dis-

tribution range, with special emphasis on the distinct habitat types (caves, streams, and

lakes), and the altitudinal and geographical ranges, using a total set of 900 individuals from

44 different localities across the Pyrenean mountain range genotyped for 19 microsatellite

loci. We found evidence for a negative longitudinal and positive altitudinal gradient of genetic

diversity in C. asper populations. The fact that genetic diversity was markedly higher west-

wards is in accordance with other Pyrenean species. However, the impact of altitudinal gra-

dient on the genetic diversity seems to differ from other species, and mostly from other

amphibians. We found that lower altitudes can act as a barrier probably because the low-

lands do not provide a suitable habitat for C. asper. Regarding the distinct habitat types,

caves had significantly lower values of genetic diversity compared to streams or lakes. The

mean FST value was relatively high (0.304) with maximum values as high as 0.771, suggest-

ing a highly structured total population. Indeed, populations were grouped into five subclus-

ters, the eastern populations (cluster 1) remained grouped into two subclusters and the
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central-western Pyrenees (cluster 2) into three subclusters. The increase of isolation with

geographical distance is consistent with the population structure detected. In conclusion, C.

asper seems to be adapted to high altitude mountain habitats, and its genetic diversity is

higher in the western Pyrenees. In terms of conservation priority, we consider more relevant

the populations that represent a reservoir of genetic diversity.

Introduction

Past and contemporary climate conditions have been the main drivers shaping the genetic

population structure of species [1–3]. Across the various mountain ranges in Europe, glacial

and postglacial periods have forced many species to go through severe processes of contraction

and expansion, leading to repeated occurrences of colonization or recolonization. These range

fluctuations form the basis of their current geographic distribution as well as their population

genetic structure [1]. Generally, climatic conditions in mountains are extreme, representing a

considerable selection force, frequently leading to local extinction of populations. Also climate

change has an important impact on mountain ecosystems by increasing the frequency of

extreme weather events, such as high temperature variability, changes in seasonality, and vari-

ability in precipitation with various impacts on species populations [4, 5]. Therefore, mountain

ranges are excellent areas to study the process of repeated colonization events after harsh cli-

matic conditions, e.g. glacial periods during which many species have gone locally extinct or

populations suffering from small population sizes as a consequence of unfavorable environ-

mental conditions [6, 7].

The Pyrenees have played an important role throughout the distinct climatic events acting

as a barrier or as a bridge for the migration of species between Europe and the Iberian Penin-

sula. During glacial periods, the ice sheet rarely descended below 1000 m above sea level (asl)

but did not cover the highlands completely [2, 8]. These unglaciated areas could have provided

refugia for some species that had to escape from the glaciated high elevation parts. Recent stud-

ies, such as on spiders (Harpactocrates ravastellus; [9]), butterflies (Erebia epiphron; [10]) and

plants (Rhododendron ferrugineum; [8]) proposed two main refugia, one in the western-central

Pyrenees and one in the eastern Pyrenees. More or less severe bottlenecks for populations are

assumed, with successive range expansions from these refugia when the temperature increased

during interglacial periods (e.g. last 100,000–10,000 years ago (ya); [11, 12]. These historical

processes had a strong impact on shaping the complex genetic population structure of many

species in the Pyrenees. Additionally, the Pyrenees provide a great variety of different habitats

and environments, such as caves, high altitude lakes or streams [6, 7]. Contemporary gradi-

ents, such as altitude or longitude, play an important role in the Pyrenees, as they shape the

existing proportion of suitable habitats along the mountains [13, 14]. Longitude is an impor-

tant gradient to take into account because the influence of the Atlantic Ocean provides a cooler

and wetter climate westwards than in eastern areas, which are more influenced by the Mediter-

ranean temperate climate [8]. Habitats, comprising lakes (mostly of glacial origin), caves or

streams, can be found along an elevational gradient from lowlands and foothills up to 3,400 m

asl. These gradients provide a variety of habitats suitable for colonization but some are suffi-

ciently different that local adaptation may need to occur to allow for successful establishment

of populations after colonization. Hence, the variety of habitats may also have an impact on

the genetic population structure by promoting genetic divergence of differentially adapted

local genotypes [15–19].

Genetic diversity and structure of Calotriton asper
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Amphibians are excellent models to explore patterns of gene flow and genetic structure due

to their strong habitat-association which is correlated with water availability [20]. Besides

water availability, the genetic structure of an amphibian species is also strongly influenced by

its dispersal capacity [21, 22]. Amphibians with high dispersal rates show poorly structured

metapopulations (e.g. Epidalea calamita, [23]; Rana temporaria and B. bufo, [24]; R. arvalis,
[25]). Instead, highly phylopatric amphibian species with very restricted dispersal rates (e.g.

Calotriton arnoldi) present highly structured and isolated populations [26].

Here we use the endemic Pyrenean amphibian species Calotriton asper as a case study to

better understand the role of climatic events and habitat variability in shapping the genetic

structure of a mountain species. The Pyrenean brook newt, C. asper, inhabits different habitat

types such as streams, alpine lakes and caves at elevations ranging from 360 m asl to 3,000 m

asl across the Pyrenees and the pre-Pyrenean mountain chain occupying a geographic distri-

bution range of more than 20.000 km2 [27, 28]. Calotriton asper is classified as near threatened

by the International Union for Conservation of Nature [27, 28]. Although this species occupies

different environments, its optimal habitats are fast-flowing streams at elevations between

750–1500 m asl with a strong slope and water temperatures not exceeding 15–17˚C during

summer. These habitats are characterized by abundant riverbank vegetation, which helps to

prevent the heating of water above the thermal limits of this species [28]. High mountain lakes

constitute secondary habitats for C. asper. In these lakes, C. asper may sometimes be located in

the vicinity of the entrance of small streams or in the areas of drainage, where the oxygen con-

tent of the water is high [28]. Clergue-Gazeau and Martı́nez-Rica [29] distinguished a third

group of habitats formed by underground courses, upwellings and sources. Such cave habitats

may exhibit distinct ecological characteristics and aspects, although they are in some way remi-

niscent of the usual habitat. For C. asper, a 2-year-long terrestrial dispersal phase is described

during its juvenile stage following metamorphosis [30], but it is unclear how far individuals do

disperse at this stage. Previous capture-mark-recapture studies [31] suggested that the dis-

persal capability of adult newts is limited (less than 50 m per year). On a broader geographic

scale, analysis of the genetic population structure will also allow inferences on dispersal and

movement between populations.

Previous studies on the Pyrenean brook newt examined its genetic population structure

and phylogeography with different molecular markers. The mitochondrial sequence variation

of the cytochrome b gene revealed low levels of genetic variation and poorly structured haplo-

type networks (two main mt-haplotypes with a star-like shape)[11, 32, 33]. These results sug-

gest a rather recent recolonization after the last glacial maximum (LGM), which roughly

ended in the Pyrenees around 15,000–10,000 ya [34]. Isolated populations that remain from

glacial refugia retained the genetic diversity, which was fixed in a few mtDNA haplotypes. Dur-

ing the following warmer climate period an altitudinal habitat switch occurred: lower eleva-

tions, that have been suitable habitats during the glacial period, became too warm and

unsuitable, while previously unsuitable areas during the LGM (habitats at high altitudes in the

Pyrenees) became suitable niches and were presumably colonized from few source populations

with small population sizes [3, 35]. It is expected that species that followed this common pat-

tern exhibit relatively low levels of genetic diversity. However, in contrast to this general pat-

tern, high levels of genetic diversity and differentiation among localities have been reported by

Milá et al. [32] using nuclear AFLP loci reflecting a more genome-wide pattern of genetic dif-

ferentiation. However, this study was unevenly biased towards the French side of the Pyrenees

(17 localities), not covering more than half of the distribution range of this species on the

Spanish side. Furthermore, C. asper populations include hypogean and epigean habitats, exhib-

iting different mating preferences [36], life-history traits [37] and metabolism [38]. Further,

AFLP loci are of limited use for genetic analysis as loci are anonymous and co-dominant and
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therefore homozygotes cannot be differentiated from heterozygotes. We therefore apply here

microsatellite loci in combination with a range-wide sampling of this species.

Given the limitation of AFLPs and contrasting patterns by marker type, here we analyze the

current genetic patterns of diversity and structure of the Pyrenean brook newt Calotriton asper
along its entire distribution area covered by 44 sampling localities across the Pyrenean moun-

tain chain and based on 19 species-specific microsatellite loci. Our study aims to (i) character-

ize the genetic diversity of each C. asper population, (ii) analyze the genetic structure among its

populations, (iii) determine whether the genetic patterns are related to a longitudinal and alti-

tudinal gradient or to distinct habitat types, and (iv) whether mountains constitute a natural

barrier between French and Iberian C. asper populations.

Materials and methods

Ethics statement

The collection of all samples was conducted under the licenses required by the corresponding

authorities. As for the Spanish samplings, permits were given by the following institutions:

Departament d’Agricultura, Ramaderia, Pesca Alimentació i Medi Natural of the Catalan Gov-

ernment, with the permission numbers SF/90, SF/91 and SF/429; Servicio de Conservación de

la Biodiversidad, Departamento de Desarrollo Rural y Medio Ambiente of the Navarra Gov-

ernment, with the permission number 2012/721; Instituto Aragonés de Gestión Ambiental,

Area II-Biodiversidad of Aragon Government, with the permission numbers 24/2009/4323,

24/2010/901, 24/2012/661 and 24/2014/491. As for the French samplings, the present investi-

gation was carried out according to the ethical principles of the French (Ministère de l’Agricul-

ture) and European Convention for the Protection of Vertebrate Animals Used for

Experimental and Scientific Purposes (Council of Europe, no. 123, Strasbourg, 1985) at the

Station of Experimental Ecology of Moulis, France (Arrêtés 2009–11 for Haut Garonne and

2009–19 for Ariège).

All tissue samples were collected according to the requirements of the above administrative

institutions: newts were captured manually and tissue samples were taken with a procedure

which does not affect survival and body condition in newts [39]. Immediately after the com-

pletion of the procedure, tissue samples were stored in absolute ethanol. No individuals were

severly harmed or sacrificed.

Field sampling and microsatellite loci genotyping

A total of 900 individuals of C. asper were analyzed from 44 different localities covering most

of its distribution range (Fig 1, Table 1). Tissue samples consisted of small tail or toe clips pre-

served in absolute ethanol. Genomic DNA was extracted using the Qiagen (Valencia, CA,

USA) DNeasy Blood and Tissue Kit, following the manufacturer’s protocol. Individuals were

genotyped for a total set of 19 microsatellite loci. PCR conditions and genotyping of loci were

as in Drechsler et al. [40]

Null alleles, Hardy-Weinberg equilibrium and linkage disequilibrium

The MICRO-CHECKER software [41] was used to check for potential scoring errors, large

allele dropout and the presence of null alleles. The presence and frequency of null alleles were

additionally examined using FreeNA [42] following the Expectation Maximization (EM) algo-

rithm. The presence of null alleles may result in an overestimation of population differentia-

tion. Thus, the same program was used to compute the FST statistic using and not using the

ENA (Excluding Null Alleles) correction method. The bootstrap 95% confidence intervals (CI)

Genetic diversity and structure of Calotriton asper
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for the global FST values were calculated using 50,000 replicates over loci. Pairwise linkage dis-

equilibrium between loci and deviations from Hardy–Weinberg equilibrium (HWE) in each

population and for each locus were checked using the software GENEPOP version 4.2.1 [43].

Parameters of genetic diversity

Genetic diversity was measured for each sampling site as the mean number of alleles (Na),

observed (HO) and expected heterozygosity (HE) and allelic richness (Ar) using FSTAT version

2.9.3.2 [44]. The observed number of private alleles were calculated with GDA [45], and a rari-

fied measure of private allele richness (Par) was obtained with HP-RARE [46]. FSTAT was

used to estimate the inbreeding coefficients of the populations (FIS) following Weir and Cock-

erham [47].

In order to visualize spatial patterns of genetic diversity, Ar, HO, HE and Pa were spatially

interpolated using ARCGIS 10.0 (ESRI, Redlands, CA) with the universal kriging function and

a spherical semivariogram model [1]. Subsequently, in order to explore the correlation among

the genetic diversity variables, a principal components analysis was conducted on the four

genetic diversity variables with the XLSTAT software (Addinsoft, Paris). After checking for a

positive correlation among these genetic variables, values for the first axis (PC1) were interpo-

lated across the species’ range following the steps above.

Genetic diversity across the geographic distribution range and distinct

habitat types

Altitude and bioclimatic variables were downloaded from the WorldClim database version 1.4

(http://www.worldclim.org/) at a scale of 30 arc seconds (nearly 1 × 1 km, S1 Table). Slope and

aspect were calculated from the altitude using ARCGIS. To avoid autocorrelation and over fit-

ting of our data, collinearity among the initial 19 BioClim variables and the geographical vari-

ables (longitude, latitude, altitude, slope and aspect) was tested using the Pearson’s correlation

Fig 1. Location of the sampled localities of Calotriton asper populations. Location of the sampled localities of

Calotriton asper populations (the colors correspond to the distinct habitat types; blue: streams; green: caves; red: lakes).

See Table 1 for details on each locality.

https://doi.org/10.1371/journal.pone.0200214.g001
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Table 1. Geographical information and genetic diversity for Calotriton asper populations. Geographical information and estimates of genetic diversity parameters for

each Calotriton asper population and cluster defined by STRUCTURE analysis. Altitude in meters; N, sample size; Na: number of alleles per locus; Ar, allelic richness; PA,

number of private alleles; PAAr, allelic richness of private alleles; FIS, inbreeding coefficient; HO, observed heterozygosity; HE, expected heterozygosity. Values in bold indi-

cate statistical significance after Bonferroni’s correction.

Grouping Code Long Lat Alt Habitat N Na Ar PA PAAr HO HE FIS

Population

Irati Spain ISP -1.14 43.01 848 Stream 16 4.895 3.210 1 0.020 0.576 0.596 0.067

Irati France IFR -1.06 43.05 1105 Stream 15 4.421 3.080 0.010 0.603 0.572 -0.019

Olhadoko OLH -0.95 42.99 662 Stream 15 4.474 3.050 0.010 0.630 0.572 -0.068

Barranco Gamuetta BGA -0.80 42.89 1324 Stream 50 7.000 3.500 0.030 0.609 0.633 0.049

Linza LIN -0.80 42.90 1374 Stream 39 6.632 3.490 1 0.030 0.606 0.621 0.037

Valdagras VAL -0.79 42.86 1266 Stream 39 6.000 3.400 0.020 0.641 0.619 -0.022

Barranco de Petraficha BPE -0.77 42.86 1427 Stream 21 6.263 3.680 0.020 0.644 0.650 0.034

Selva de Oza SOZ -0.71 42.83 1181 Stream 21 5.789 3.590 0.010 0.642 0.656 0.047

Barranco de Acherito BAC -0.71 42.87 1385 Stream 6 4.158 3.540 0.010 0.675 0.615 -0.007

Ansabere ANS -0.71 42.89 1787 Stream 20 4.368 3.020 0.010 0.579 0.573 0.016

Ibón de Acherito IAC -0.71 42.88 1882 Lake 44 6.316 3.260 1 0.030 0.595 0.598 0.017

Riglos RIG -0.70 42.34 920 Stream 4 3.000 3.000 0.100 0.461 0.487 0.219

Ibón de Saman ISA -0.48 42.74 2143 Lake 20 4.421 2.900 1 0.060 0.535 0.539 0.034

Ibón de Bucuesa IBU -0.43 42.71 2126 Lake 19 3.158 2.440 1 0.090 0.460 0.449 0.002

Ibón de Espeluchieca IES -0.43 42.79 1966 Lake 20 4.526 2.930 0.000 0.563 0.528 -0.040

Montrepos MON -0.39 42.34 1220 Stream 26 7.947 4.450 10 0.400 0.691 0.777 0.131

Sierra de Guara SGU -0.25 42.26 975 Stream 18 6.368 3.920 7 0.380 0.684 0.689 0.036

Betharram BET -0.19 43.10 451 Cave 31 1.579 1.440 0.000 0.182 0.182 0.016

Genie Longue GLO -0.15 43.05 671 Stream 16 3.368 2.280 0.000 0.408 0.388 -0.020

Oto OTO -0.15 42.59 1137 Stream 18 7.263 4.120 4 0.180 0.712 0.711 0.028

Sarvisé SAR -0.07 42.58 1359 Stream 21 8.211 4.500 4 0.230 0.723 0.764 0.078

Barbarisa BAR 0.41 42.61 2333 Lake 12 4.684 3.360 0.090 0.605 0.609 0.049

Barranco de Sabaril BSA 0.42 42.58 1684 Stream 20 5.316 3.280 1 0.040 0.597 0.601 0.032

Ibón de Perramó IPE 0.50 42.64 2406 Lake 69 4.053 2.510 0.010 0.448 0.457 0.028

Barranco de Batisielles BBA 0.51 42.67 1815 Stream 6 3.737 3.270 0.020 0.553 0.564 0.111

Barranco del Pino BPI 0.52 42.66 1604 Stream 15 4.421 3.080 0.010 0.544 0.569 0.078

Ibón de Alba IAL 0.61 42.66 2301 Lake 64 4.684 2.690 3 0.080 0.495 0.505 0.028

Pas du Loup PDL 1.00 43.01 489 Cave 18 1.737 1.480 0.000 0.184 0.179 -0.001

Vilanova de Meià VME 1.03 42.02 847 Stream 19 3.368 2.500 1 0.120 0.483 0.452 -0.039

Font Bordonera FBO 1.30 42.20 748 Stream 20 3.632 2.330 0.010 0.387 0.386 0.023

Arcouzan ARC 1.12 42.80 1214 Stream 8 3.895 3.280 0.000 0.704 0.620 -0.069

Ribaui RIB 1.34 42.79 802 Stream 13 4.316 3.200 0.030 0.636 0.600 -0.019

Courbiere COU 1.45 42.85 1626 Stream 6 3.211 2.860 0.000 0.579 0.542 0.024

Vicdessos VIC 1.49 42.77 725 Cave 7 3.158 2.650 1 0.030 0.549 0.480 -0.068

Siech SIE 1.55 42.88 691 Cave 8 2.421 2.150 1 0.030 0.375 0.380 0.079

Bernard BER 1.53 43.00 565 Cave 26 2.579 1.990 0.000 0.366 0.353 -0.019

Labouiche LAB 1.57 43.00 485 Cave 17 2.947 2.420 0.010 0.483 0.468 0.000

Cailla CAI 2.19 42.81 724 Stream 23 3.000 2.190 0.010 0.455 0.409 -0.030

Cass Rats CRA 2.32 42.88 522 Stream 22 1.947 1.660 0.000 0.282 0.245 -0.127

Font de Dotz FDD 2.36 42.88 485 Cave 4 1.842 1.840 1 0.050 0.434 0.289 -0.385

Auriac AUR 2.49 42.93 543 Stream 7 1.789 1.700 0.000 0.293 0.269 -0.013

Vidrà VID 2.34 42.13 1068 Stream 14 6.526 4.030 0.040 0.473 0.710 0.367

St Pau de Segúries SSE 2.38 42.27 892 Stream 13 2.684 2.110 0.030 0.356 0.354 0.034

Valmanya VAM 2.54 42.53 924 Stream 10 2.421 2.000 0.000 0.358 0.318 -0.075

(Continued)
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coefficient in XLSTAT. A total of nine variables, all of which had a correlation degree lower

than 0.75 (Pearson coefficient), were retained (S2 Table), i.e. four environmental variables and

five geographical variables. A PCA was also conducted using the initial 19 BioClim variables

and the geographical variables, which gave similar results (the same nine variables were choo-

sen; data not shown). The final set of environmental predictor variables used consisted of: iso-

thermality (BIO3), mean temperature of wettest quarter (BIO8), mean temperature of driest

quarter (BIO9) and precipitation seasonality (BIO15); the final set of geographical variables

were longitude, latitude, altitude, slope and aspect.

PCA was performed using XLSTAT to summarize and visualize the structure of data

described by these nine (geographical and environmental) quantitative variables, using the

genetic diversity variables of Ar, HO and HE as supplementary variables. This regression-based

approach enables the quantitative estimation of genetic variation explained by environmental

and geographical factors and their interaction effects. The relation between the different envi-

ronmental variables and genetic variables and assignment was visualized by a biplot of the

PCA on the environmental variables with plotted points colored according to their corre-

sponding genetic cluster (see population structure section). Furthermore, to test the prediction

that genetic diversity varied across the selected geographical and environmental gradients, uni-

variate linear regressions were implemented between each of these genetic diversity measures

(Ar, HO and HE) and longitude, altitude and mean temperature of wettest quarter (BIO8). As

most of the caves are located in the central-eastern part of the Pyrenees, and in order to

exclude a possible interaction between longitude and habitat type, the correlation among lon-

gitude and altitude vs the genetic diversities was also measured by testing only streams. An

ANOVA with Tukey HSD posthoc tests was used to compare the effect of the three distinct

habitat types (streams, lakes and caves) to the main genetic diversity measures (Ar, HO and

HE). In the same way, as habitat types are unevenly distributed along the longitudinal axis, in

order to avoid biased comparisons among habitat types due to their longitudinal localization,

populations from the central Pyrenees (16 populations containing eight streams, five caves and

three lakes) were considered and tested for effect of the three distinct habitat types as before.

Population structure and differentiation

The pairwise population divergence between sampling localities was estimated with the FST as

calculated in FSTAT and with Jost’s D [48] using the R package DEMEtics [49]. To assess the

levels of population structure, several analyses were performed to avoid potential reliability

issues of models and assumptions of certain software [50]. The level of genetic structure of C.

asper populations was estimated using a Bayesian approach implemented in STRUCTURE

version 2.3.4 [51]. Settings used included an admixture model with correlated allele

Table 1. (Continued)

Grouping Code Long Lat Alt Habitat N Na Ar PA PAAr HO HE FIS

Clusters

Cluster 1 479 13.842 13.700 72 5.998 0.582 0.774 0.250

Cluster 1.1 193 13.000 11.670 48 2.240 0.534 0.759 0.299

Cluster 1.2 286 9.316 7.880 8 0.300 0.614 0.685 0.105

Cluster 2 421 11.158 11.160 21 0.002 0.452 0.737 0.388

Cluster 2.1 204 7.842 6.790 9 0.400 0.473 0.581 0.188

Cluster 2.2 76 7.842 8.470 3 0.250 0.518 0.726 0.352

Cluster 2.3 141 8.579 6.010 1 0.130 0.383 0.658 0.276

https://doi.org/10.1371/journal.pone.0200214.t001
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frequencies, and the number of inferred clusters (K) ranged from one (complete panmixia) to

45 (i.e., the number of sample locations plus one). STRUCTURE was run for each value of K
10 times, with one million Markov Chain Monte Carlo (MCMC) iterations, discarding the

first 105 MCMC steps as burn-in phase. The optimal number of clusters was inferred using ΔK
method by Evanno et al. [52], as implemented in STRUCTURE HARVESTER [53]. The aver-

age from all the outputs of each K was obtained with CLUMPP version 1.1.2 [54] and plotted

with DISTRUCT version 1.1 [55]. In addition, we used POPTREEW [56] to construct a neigh-

bor-joining tree using Nei’s genetic distance (DA, [57]) with 1000 bootstraps. An additional

model independent clustering approach was performed using GENETIX, version 4.05.2 [58],

by performing a factorial correspondence analysis on the allelic frequencies obtained for the

44 populations. This analysis was performed across the distribution range of C. asper, as well

as for grouping the sampling localities as indicated by STRUCTURE.

Isolation by distance was evaluated by examining the relationship between geographic and

genetic distances among populations with a Mantel test [59]. Geographic distances among

populations were calculated and log-transformed to linearize the relationship between geo-

graphic distances and FST values (see [60]). Genetic distances were standardized as FST/(1 −
FST), and the significance of matrix correlation coefficients was estimated in IBDWS (Web ser-

vice; [61]) with 10,000 permutations. Analyses were performed between all sampled popula-

tions and by grouping the clusters.

In addition, the effective populations size (Ne) for each population was calculated using two

single-sample Ne estimators to check for convergent results: COLONY version 2.0.4.4 [62] and

ONeSAMP [63]. COLONY takes into account possible genotyping errors and presence of null

alleles and uses a maximum likelihood method to conduct sibship assignment analyses to esti-

mate Ne. COLONY was run using the maximum likelihood approach for a dioceous/diploid

species, with medium length runs and both random and non-random mating, assuming

polygamy for both males and females (as it is the case for most salamanders) with no sibship

prior. We did not use the option ‘update allelic frequencies’ and other parameters used as

default. ONeSAMP employs approximate Bayesian computation and calculates eight summary

statistics to estimate Ne from a sample of microsatellite loci genotypes. The analyses were sub-

mitted online to the ONeSAMP 1.2 server (http://genomics.jun.alaska.edu/asp/Default.aspx).

A variety of input priors were tested, with minimum Ne as low as 2 and maximum Ne as high

as 1,000.

Results

Basic population genetic features and selection of microsatellite loci for

further analysis

The highest percentage of null alleles was found for locus Ca16 in the population Barranco de

Batisielles (BBA; 40%), while the average percentage was found to be 7.2% across the 44 popu-

lations analyzed. In total, null allele frequency estimates ranged from 0.3% to 7.2% with 2.5%

on average across all loci. Global FST values calculated with and without correcting for null

alleles had overlapping 95% confidence intervals (FST not using ENA = 0.3488 and FST using

ENA = 0.3447 with the respective 95% CI [0.3023–0.4089] and [0.2985–0.4042]), which means

that the impact of null alleles can be neglected. Classical measures of population differentiation

are only slightly biased with a null allele frequency ranging between 5% and 8% on average

across loci [42, 64]. Given that the average percentage of null allele frequency across loci

(2.5%) is lower than 5%, and FST did not vary after excluding null alleles, all loci were kept for

further statistical analyses.
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Significant departures from HWE across loci were detected in 8 out of 44 (or 18%) sam-

pling locations. Seven loci showed significant departures from HWE in one to three popula-

tions: Ca22 (two populations), Ca16 and Ca20 (three populations each), and Ca3, Us7, Ca5

and Ca25 (one population). These instances likely reflect occasional departures from random

mating rather than the presence of null alleles. As none of the loci showed Hardy–Weinberg

equilibrium deviations at more than three populations, we retained all loci in the analyses.

Linkage disequilibrium was found only in Vidrà (VID) between five pairs of loci (Us7-Ca16,

Us7-Ca30, Ca16-Ca25, Ca30-Ca25, Ca30-Ca29) after applying a Bonferroni correction

(p<0.0003).

Parameters of genetic diversity

Overall, values of observed and expected heterozygosity of C. asper (weighted average) were

0.521 and 0.523, respectively (Table 1). The mean number of alleles (Na) ranged from 1.58 to

8.21 (mean 4.28). The number of private alleles (PA) was generally low at a population level,

most of the populations having none or one PA. Only Monrepòs (MON) and Sierra de Guara

(SGU) had more than five private alleles. Allelic richness (Ar) varied across sites (1.44–4.50)

with a mean of 2.89. Expected (HE) and observed heterozygosity (HO) ranged from 0.18 to

0.78 and from 0.18 to 0.72 respectively for all sites (mean HE = 0.51, mean HO = 0.52). In gen-

eral, the most diverse populations in terms of Ar and HE were MON and Sarvisé (SAR), both

located at the south-eastern Pyrenees, while the least diverse populations were two cave popu-

lations, Betharram (BET) and Pas du Loup (PDL) (Table 1). Overall, FIS was estimated to be

0.360 (p<0.005) but was not significantly different from zero for any population after applying

Bonferroni’s correction (see Table 1). Significant FIS values at the cluster level are probably

caused by Wahlund effects and thus are probably not biologically relevant.

The first axis of the PCA (PC1) correlated positively with the genetic diversity variables (Ar,

Par, HO and HE) and accounted for 79.7% of their variance. The interpolated values of PC1

mapped into the species’ distribution range revealed a decrease of genetic diversity from the

western Pyrenees to the eastern part (S1 Fig).

Genetic diversity across the geographical distribution range

The first two components of the PCA accounted for 78.79% of the total genetic variation

among all the investigated populations (Fig 2). From the nine variables analyzed, only three

(longitude, altitude and mean temperature of wettest quarter–BIO8) were significantly corre-

lated with all genetic diversity parameters (S3 Table). From those, longitude and mean temper-

ature of wettest quarter were negatively correlated with genetic diversity parameters while

altitude was positively correlated (Fig 2).

The regression analysis shows a negative longitudinal and positive altitudinal gradient of

genetic diversity in C. asper populations for the three genetic diversity measures analyzed (Fig

3, S3 Table). These patterns were also significant for stream populations alone (S2 Fig, S3

Table). Levels of genetic variation were consistently higher westwards and at high altitudes.

This pattern has been also observed when only stream habitat localities were analyzed. When

analyzed, the temperature-related variable (BIO8; mean temperature of wettest quarter)

showed a similar negative correlation with genetic diversity as the variable longitude.

Genetic diversity was also significantly different in populations of different habitat type (S4

Table). However, Tukey HDS posthoc test showed that stream and lake populations had simi-

lar genetic diversity values while differences were due to caves. Cave habitats had significantly

lower values of genetic diversity compared to streams or lakes. This pattern is also shown

when only the central Pyrenees populations were analysed separatelly, i.e. even within the
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same longitudinal area caves were significantly poorer genetically than stream or lake

populations.

Population structure and differentiation

The mean FST value across all 44 sampling sites was rather high (0.304). Indeed, very high FST

values were found in-between eastern and western populations of C. asper, reaching a maxi-

mum value of 0.771 for two separately located caves: Pas du Loup (PDL) and Betharram (BET;

S5 Table). These two caves were the genetically most distinct populations found in our study.

The former showed a FST of 0.267 with its closest locality Genie Longue (GLO), and a mini-

mum of 0.401 with the remaining localities and a mean of 0.556. The minimum FST value

between PDL and the other populations was 0.318 and the mean was 0.509. Most FST values

(99% comparisons) were significant at p< 0.05 (S5 Table).

When analyzing the whole dataset, i.e. the 44 C. asper populations (K: 1 to 45), a clear peak

of deltaK was detected at K = 2 (S3 Fig). Populations from the western Pyrenees were assigned

to the same cluster while populations from the central-eastern Pyrenees were clearly grouped

apart (Fig 4). When we analyzed both clusters separately, the western populations (cluster 1)

remained grouped into two clusters (K = 2; S3 Fig): one contained the westernmost popula-

tions, while the other grouped together with the western populations at both sides of the Pyre-

nees. When analyzing cluster 2 (the central-eastern Pyrenees) a clear peak of K = 3 (S3 Fig)

was obtained. The most central-eastern populations were assigned to the same cluster (cluster

2.1) while populations from north-eastern and south-eastern Pyrenees were clearly grouped

apart into two groups (clusters 2.2. and 2.3).

Although the number of private alleles was low at a population level, clusters showed a high

number of private alleles, being much higher in cluster 1 than in cluster 2 (PA = 72 and 21,

respectively; Table 1). Subcluster 1.1. was the most differentiated one accounting for 48 private

alleles, while other subclusters presented less than 10 private alleles. Allelic richness (Ar) was

Fig 2. PCA plot based on nine environmental and geographical variables related to the genetic diversity. PCA plot

based on four environmental variables and five geographical variables related to the genetic diversity measures (Ar, HO

and HE) describing the Calotriton asper populations.

https://doi.org/10.1371/journal.pone.0200214.g002
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higher in the western populations (cluster 1) with subcluster 1.1 being the richest, while the

central-eastern populations (cluster 2) were poorer with subcluster 2.3 being the poorest.

Expected (HE) and observed (HO) heterozygosity were also higher in western populations than

central-eastern ones (Table 1). The FST values were all significantly different between the Pyre-

nean clusters and ranged from 0.146 to 0.277 (Table 2). The lowest FST values were found

between clusters 1.1 and 1.2 (western Pyrenees). Instead, within eastern Pyrenees (clusters 2.1,

2.2 and 2.3) higher values of FST were found (0.262–0.277). The neighbor-joining tree recov-

ered the five groups identified by STRUCTURE (S4 Fig).

Mantel tests of isolation by distance (IBD) over all populations revealed a moderated but

significant (p< 0.001), positive relationship between geographical and genetic distances (R2 =

0.112; S6 Table, Fig 5). The increase of isolation with geographical distance is consistent with

the population structure detected from the Bayesian clustering analysis (see Structure analy-

ses). A similar result was found when analyzing the cluster 1 and 2 separately (R2 = 0.197 and

R2 = 0.102, respectively, p< 0.001).

The two methods used to estimate the effective population sizes (Ne) resulted, in general, in

low values (see S7 Table). Considering both methods, effective population sizes ranged

between four and 306. Barbarisa (BAR) and Oto (OTO) showed values over 200 using

Fig 3. Linear regressions between the genetic diversity across the selected environmental and geographical variables. Linear regressions

between the three genetic diversity indices (Ar, HO and HE) across the longitude (A) and altitude (B) ranges, variable BIO8 (C) and the three

distinct habitat types (D) of Calotriton asper populations.

https://doi.org/10.1371/journal.pone.0200214.g003

Genetic diversity and structure of Calotriton asper

PLOS ONE | https://doi.org/10.1371/journal.pone.0200214 August 2, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0200214.g003
https://doi.org/10.1371/journal.pone.0200214


COLONY, and Ibón de Perramó (IPE) showed values over 100 with ONeSAMP. The remain-

ing populations showed estimates below 100, with a mean Ne of 21–56 (S7 Table).

Discussion

Here, we have analyzed a large genetic data set of the endemic Pyrenean brook newt C. asper
to investigate impacts of glacial isolation on the population structure in a mountain context.

We found a positive correlation between genetic diversity and altitude, which appears to be

generally rare, as most commonly negative correlations are observed. We also found an unusu-

ally high level of genetic differentiation as expressed by FST values among the Pyrenean brook

Fig 4. Genetic structure of the 44 Calotriton asper populations. Genetic structure of the 44 Calotriton asper
populations. A) Results of Bayesian clustering and individual assignment analysis obtained with STRUCTURE at K = 2

including all Calotriton asper populations (above), the western Pyrenean populations with K = 2 and the central-

eastern Pyrenean populations with K = 3. Each individual is represented by a thin bar corresponding to the sum of

assignment probabilities to the K cluster. Black bars separate populations. B) Map of the five genetic clusters.

https://doi.org/10.1371/journal.pone.0200214.g004

Table 2. Pairwise FST values among Calotriton asper genetic clusters. Pairwise FST values among Calotriton asper genetic clusters by STRUCTURE analysis. All

p<0.0001.

Cluster 1 Cluster 2

1.1 1.2 2.1 2.2 2.3

1.1 -

1.2 0.14623 -

2.1 0.23406 0.24094 -

2.2 0.21594 0.27496 0.27678 -

2.3 0.23311 0.23467 0.26227 0.26828 -

https://doi.org/10.1371/journal.pone.0200214.t002
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newt populations. These values are the highest ever found for intraspecific comparisons of an

amphibian species so far (e.g. [19] and references herein). Interestingly, these high levels of

nuclear genetic divergence contrast with a relatively low mitochondrial diversity of C. asper
populations (see [32]), which suggests a relatively recent shared population history of C. asper.

However, clear genetic differences between hypogean and epigean populations suggest a long

isolation of these populations.

Genetic variability, longitudinal and altitudinal patterns across the

Pyrenees

Microsatellite loci analysis revealed similar levels of genetic variability in C. asper populations

across the Pyrenees (weighted average Ar = 2.930 and HE = 0.523) compared to its sister spe-

cies, the Montseny brook newt, C. arnoldi (weighted average Ar = 3.398 and HE = 0.441)[26].

These values are also consistent compared to other mountain brook newts, such as Euproctus
platycephalus on Sardinia (weighted average Ar = 2.376 and HE = 0.6 [65]) and are within the

typical range of other urodeles and temperate amphibians (0.4–0.6; [66] and references

therein). In accordance with other Pyrenean species, such as the Ericaceae Rhododendron fer-
rugineum [8], we found that genetic diversity of C. asper populations is negatively correlated

with longitude. The western populations were in general more genetically diverse than those

in the central or eastern areas of the Pyrenees. In fact, climate across the Pyrenees varies greatly

due to oceanic influences in the west and Mediterranean influences in the east of the chain [8].

Parts of the Pyrenees that are influenced by the Mediterranean climate provide higher temper-

atures and drier conditions than oceanic influenced sectors, which provide more suitable habi-

tats for C. asper [28]. Moreover, a western evolutionary origin remains possible as a

Pleistocene fossil assigned to Calotriton has been found in the Cave of the Hyenas (Asturias)

[67, 68].

The most striking result concerning genetic variability in our study was the positive correla-

tion with altitude, i.e. genetic diversity (in terms of allelic richness and expected heterozygos-

ity) tended to be higher at high-altitude populations. In fact, maximum values can be observed

at an altitudinal range around 1,200 m, but levels still remained high at high-altitude popula-

tions (e.g. in Barbarisa at 2,333 m: Ar = 0.360 and HE = 0.609; Table 1). The impact of altitudi-

nal gradient on the genetic patterns differs between amphibian species. In some species there

is no correlation found between the altitudinal gradient and the population differentiation or

genetic diversity (e.g. Rana chensinensis [69]; Euproctus platycephalus [65]). In other species,

the genetic diversity is negatively correlated with altitude (e.g. Rana luteiventris [70]; Ambys-
toma macrodactulym [71]). However, to the best of our knowledge, our results represent the

Fig 5. IBD for the total dataset and within clusters. Isolation-by-distance for the total dataset (A), within cluster 1

(B) and within cluster 2 (C). Geographic distance is log-transformed and genetic diversity is standardized as FST/(1 −
FST).

https://doi.org/10.1371/journal.pone.0200214.g005

Genetic diversity and structure of Calotriton asper

PLOS ONE | https://doi.org/10.1371/journal.pone.0200214 August 2, 2018 13 / 23

https://doi.org/10.1371/journal.pone.0200214.g005
https://doi.org/10.1371/journal.pone.0200214


first case of a positive correlation between genetic diversity and an altitudinal gradient (Fig

3B). Again, C. asper seems to prefer cooler and wetter environments at high altitudes than

warmer and drier valleys.

Mountains have repeatedly been shown to have strong effects on gene flow in amphibians

[72]. Considering this fact, we wonder if the top hill Pyrenees imposes a genetic barrier to the

C. asper populations. Populations at the periphery of a species’ distribution tend to have lower

genetic diversity than the central populations probably attributable to suboptimal habitat,

greater isolation, founder effects and/or genetic bottleneck [69, 73]. By occupying different

habitats, such as streams, lakes and caves [28], environmental plasticity or the ability to locally

adapt to different habitat conditions–or both mechanisms–appear to be high in C. asper.

Given that C. asper can be generally seen as a typical cold-adapted mountainous freshwater

amphibian species with an optimal elevation range between 1,000–2,000 m asl [28], habitats in

the lowlands with high water temperatures should be less suitable for this species. We therefore

assume that gene flow will most likely occur through the most suitable habitats at higher eleva-

tions. This is in accordance to the predicted distribution models inferred for the interglacial

periods (warm periods), when this species would have been expelled from the lower areas (i.e.

< 500 m; [11]). Along this line, the high but not maximum genetic variability at high-altitude

sites may also be interpreted as a consequence of a more recent colonization of high altitude

habitats located around 1,500 m asl of the Pyrenees after the last glaciation events (LGM,

20000 ya). Within our dataset, five out of six localities below 500 m asl are caves, while lakes

represent the most elevated sites above 1,800 m asl. Although habitat type might be affecting

the genetic variability (see discussion below), altitude showed a significant positive correlation

when only stream populations were analyzed (see S2 Fig and S3 Table).

We therefore conclude that the highest levels of genetic diversity of stream populations of

C. asper are found around 1,200 m asl, and the lowest below 700–1,000 m asl. However,

regarding genetic diversity levels at high elevations and the cluster structure assembling French

and Iberian populations (clusters 1.2 and 2.1), we can assert that high altitude mountains may

not be acting as a dispersal barrier in C. asper. There might be enough passages at high alti-

tudes that are suitable for migration during the summer period where temperatures are not

too low. Some of the migration, however, will likely occur horizontally in a stretch of a suitable

mountain region. Thus, French and Iberian high altitude populations may be genetically con-

nected, but lowlands at both sides of the Pyrenees may constitute a harsh habitat with periph-

eral and isolated populations.

Patterns of genetic diversity between distinct habitat types

The environmental plasticity previously mentioned for this species matches with similar levels

of genetic diversity found between lakes and streams. Streams are described as the ‘optimal’

habitat for this species, and high mountain lakes and caves have been seen as secondary habi-

tats [28]. Our results in terms of genetic diversity and the number of private alleles suggest that

newts that colonized high mountain lakes had been quite successful. Despite being posteriorly

colonized areas (lakes had lower number of private alleles than streams), lakes maintain similar

levels of genetic variation as streams. Caves are generally characterized by food restriction

[38]. However, they represent a valuable habitat for amphibians as they can hold water all year

round and therefore can also favor the survival of larvae and metamorphosed individuals [74,

75]. Moreover, in our case, caves were located in lowlands where epigean water and air tem-

perature might be too high. We assume that C. asper uses caves in the lowlands as a substitute

habitat for cold-water streams and individuals became enclosed and isolated from nearby pop-

ulations. It seems that newts from streams might be dispersing when they ‘fall into the caves’
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or enter voluntarily when conditions outside are harsher. The low levels of genetic variability

together with the almost absence of private alleles (only in one of the caves) suggested a sec-

ondary colonization of lowland caves from neighboring populations rather than being rear-

edge remnant populations left from the lowland refugia [8, 76]. In fact, some authors suggest

that this colonization occurred rather recently only 10,000 ya [38, 74].

Genetic structure of C. asper populations

Overall, microsatellite loci data support reduced gene flow even among some neighboring

populations together with a strong genetic structure and a moderate signal of isolation-by-dis-

tance. The extremely high values of FST found within C. asper populations are the highest ever

found in similar species, considering the revision of Chan and Zamudio [66] who compared

16 temperate amphibians. Another ecologically similar mountain newt, Euproctus platycepha-
lus endemic to the island Sardinia (Italy) presents a maximum level of pairwise population dif-

ferentiation considerably lower than C. asper (0.297 among two localities separated by 168 km;

[65]). Lower FST values were also found for the long-toed salamander Ambystoma macrodacty-
lum (FST of 0.27 [19]).

Philopatry and dispersal capability, two linked biological attributes of a species, have a great

influence on the population structure and isolation. For C. asper, a 2-year-long terrestrial juve-

nile dispersal phase was described [30], providing the opportunity to explore and colonize new

habitat niches. The fact that C. asper inhabits high-altitude lakes and streams in areas that were

recently glaciated, has been also seen as evidence for a high dispersal capacity [32, 77]. Other

stream salamanders were also shown to be able to use both aquatic and overland dispersal

[78]. However, results from capture-recapture studies [31] advocated that the dispersal capa-

bility during the terrestrial phase may actually be limited in C. asper. Accounting for the

extremely high values of genetic differentiation found among their populations–similar to

what was found with AFLPs [32]–the low dispersal capability for this species is reinforced. In

fact, the dispersal capability of species is not exclusively determined by its intrinsic biology but

also by extrinsic factors such as landscape characteristics, climatic suitability, and water quality

[18, 19]. The external factors may be more remarkable in mainly aquatic species, as is the case

of C. asper, as dispersal may be strongly influenced by the presence of surrounding suitable

corridors (a stretch of optimal habitat that facilitates the migration of individuals, see introduc-

tion section). In an optimal environment, these species may easily migrate from site to site

through present corridors. Instead, in populations surrounded by less suitable habitats, migra-

tion might be hampered [79]. The most diverse populations in our study (mainly cluster 1.1.

but also 1.2; Table 1) but less differentiated are the ones located westwards (FST within cluster

1 of 0.146; Table 2). These populations may be more connected by suitable habitat corridors,

enabling an easier dispersal of individuals between sites. Occasional gene flow among localities

may, in turn, support the maintainance of high levels of genetic diversity [18, 19, 35, 80].

Instead, central and south-eastern populations (clusters 2.1 and 2.3) present higher values of

population differentiation (FST around 0.270; Table 2) and are the poorest in terms of genetic

diversity (Table 1).

Inferring a biogeographic scenario for C. asper
A biogeographic scenario inferred for C. asper also matches with that of other mountain

organisms [35, 81] as well as other Pyrenean distributed species, such as spiders or plants [8,

9]. Regarding mitochondrial markers, C. asper is not clearly structured across its distribution

range and the low divergence suggests a recent ancestry of C. asper populations. In contrast,

concerning microsatellite loci differentiation, this species is clearly structured into two main
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and several subclusters across the Pyrenees (see Fig 4). The structure into two genetically dis-

tinct groups across the Pyrenees is not exclusive for this species; in fact, the different lineages

in animals and plants found in this mountain range most often observed is two [9, 81, 82], sep-

arated across the longitudinal axis (eastern and western lineages). Studies that found the two

main lineages argue that species may have survived glaciations in two main refugia–one in

south central and another in the eastern Pyrenees. In our case, the unclear structure and the

low genetic diversity at the mitochondrial level together with the predicted distribution models

inferred for the LGM [11, 32, 33] may be interpreted as an intense past gene flow between pop-

ulations at lowland and midland refugia, i.e. populations would have come into contact,

exchanging genes and homogenizing [77, 83, 84]. However, the genetic signal (genetic diver-

sity patterns and population structure) found with microsatellite loci would fit with the recent

recolonization of the high mountains during the interglacial periods. Genetically connected

populations would expand from large lowland refugia to high altitude plateaus [8]. Subse-

quently, these large high altitude populations could have been fragmented when the climate

became warmer and drier–especially intense in some areas (e.g. deep valleys). In fact, central-

eastern populations may have been isolated after the recolonization due to the absence of cor-

ridors (stronger differentiation between their populations). Instead, current gene flow within

western populations seems more likely to occur (lower differentiation between clusters) due to

the presence of suitable corridors. High numbers of lineages in the Pyrenees are also shown,

e.g. for Rhododendron ferrugineum with five clusters [8] fitting to the clustering of C. asper into

five groups.

Implications for conservation

Regarding the genetic diversity and population structure of C. asper shown in our study, the

most vulnerable areas are those at the limit of its distribution, such as the eastern Pyrenees

and/or the lowlands, basically due to the less suitable environmental conditions. Taking into

account this scenario, future predictions of climate change may drastically reduce the potential

distribution range of this species [85]. The mountain critical zone at mid-altitudes may see

important climatic changes over time and are already under high anthropogenic pressure due

to pastorialism and tourism. Hence, C. asper might get trapped in high mountain habitats due

to global change. However, as it is the case for many mountain lakes across the world [86, 87],

Pyrenean lakes and their biota suffer from fish introductions and natural colonisations may

occur only when concrete management actions are put in place [88, 89].

Caves as habitats for C. asper are needed to be treated with caution due to their isolation

and the low levels of genetic diversity. Also, some highly diverse stream populations, such as

those of Monrepós (MON) and Sierra de Guara (SGU), presenting high allelic richness and a

high number of private alleles, should be considered as populations of interest for conserva-

tion, as they harbor a large proportion of the species’ genetic diversity.

Except from Barbarisa (BAR), Oto (OTO) and Ibón de Perramó (IPE), the remaining popu-

lations showed low effective population sizes (Ne < 100). An effective population size of 500

has been suggested as a minimum value for the long-term survival of a species, and values

around 50 in isolated populations are considered of major concern [90]. However, values of Ne

around 50 are not unusual for amphibians [91]. Effective population sizes for the C. asper pop-

ulations were similar or higher than those of the C. arnoldi populations or other urodele

amphibians [26]. Here, nine of the 44 C. asper populations analyzed had an Ne lower than 10.

Populations with a very low Ne are needed to be considered of particular concern, as these pop-

ulations have an increased probability of extinction resulting from genetic effects, such as

inbreeding [92] and stochastic environmental processes.
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Because of the differentiation between populations highlighted in this study, it is essential

for management or possible re-introduction programs to take into account the results of

molecular studies [93]. The influence of a high pressure of interspecific competition and pre-

dation (e.g. by invasive fish) imposes a recent serious threat to the conservation of this species.

In fact, C. asper has been experiencing a substantial reduction of its habitat [88, 89] and

accordingly, management measures are needed to reduce the pressure of interspecific compe-

tition and predation (e.g. by invasive fish). Particularly, isolated and fragmented populations

may need to be managed independently [35].

Supporting information

S1 Table. List and codification of environmental variables from the BIOCLIM dataset. List

and codification of environmental variables from the BIOCLIM dataset. Units expressed and

mean, median, minimum and maximum values for the 44 Calotriton asper populations. Tem-

perature data is in units ˚C �10 with a 0.1˚C precision.

(XLSX)

S2 Table. Pearson correlation matrix of environmental and geographical variables. Pearson

correlation matrix of environmental and geographical variables. In bold, significant levels of

p<0.05. See text, for the codes of the variables.

(XLSX)

S3 Table. Univariate linear regression between genetic diversity and geographical and

environmental selected variables. Univariate linear regression between genetic diversity and

geographical and environmental selected variables of Calotriton asper populations. In bold sig-

nificant levels of p<0.05.

(XLSX)

S4 Table. ANOVA among the three distinct habitat types to genetic diversity. ANOVA

with Tukey HSD posthoc test among the three distinct habitat types to allelic richness (Ar)

observed (HO) and expected heterozygosity (HE).

(XLSX)

S5 Table. Pairwise FST values among Calotriton asper populations. Pairwise FST values

among Calotriton asper populations. See Table 1 for the population codification; p values were

<0.05 for all pairs except for those in bold.

(XLSX)

S6 Table. IBD of the five genetic clusters. Results of the isolation by distance analyses (IBD;

Mantel test) of the five genetic Calotriton asper clusters.

(XLSX)

S7 Table. Estimates of effective population size (Ne) for each Calotriton asper population.

Estimates of effective population size (Ne) for each Calotriton asper population, calculated with

two analytical approaches (ONeSAMP, and COLONY) and using different priors; estimates of

the upper and lower 95% CI estimates for each method are indicated.

(XLSX)

S8 Table. Microsatellite data of the Calotriton asper dataset used.

(XLSX)

S1 Fig. Spatial interpolation of the genetic diversity measures acroos the Calotriton asper
distribution range. Spatial interpolation of the genetic diversity of Calotriton asper. A) First

axis of a principal components analysis (PC1) summarizing the allelic richness, the rarified
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private allele richness and the observed and expected heterozygosities (positive PC1 scores

indicate higher diversity). B) Expected heterozygosity, HE. C) Observed heterozygosity, HO.

D) Allelic richness, Ar. E) Rarified private allele richness, Par.

(TIF)

S2 Fig. Linear regressions between the genetic diversity across the longitude and altitude

using only stream populations. Linear regressions between the three genetic diversity indices

(Ar, HO and HE) across the longitude (A) and altitude (B) ranges when only stream Calotriton
asper populations were analyzed.

(TIF)

S3 Fig. Plot of deltaK values calculated by Evanno’s method from the Structure analyses.

Plot of deltaK values calculated by Evanno’s method from the Structure analyses. A) Global

dataset of the 44 Calotriton asper populations. B) Western Pyrenean populations, i.e. Cluster 1.

C) Central-eastern Pyrenean populations, i.e. Cluster 2.

(TIF)

S4 Fig. Neighbor-joining tree among the Calotriton asper populations. Neighbor-joining

tree using DA distances among the Calotriton asper populations showing the relationships

between the five genetic clusters defined by STRUCTURE analysis. As for the population codi-

fications see Table 1.

(TIF)
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laume, Adeline Loyau, Dirk S. Schmeller, Sebastian Steinfartz.

Writing – original draft: Emilio Valbuena-Ureña, Anna Soler-Membrives, Sebastian

Steinfartz.

Writing – review & editing: Emilio Valbuena-Ureña, Neus Oromi, Anna Soler-Membrives,

Salvador Carranza, Fèlix Amat, Sebastià Camarasa, Mathieu Denoël, Olivier Guillaume,
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