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Abstract

Energy-based trade-offs occur when investment in one fitness-related trait diverts energy

away from other traits. The extent to which such trade-offs are shaped by limits on the rate

of conversion of energy ingested in food (e.g. carbohydrates) into chemical energy (ATP) by

oxidative metabolism rather than by the amount of food ingested in the first place is, how-

ever, unclear. Here we tested whether the ATP required for mounting an immune response

will lead to a trade-off with ATP available for physical activity in mosquitofish (Gambusia hol-

brooki). To this end, we challenged fish either with lipopolysaccharide (LPS) from E. coli or

with Sheep Red Blood Cells (SRBC), and measured oxygen consumption at rest and during

swimming at maximum speed 24h, 48h and 7 days post-challenge in order to estimate met-

abolic rates. Relative to saline-injected controls, only LPS-injected fish showed a signifi-

cantly greater resting metabolic rate two days post-challenge and significantly higher

maximal metabolic rates two and seven days post-challenge. This resulted in a significantly

greater metabolic scope two days post-challenge, with LPS-fish transiently overcompensat-

ing by increasing maximal ATP production more than would be required for swimming in the

absence of an immune challenge. LPS-challenged fish therefore increased their production

of ATP to compensate physiologically for the energetic requirements of immune functioning.

This response would avoid ATP shortages and allow fish to engage in an aerobically-chal-

lenging activity (swimming) even when simultaneously mounting an immune response. Nev-

ertheless, relative to controls, both LPS- and SRBC-fish displayed reduced body mass gain

one week post-injection, and LPS-fish actually lost mass. The concomitant increase in meta-

bolic scope and reduced body mass gain of LPS-challenged fish indicates that immune-

associated trade-offs are not likely to be shaped by limited oxidative metabolic capacities,

but may instead result from limitations in the acquisition, assimilation or efficient use of

resources.
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Introduction

Pathogens can represent intense selection pressures for their hosts [1, 2]. Despite this, the evo-

lution of host resistance through the activation of a protective immune response may be con-

strained by the energetic costs of immune functioning and trade-offs with other fitness-related

traits [3–6]. A growing number of studies have provided evidence of costly immune responses

to inert antigens, with immune-challenged individuals showing increased nutritional intake

[7, 8] and body mass loss [9, 10] compared to controls. Because hosts usually have access to

limited resources, the energy allocated to fuel immune responses may be diverted away from

other fitness-related functions, such as growth, reproduction, and maintenance [3]. Accord-

ingly, immune challenges have been shown to be associated with reduced locomotor perfor-

mance [11–13] and lowered investments in reproduction and growth [14, 15]. However, while

energetic constraints are often assumed to mediate life history trade-offs [3], the physiological

processes by which this might occur still remain to be elucidated.

Previous studies quantifying the energetic cost of immunity have focused on measuring

changes in basal metabolic rates following immune challenge [9, 16, 17]. Basal (or resting

when measured under less restrictive circumstances) metabolic rates reflect the rate of ATP

hydrolysis required to maintain cellular processes during physical inactivity [18]. For instance,

vaccinated rainbow trout (Oncorhynchus mykiss) displayed higher routine metabolic rates

(measured in unfed fish spontaneously swimming and which can be indicative of basal metab-

olism) than controls [19], with rates increasing by ~20% 223˚ days post-vaccination (equiva-

lent to 22.3 days at 10˚C) [20]. Similarly, four species of insects (Tenebrio molitor, Acheta
domesticus, Cotinis nitida and Periplaneta americana) showed an increase in metabolic rate by

up to 28% following the induction of an innate immune encapsulation response, during which

hemocytes form a multi-layered sheath around a parasite or antigen [21]. Cutrera et al [22]

reported that tuco-tucos (Ctenomys talarum) experimentally-challenged with Sheep Red Blood

Cells (SRBC) experienced a 20–35% increase in metabolic rate, which was equivalent to a 15%

increase in daily energetic expenditure. Martin et al. [23] and Eraud et al. [24] found that the

increase in basal metabolic rate displayed by collared doves (Streptopelia decaocto) and house

sparrows (Passer domesticus) following injections with inert antigens was of a magnitude simi-

lar to that required to produce half an egg per day and to maintain an optimal body tempera-

ture at an ambient temperature 1–2˚C below thermo-neutrality, respectively. While immune

responses have thus been shown to increase the resting metabolic rate, it remains to be deter-

mined whether such immune-triggered increase in ATP use at rest means that less ATP is

available for engaging in other aerobically-challenging activities.

The level of energy that an individual can allocate to fitness-related activities such as repro-

duction, foraging and engaging in behavioural interactions, can be estimated by the aerobic

metabolic scope [25–27]. The aerobic metabolic scope is defined as the difference between the

maximal metabolic rate, which reflects maximal mitochondrial flux [25], and the resting meta-

bolic rate, and therefore represents the metabolic capacity to engage in aerobically-challenging

activities [28]. Metabolic scopes may decline either when there is an increase in the resting

metabolic rate or when there is a decrease in the maximal metabolic rate. Hence, if metabolic

maintenance costs increase, the resultant reduction in metabolic scope can create an allocation

trade-off [29]. Decreases in the amount of energy available to other activities may, however, be

counterbalanced physiologically through an increase in the capacities of mitochondrial meta-

bolic pathways [27, 30, 31]. While such compensatory responses may abolish ATP shortages,

trade-offs may still persist if investment in multiple aerobically-challenging activities depletes

storages of ingested chemical energy with detrimental consequences for body condition.
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Here we examined the energetic basis of immune-associated resource allocation trade-offs

in wild-caught, female mosquitofish (Gambusia holbrooki). Individuals were challenged either

with lipopolysaccharides (LPS) isolated from Escherichia coli or with Sheep Red Blood Cells

(SRBC) to investigate how differences in the type of immune response elicited may constrain

energetic investments in other functions [22, 32–34]. Although fish are thought to be less sen-

sitive to endotoxins such as LPS than other vertebrates [35–37], LPS-challenges in fish in vivo
and in vitro nevertheless induced a strong inflammatory response [38, 39], and increased the

production of cytokines and acute phase proteins, as well as stimulated T and B lymphocytes,

macrophages and complement systems [26]. For example, the expression of cytokines in a

monocyte-macrophage lineage of rainbow trout was detectable 6h after exposure to E. coli LPS

and increased over 24h [30, 33]. LPS also induces antibody production, which in the brown

trout (Salmo trutta) was detectable on day 14 post-injection [40]. However, antigen-binding

and antibody-secreting cells were detected in the spleen and kidney of these fish as early as 2

and 4 days after injection, with peaks reached between day 14 and 18 post-injection [41].

SRBC, on the other hand, induced a non-pathogenic T and B-cell dependent antibody

response [32]. Brown trout immunized with SRBC displayed detectable levels of antigen-bind-

ing and antibody-secreting cells on day 6 post-injection, with levels peaking on day 12 [41].

Levels of antibody-producing cells were detectable as early as day 5 and peaked on day 10 in

the Mozambique tilapia (Oreochromis mossambicus) [42].

Based on these studies, we can make the following predictions. First, we predicted that if

immune responses were energetically costly, then immune-challenged individuals would

exhibit higher resting metabolic rates than controls. Second, we tested whether limits on ATP

production and the amount of ATP available can give rise to immune-associated trade-offs.

We predicted that, if this were the case, immune-challenged individuals should experience a

reduction in metabolic scope relative to controls. Conversely, if immune-associated trade-offs

are shaped by a limited availability of ingested energetic resources, then immune activation

should instead be associated with a reduction in body mass.

Material and Methods

Study animals

All procedures were approved by a prefectorial order from Ariège, France (Agréments de l’éta-

blissement pour l’élevage et l’expérimentation no. 0108 and no. SA-013-PB-092; certificats

d’autorisation d’élevage et d’expérimentation sur poissons vivants to Oliver Guillaume, no.

09–273 and no. A09-3) and by the University of Sydney Animal Ethics Committee (approval

no. L04/10-2010/3/5411). Wild mosquitofish were captured in July 2011 from natural ponds

on private land near Perpignan (42.698˚N, 2.895˚E) in southern France, with permission from

local landowners. This invasive species needs no permit for collection. Animals were immedi-

ately brought back to the laboratory at the Station d’Ecologie Expérimentale du Centre

National de la Recherche Scientifique (CNRS) in Moulis (Ariège, France), where they were

housed in large containers (100 fish at approximately 1 fish/L), with a mixture of water from

their capture sites and aged tap water. The females used in this study were housed individually

(in 300×250×200 mm tanks) so that we could follow individuals. Females were habituated to

their individual tanks for two weeks before the start of the experiment. At the time of capture,

water temperature at the sites of capture varied between 28–30˚C; fish were therefore kept at

30˚C in the laboratory throughout the habituation and experimentation phases. Because

female mosquitofish store sperm and will be mated immediately upon reaching maturity [20],

we categorized females based on the shape and distension of their abdomen to ensure that all

individuals used were at a similar early stage of pregnancy (for detailed methods see [43]) [27].

Immune Function and Aerobic Scope
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Fish were fed to satiety with commercial fish flakes once per day. Food was withheld 24 h prior

to immune-treatment and prior to all measurements of metabolic rates. This ensured that fish

were in a post-absorptive state and therefore fit the requirement for basal metabolic rate mea-

surement (i.e., calm, motionless and post-absorptive). Throughout the experiment, fish were

monitored daily for signs of stress (e.g., gasping at the surface, loss of appetite, unusual swim-

ming patterns and symptoms of disease), in which case they would have been immediately

euthanized by slowly mixing an appropriate dose of clove oil in water to the fish tank. None of

the fish was euthanized during the course of the experiment, however, and all fish were eutha-

nized with a lethal dose of clove oil at its conclusion.

Immune challenge

After approximately two weeks in captivity, females were randomly assigned to experimental

or control groups (experimental LPS-injected: N = 10; experimental SRBC-injected: N = 9;

controls: N = 10). Individuals were challenged with an intra-peritoneal injection of LPS

(Sigma; St. Louis, USA; L4005; 10μg/g fish at 1g/L [44]) or SRBC (Sigma R3378; 20μg/g fish at

1g/L [42, 45]) for experimental treatments, and 0.01mL of saline solution (PBS) for controls.

Prior to injection, all fish were lightly anesthetized in a clove oil solution, and after injection

animals were placed immediately in aged tap-water where they recovered within 1–2 minutes.

At the onset of the experiment we measured both total body length ((±0.05 mm) and body

mass (hereafter: initial mass, ±0.01 g), although body mass was again obtained at the end of the

experiment after 7 days (~168 hours). Body length and body mass were highly correlated at

experiment onset (Correlation coefficient, rp = 0.97, p< 0.001).

Oxygen consumption

In fish, the immune response to LPS is known to occur within hours of injection and last for at

least 2 weeks [30, 33, 40]. On the other hand, antibody responses to SRBC can become detect-

able 5–6 days post-immune challenge and peak 10–12 day post-injection [41, 42]. Conse-

quently, we measured oxygen consumption to estimate resting and maximal metabolic rates at

24h, 48h and 168h (7 days) post-challenge in LPS-exposed individuals and control fish, and at

7 days only in SRBC-exposed ones. Oxygen consumption is a commonly-used, indirect mea-

sure of metabolic rates [46]. Oxygen consumption was measured according to published meth-

ods [43] with a fibre-optic oxygen system (Fibox 3, Presens, Regensburg, Germany)

monitoring sensor spots (Presens, Germany) attached to the insides of respirometers accord-

ing to the manufacturers’ instructions.

We first measured resting oxygen consumption by allowing fish to rest in a cylindrical glass

respirometer (245 ml volume) placed into a darkened tank for 45–60 minutes. We then sealed

the respirometer, making sure not to disturb the fish, and let the fish rest for a further 10–15

minutes before recording the decrease in oxygen over a 7–10 minute period or until a steady

rate of oxygen decrease was established; we followed the decrease in oxygen levels within the

respirometer in real-time.

Maximal rates of oxygen consumption were determined immediately after in a cylindrical

glass respirometer (415 ml) placed on a magnetic stirrer [43]. A magnetic stirbar within the

respirometer created water flow that could be adjusted with the control on the magnetic stir-

rer. Turbulence and eddies within the respirometer were minimised by a central column sus-

pended from the lid. Fish were placed into the respirometer and the speed was increased

slowly until fish swam steadily, but occasionally had to struggle to maintain their position in

the water column, i.e. fish occasionally went backwards in the water column and had to engage

in burst swimming to regain their position, indicating near maximal swimming speeds.

Immune Function and Aerobic Scope
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Oxygen consumption was measured during 6–8 minutes of swimming at that speed. Rates of

oxygen consumption (in μmol g-1 min-1) were determined as the slope of the decrease in oxy-

gen content divided by the fish body mass and multiplied by the volume of the container [46].

We calculated exercise-induced metabolic scope as the difference between resting and swim-

ming oxygen consumption.

Statistical analyses

All statistical analyses were performed using SAS software version 9.3 (SAS Inc., Cary, NC).

When required, data were log10-transformed before analyses to fulfil assumptions of normality

and homoscedascity. Because metabolic rates are generally influenced by body mass (Hill et al

2012), we initially tested whether this was the case in our study using three regression analyses

in which body mass was regressed against, respectively, resting and maximal metabolic rates,

as well as metabolic scope. We restricted these analyses to those in control groups, calculated

averages in metabolic parameters over the measures obtained at 24h, 48h and 168h (7 days)

post-challenge. We then tested whether resting and maximal metabolic rates, and metabolic

scopes of LPS-injected fish differed from those of controls using multivariate general linear

mixed models with treatment (LPS or PBS), time, and their interaction, and with initial mass

as fixed effects, and with individual as the random effect; for each time point, differences

between LPS-challenged and control fish were contrasted within the same model using the

“estimate” statement. Non-significant interactions were removed from final models. To exam-

ine how SRBC-injected fish differed in their resting and maximal metabolic rates and in their

metabolic scope relative to controls and to LPS-fish, we conducted general linear models with

treatment (SRBC, LPS or PBS) and initial mass as fixed effects; between-treatment differences

were contrasted within the models using the “estimate” statement. Treatment effects on

changes in body mass over the course of the experiment were conducted using a general linear

model with the difference in body mass between 0 and 7 days post-injection as the dependent

variable and with treatment and initial mass as fixed effects; between-treatment differences

were contrasted using the “estimate” statement.

Results

Effects of immune treatment on metabolic rates

In control individuals, mass had significant (or nearly significant) negative effects on resting

and maximal rates of oxygen consumption (resting: F1,8 = 8.69, p = 0.018; estimate(±SE) =

-0.11±0.036; maximal: F1,8 = 4.97, p = 0.057; estimate(±SE) = -0.23±0.10); while mass had little

effect on metabolic scope (F1,8 = 0.88, p = 0.38; estimate(±SE) = -0.12±0.13). We thus included

body mass at experiment onset as a covariate in all analyses investigating the metabolic cost of

immune activation.

LPS-injected fish displayed higher resting and maximal rates of oxygen consumption than

saline-injected controls over the course of the experiment (GLMM; resting rates of oxygen con-

sumption: treatment: F1,38 = 8.8, p = 0.005, time: F2,38 = 1.2, p = 0.32; initial mass: F1,38 = 9.32,

p = 0.004; maximal rates of oxygen consumption: treatment: F1,38 = 6.14, p = 0.018, time: F2,38 =

1.1, p = 0.33, initial mass: F1,38 = 13.7, p<0.001; Table 1; Fig 1A and 1B). Separate analyses of

each time point revealed significant between-treatment differences in resting metabolic rates 24

h post-challenge and in maximal metabolic rate 48 h post-challenge, and a marginally significant

between-treatment difference in resting metabolic rate 7 days post-challenge (resting metabolic

rate: 24 h: t36 = 2.41, p = 0.021; 48 h: t36 = 1.22, p = 0.230; 7 days: t36 = 1.97, p = 0.057; maximal

metabolic rate: 24h: t36 = 0.02, p = 0.99; 48h: t36 = 2.88, p = 0.007; 7 days: t36 = 1.90, p = 0.066).
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We then examined the metabolic cost of an immune response to SRBC and compared the

metabolic rates of SRBC- and LPS-fish. Resting rates of oxygen consumption 7 days post-injec-

tion differed significantly between treatments (GLM, treatment: F2,25 = 5.6, p<0.010, initial

mass: F1,25 = 4.9, p = 0.036; Table 1; Fig 2A and 2B). However, between-treatment tests

revealed that differences were significant between LPS and SRBC-fish only (t = 3.17,

p = 0.004), with SRBC-fish displaying resting rates of oxygen consumption that were 50%

lower than LPS-injected ones, but not between SRBC-fish and saline-injected controls (t = 1.4,

p = 0.17). Treatment did not affect maximal rates of oxygen consumption 7 days post-injection

(GLM, treatment: F2,25 = 0.5, p = 0.60, initial mass: F1,25 = 8.3, p = 0.008), with no significant

difference detected between SRBC-fish and either LPS-fish or controls (p>0.1).

Effects of immune treatment on metabolic scopes and body mass

LPS-injected fish displayed a significantly greater metabolic scope over the course of the experi-

ment than sham-injected controls (GLMM, treatment: F1,36 = 1.44, p = 0.24, time: F2,36 = 0.8,

p = 0.46, treatment × time: F2,36 = 3.3, p = 0.05, initial mass: F1,36 = 4.7, p = 0.037; Table 1; Fig

1C). Separate analyses of each time point revealed a significant difference between LPS-chal-

lenged and control fish 48h after treatment (24h: t36 = -1.01, p = 0.32; 48h: t36 = 2.32, p = 0.026; 7

days: t36 = 1.04, p = 0.31). Although SBRC-injected fish displayed higher metabolic scopes than

controls 7 days post-injection, the effect of treatment on metabolic scopes at that time point was

not significant (GLM, treatment: F2,25 = 0.8, p = 0.443, initial mass: F1,25 = 5.7, p = 0.025; Table 1;

Fig 2C), with no significant differences detected in any of the pairwise comparisons (all p>0.1).

There was a significant effect of treatment on mass change over the course of the experiment

(GLM, treatment: F2,25 = 7.3, p = 0.003, initial mass: F1,25 = 5.0, p = 0.034; Fig 3), with mass

change differing significantly between LPS- and control fish (t = -3.7, p = 0.001) and between

SRBC- and control fish (t = 2.8, p = 0.010). LPS-fish lost on average over 4% of their body mass

over the 7 days of the experiment (initial mass = 0.73±0.21g; final mass = 0.70±0.18g), but SRBC

and control-fish increased their body mass by 5% and 8%, respectively (SRBC: initial mass = 0.42

±0.14g, final mass = 0.44±0.17g; control: initial mass = 0.90±0.24g, final mass = 0.97±0.21g).

Discussion

Our results show that experimental challenges with an inert antigen can give rise to changes in

resting and maximal metabolic rates, with measurable consequences for metabolic scopes and

Table 1. Metabolic measures for immune-challenged (with LPS or SBRC) and control (saline-injected) mosquitofish.

Time post-treatment Metabolic measure Treatment

Control LPS SRBC

24h Resting 0.163 ± 0.053 0.293 ± 0.174

Maximum 0.831 ± 0.147 0.932 ± 0.255

Scope 0.668 ± 0.147 0.640 ± 0.224

48h Resting 0.202 ± 0.060 0.282 ± 0.083

Maximum 0.692 ± 0.124 1.038 ± 0.198

Scope 0.490 ± 0.110 0.756 ± 0.207

7 days Resting 0.205 ± 0.078 0.322 ± 0.150 0.209 ± 0.082

Maximum 0.809 ± 0.133 1.196 ± 0.675 1.696 ± 0.786

Scope 0.605 ± 0.127 0.874 ± 0.579 1.488 ± 0.750

We provide raw means (in μmol/min/g) and standard deviations for resting and maximal metabolic rates and for metabolic scopes at 24h, 48h and 7 days

post-challenge with LPS, and at 7 days post-challenge with SRBC.

doi:10.1371/journal.pone.0166028.t001
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hence the overall amount of ATP available to aerobically-challenging activities other than

those at rest. Resting and maximal metabolic rates and the metabolic scope were significantly

increased relative to controls in LPS-challenged fish only. Furthermore, immune-challenged

fish gained significantly less body mass over the course of the experiment than controls, with

LPS-fish actually losing body mass. Our results indicate that oxidative metabolic capacities can

be increased in immune-challenged individuals, such that these individuals actually produce

more ATP than would be needed for engaging in aerobically-challenging activities in the

absence of an immune challenge.

The higher resting metabolic rate displayed by LPS-challenged individuals relative to con-

trols corroborates the existence of an energetic cost associated with the immune response to

LPS. LPS are immunogenic molecules found in the cell wall of gram-negative bacteria that can

rapidly trigger a strong inflammatory response without causing infection [47]. In endotherms,

injections with E. coli LPS are commonly used to assess the acute phase response, which occurs

Fig 1. Rates of oxygen consumption and metabolic scope of LPS-injected and PBS (control) fish. a: Resting and b: maximal rates of oxygen

consumption, and c: metabolic scope, 24h, 48h and 168h (7 days) after treatment. Values show predicted means (in μmol/min/g) with standard errors (*
indicates p<0.05).

doi:10.1371/journal.pone.0166028.g001
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within hours of challenge and includes changes in body temperature (e.g., fever) and the

expression of sickness behaviours [48–51]. Responses to LPS have been indirectly shown to be

costly. For example, LPS-challenged individuals displayed decreased food intake, activity and

growth, and exhibited reduced reproductive output [15, 16, 50, 52–54]. Furthermore, direct

energetic costs of LPS injections have been demonstrated as a 10 and 20% increase in the rest-

ing metabolic rates of zebra finch and rats, respectively [16, 55]. In fish, LPS has been shown to

induce a depletion of liver glycogen levels in yearling coho salmon (O. kisutch) and rainbow

trout [56], and it is likely to be a potent agent of anorexia in gold fish (Carassius auratus aura-
tus) [57]. Our results verify the metabolic cost of a response to LPS in fish, which can be main-

tained over the course of a week, but is higher 24h than 7 days post-challenge.

On the other hand, the lack of significant difference in resting metabolic rates between

SRBC-treated and control fish suggests either that the cost of immunity to SRBC is negligible

or that it becomes detectable later than 7 days post-challenge. SRBC is a T cell-dependent

Fig 2. Rates of oxygen consumption and metabolic scope of SRBC-, LPS- and PBS-injected (control) fish. a: Resting and b: maximal rates of

oxygen consumption, and c: metabolic scope, 7 days after treatment. Values show predicted means (in μmol/min/g) with standard errors (** indicates

p<0.01).

doi:10.1371/journal.pone.0166028.g002
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antigen commonly used to assay humoral immune responses, and anti-SRBC antibodies reach

a peak 10 and 12 days after injection in brown trout and Mozambique tilapia, respectively [41,

42]. SRBC-injections were previously found to produce a 8.5% increase in the basal metabolic

rate of collared doves 7 days after challenge [24], yet they did not affect body mass and molting

in house sparrows (Passer domesticus) [58]. Similarly, SRBC-injected greenfinches (Carduelis
chloris) were shown to exhibit reduced activity, but no mass loss, 4 and 8 days post-challenge

[59], suggesting that SRBC induces only a mild sickness response. While the metabolic costs

and consequences of the immune response mounted by mosquitofish against SRBC still

remain to be determined, the fact that SRBC-fish gained significantly less mass over the course

of the experiment than controls suggests that a challenge with SRBC induces measurable ener-

getic costs the first week post-injection.

Immune-challenged mosquitofish did not display a decreased metabolic scope relative to

saline-injected controls, indicating that immune functioning did not give rise to a trade-off at

the level of ATP production and use. In fact, not only were metabolic scopes not decreased in

LPS-injected fish, but they were actually greater than those of controls, indicating that individ-

uals actually boosted their levels of energy available to physical activity. This increase in meta-

bolic scope was significant only at 48h post-injection in LPS-fish, indicating that this process is

not immediate and may only be transitory. One explanation for such overcompensation is that

immune-challenged fish require more ATP to sustain swimming than saline-injected controls.

LPS has indeed been shown to decrease the efficiency of carbohydrate catabolism by skeletal

muscles, that is the ratio between ATP use and power output, giving rise to greater oxygen

consumption during activity, and to stimulate muscle wasting leading to muscle dysfunction

[60–62]. In fish, white skeletal muscle is mostly anaerobic and used primarily in burst swim-

ming, while red skeletal muscle is aerobic and involved in sustained swimming speed [63].

Fig 3. Mass change between the day of the injection (day 0) and 7 days after injection. Values show

predicted means (in g) with standard errors (** indicates p�0.01 and *** indicates p�0.001).

doi:10.1371/journal.pone.0166028.g003

Immune Function and Aerobic Scope

PLOS ONE | DOI:10.1371/journal.pone.0166028 November 16, 2016 9 / 14



Gilthead seabream (Sparus aurata) challenged with LPS displayed strong transcriptomic

responses in their white and red skeletal muscles 24h and 72h post-injection [11]. Protein syn-

thesis and carbohydrate catabolism were strongly increased in white muscle 24h post-LPS

administration, which suggested in part that LPS may initially stimulate energy production

through glycolysis; these patterns were, however, reversed at 72h possibly indicating muscle

atrophy. Genes involved in aerobic metabolism and protein synthesis, on the other hand, were

up-regulated 72h post-challenge in red muscle [11]. Similar increases in carbohydrate metabo-

lism were observed in the fast muscle fibres of rainbow trout following challenge with LPS

[64]. Whether the increased aerobic metabolism that we detected in mosquitofish 48h post-

immune challenge with LPS, allowed fish to swim at an equivalent speed or faster than control

fish was not explored in this study. The capacity to increase aerobic metabolism may be posi-

tively selected if it facilitates parallel increases in two or more aerobically-demanding activities

(e.g., immunity and locomotion), and when simultaneous investment in each activity maxi-

mizes fitness [65, 66]. Future work is required to better understand the consequence of

immune-associated increases in metabolic scope on locomotor performance (e.g., swim speed

and duration) as well as its evolutionary significance for individual fitness.

While immune functioning did not give rise to a trade-off in terms of metabolic scope, the

lowered relative body mass of immune-challenged fish at the end of the experiment suggests

that limited acquired food resources, or that impaired food assimilation or mitochondrial use

of those resources [67], may instead drive trade-offs between immunity and other aerobic

traits. For example, inflammatory responses have indeed been found to cause mitochondrial

dysfunction [68] and a lower efficiency of mitochondria as a result of proton leak, for example,

would mean that greater amounts of substrate and ultimately food or energy reserves have to

be oxidised to achieve a given ATP output [67]. Fish that were challenged with LPS- or SRBC-

both exhibited reduced body mass gain relative to controls over the 1 week duration of the

experiment, with LPS-fish actually loosing mass and SBC-fish gaining >4 times less mass than

controls. Divergence in mass change between SRBC- and LPS-fish is likely to stem, in part,

from LPS-induced adaptive anorexia, which may have prevented a compensation of the ener-

getic costs of immunity through greater food intake [57]. Anorexia is, indeed, a host defence

mechanism against bacterial infections [69] and a typical component of the sickness response

to LPS [16, 52], but not SRBC [58, 59].

Our data show that plasticity in oxidative metabolism is, at least, a short term response to

an immune challenge that can increase the fitness of individuals by maintaining locomotor

performance, reproductive activity, and similar aerobically-demanding functions. The benefits

of such up-regulated ATP production, however, are expected to diminish with muscle loss and

as body condition decreases below critical levels.
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