
HAL Id: hal-02962734
https://ut3-toulouseinp.hal.science/hal-02962734

Submitted on 23 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Only child syndrome in snakes: Eggs incubated alone
produce asocial individuals

Fabien Aubret, Florent Bignon, Philippe Kok, Gaëlle Blanvillain

To cite this version:
Fabien Aubret, Florent Bignon, Philippe Kok, Gaëlle Blanvillain. Only child syndrome in snakes:
Eggs incubated alone produce asocial individuals. Scientific Reports, 2016, 6 (1), �10.1038/srep35752�.
�hal-02962734�

https://ut3-toulouseinp.hal.science/hal-02962734
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1Scientific RepoRts | 6:35752 | DOI: 10.1038/srep35752

www.nature.com/scientificreports

Only child syndrome in snakes: 
Eggs incubated alone produce 
asocial individuals
Fabien Aubret1, Florent Bignon1, Philippe J. R. Kok2 & Gaëlle Blanvillain1

Egg-clustering and communal nesting behaviours provide advantages to offspring. Advantages 
range from anti-predatory benefits, maintenance of moisture and temperature levels within the nest, 
preventing the eggs from rolling, to enabling hatching synchrony through embryo communication. It 
was recently suggested that embryo communication may extend beyond development fine-tuning, 
and potentially convey information about the quality of the natal environment as well as provide an 
indication of forthcoming competition amongst siblings, conspecifics or even heterospecifics. Here 
we show that preventing embryos from communicating not only altered development rates but also 
strongly influenced post-natal social behaviour in snakes. Clutches of water snakes, Natrix maura, were 
split evenly into half-clutches and incubated as (1) clusters (i.e. eggs in physical contact with each other) 
or (2) as single eggs placed in individual goblets (i.e. no physical contact amongst sibling eggs). Single 
incubated eggs produced less-sociable young snakes than their siblings that were incubated in a cluster: 
the former were more active, less aggregated and physically contacted each other less often than the 
latter. Potential long-term effects and evolutionary drivers for this new example of informed dispersal 
are discussed.

Egg-clustering and communal nesting behaviours are traditionally assumed to have evolved as anti-predatory 
tactics; from extinct dinosaurs1 to insects2, spiders3, cephalopods4, fish5 to amphibians6. Yet, recent studies chal-
lenged this view by reporting direct benefits of egg clustering and communal nesting to offspring phenotypes: 
hydric modifications of incubation conditions7, heating via the metabolic output of neighbouring eggs8–12, secur-
ing and maintaining egg/embryo positioning throughout the incubation13, and by enabling embryo communica-
tion amongst developing eggs within or amongst clutches14–16.

Embryo communication was recently discovered in both avian and non-avian reptile clutches17–20. Cues such 
as sound production, egg vibration, heart rates, odours, or carbon dioxide levels within the nest were proposed 
as potential communication avenues amongst embryos17. Embryo communication was shown to primarily pro-
mote hatching synchrony via metabolic compensation between more and less advanced eggs16–18,21 or between 
large and smaller eggs22. Synchronised hatching is wide-spread amongst organisms, including squamates (snakes 
and lizards), and is thought to enhance offspring survival by diluting an individual’s risk of predation or by 
simply swamping predators upon emergence23–26. Yet it was recently hypothesised that the kind of information 
exchanged between developing embryos may extend beyond metabolic rates, and include stress, sex ratio, related-
ness or clutch size and therefore potentially convey information about the quality of the natal environment as well 
as an estimate of forthcoming competition amongst siblings, conspecifics or even heterospecifics14,16. As such, 
the long-term effects of embryo communication (personality, dispersal, survival) constitute novel and intriguing 
research avenues at an overlooked life-stage.

We experimentally manipulated clutches of water snakes (Natrix maura) to allow or prevent communication 
between embryos. Clutches were split evenly into half-clutches incubated as (1) clusters (i.e. eggs in physical 
contact with each other) or (2) as single eggs placed in individual goblets (i.e. no physical contact amongst sibling 
eggs). We recorded embryo development rates (heart rate trajectories), hatchling body size and post-natal social 
behaviour in young snakes.
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Results
Incubation and hatching traits. Egg mass did not significantly vary between treatments throughout the 
incubation period (Table 1). There was however a significant effect of treatment on heart rate trajectories through-
out the incubation period (see Table 2 and Fig. 1). The alteration of heart rates trajectories likely related to altered 
metabolic rates and utilisation of yolk (unabsorbed yolk was found in larger quantities in single eggs after hatch-
ing; Table 3). Yet the effects on hatchling body size and incubation time were non-significant (Table 3).

Aggregation and activity. The area occupied by the groups of 5 snakes strongly differed between treat-
ments (repeated measure Anova; interaction term F60, 360 =  0.89, P =  0.71; effect of time F60, 360 =  0.96, P =  0.55; 
effect of treatment F1, 6 =  17.13, P <  0.0061; Fig. 2). Siblings incubated alone occupied an average area of 
695.48 ±  31.67 cm2 versus 433.31 ±  122.65 cm2 for siblings incubated as a group. Individual snakes incubated 

Dl; F P

{1} Clutch of origin 4; 21.67 0.001

{2} Treatment 1; 0.16 0.69

{1} * {2} 4; 0.39 0.82

{3} Time 3; 115.50 0.001

{1} * {3} 12; 30.94 0.001

{1} * {2} 3; 0.015 0.99

{1} * {2} * {3} 12; 4.31 0.001

Table 1.  Statistical results of a repeated measure Anova with treatment (group versus single eggs) and 
clutch of origin (N = 5) as factors and four successive egg masses as the repeated measure over time.

Dl; F P

{1} Clutch of origin 4; 9.22 0.001

{2} Treatment 1; 1.21 0.28

{1} * {2} 4; 1.37 0.26

{3} Time 6; 112.80 0.001

{1} * {3} 24; 4.27 0.001

{1} * {2} 6; 7.88 0.001

{1} * {2} * {3} 24; 1.75 0.001

Table 2.  Statistical results of a repeated measure Anova with treatment (group versus single eggs) and 
clutch of origin (N = 5) as factors and 7 successive embryonic heart rates as the repeated measure over time.

Figure 1. Five clutches of water snakes Natrix maura were split evenly into half-clutches incubated as (1) 
clusters (i.e. eggs in physical contact with each other: N = 28 eggs) or (2) as single eggs placed in individual 
goblets (i.e. no physical contact amongst sibling eggs; average half-clutch size = 5.60 ± 1.95 eggs; N = 28 
eggs) in order to respectively allow or prevent communication between embryos. Embryo heart rates were 
monitored for each egg throughout the incubation period. Heart rate trajectories were significantly altered 
by the treatment (group; open circles versus single eggs; grey triangle): repeated measure two factors Anova: 
interaction term F24, 270 =  1.75, P <  0.019; effect of treatment on heart rates over time F6, 270 =  7.89, P <  0.0001. 
Means ±  SE are plotted.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:35752 | DOI: 10.1038/srep35752

alone were also more active and covered more distance on average than their siblings incubated as a clutch (two 
factor Anova; interaction term F3, 32 =  0.78, P =  0.51; effect of treatment F1, 32 =  23.96, P <  0.0001; Fig. 3). Finally, 
snakes incubated alone physically contacted each other less (N =  5.90 ±  1.80 contacts) than snakes incubated 
as a clutch (N =  6.95 ±  2.09; two factor Anova, interaction term F3, 32 =  2.26, P =  0.11; effect of clutch of origin  
F3, 32 =  5.81, P <  0.0028; effect of treatment F1, 32 =  4.28, P <  0.047).

Traits Group eggs N = 28 Single eggs N = 28 df; F P

Incubation time (days) 44.18 ±  0.22 44.62 ±  0.22 1, 46; 1.97 0.17

Unabsorbed yolk (g) 0.28 ±  0.05 0.43 ±  0.05 1, 46; 5.37 0.025

Body mass (g) 2.72 ±  0.09 2.56 ±  0.09 1, 46; 2.30 0.14

Snout-vent length (cm) 13.55 ±  0.18 13.45 ±  0.18 1, 46; 0.18 0.68

Table 3.  Two-way Anovas with treatment and clutch of origin as factors and relevant traits were 
performed. All interaction effects were non–significant therefore only data for main effect treatment is shown. 
Mean ± SE are given.

Figure 2. The social behaviour of young sibling Natrix maura was recorded in open boxes using a digital 
video camera fitted above the testing arenas. Snakes were either born from eggs incubated in individual 
goblets (“single”, box S) or as a cluster (“group”, box G). Every two minutes for a two-hour period we calculated 
the area occupied by the 5 snakes (dotted red line) using snapshots from the video. Areas were calculated using 
open source software ImageJ.

Figure 3. The distance travelled by each snake was recorded over one minute every 15 minutes of the two 
hours long video recording using Photofiltre 7 with the plugin “mesures”. Individual snakes incubated alone 
(grey triangles) covered on average 202.47 ±  11.67 versus 132.59 ±  8.01 cm for their siblings incubated as a 
clutch (open circles). The effect was consistent across clutches (two factor Anova; interaction term F3, 32 =  0.78, 
P =  0.51; effect of treatment F1, 32 =  23.96, P <  0.0001). Means ±  SE are plotted.
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Discussion
This experiment showed that single versus group incubation altered developmental rates (heart rate trajectories 
and yolk utilisation were altered) in developing snake embryos. Hatchling size was also affected but the difference 
between treatments fell short of statistical significance, perhaps due to relatively low sample sizes. These results 
are broadly consistent with earlier studies where skink7 and turtle21 eggs incubated within a cluster produced 
hatchlings that were larger than hatchlings from eggs incubated alone.

The treatment on the other hand strongly modified post hatching behaviour, in a somehow counterintuitive 
manner: single eggs produced less-sociable young snakes than eggs than had been incubated as a cluster. While 
it was assumed that communal nesting/clustering in egg laying animals offered a range of advantages7–17 (from 
anti-predatory benefits, maintenance of hydric balance, maintenance of egg positioning to hatching synchrony), 
this study suggests yet another driver for the evolution and maintenance of these reproductive traits. Egg clustering, 
and incidentally embryo communication14–16, may foster the establishment of “social bonds” amongst embryos. 
The experimental rupture of this alleged bond not only modified developmental rates but also altered post-natal 
activity levels and aggregative patterns amongst siblings. This possibility had been suggested previously27:  
communal oviposition, by generating intra-clutch (and sometimes inter-clutch) hatching synchrony in squa-
mates, may allow social interaction to occur. For instance, synchronously hatched Anolis carolinensis28,29 and 
Sceloporus jarrovi30 are known to exhibit social displays soon after birth. Neonate snakes Storeria dekayi31, 
Thamnophis sirtalis31, Nerodia sipedon32, Crotalus horridus33, and Crotalus viridis34 were shown to be attracted 
to neonate conspecifics or associated chemical cues. In Iguana iguana, hatchlings emerge and disperse from 
communal oviposition sites synchronously35, while engaging in social behaviours36–38. It was shown that groups 
of hatchling iguanas tend to disperse in the “correct” direction (i.e., toward the shortest route to the mainland) 
more frequently than single hatchlings39. Our study on water snakes support these findings but further suggests 
that these social bonds may originate not only from immediate interaction following synchronous hatching and 
odour imprinting, but from well before hatching as a result of embryo to embryo communication within the nest, 
possibly mediated by heart beats16 and/or hormonal or odours clues.

Future studies may address the evolutionary nature of these results by (1) demonstrating the occurrence of 
similar patterns in other taxa, (2) describe communication mechanisms and (3) assess the long term effects of sin-
gle versus grouped incubation on dispersal behaviour. Yet we can speculate that the creation and maintenance of 
social bonds amongst communally laid eggs may provide anti-predatory benefits by fostering aggregative behav-
iour, thereby diluting the risks of predation23–26 and providing thermal benefits to the offspring40; or generating 
more efficient dispersal39. Alternatively, embryo communication may allow developing embryos to assess the 
number of siblings and /or non-related conspecifics within a clutch or communal nesting site. It is plausible that 
few or no neighbouring eggs may be indicative of high predation levels on the eggs, or alternatively of a resource 
poor environment (i.e. low reproductive output) from which rapid dispersal is required. On the other hand, a 
larger clutch (i.e. numerous neighbouring egg) may be indicative of relatively safer and/or resource full environ-
ment from which there is no direct advantage to disperse from, given that dispersal is risky41. The latter suggests a 
new form of informed dispersal42,43. Further studies may test whether these non-exclusive and fascinating possi-
bilities may explain single-child syndromes in snakes in particular and egg-laying animals in general.

Methods
Gravid female Natrix maura were captured in June and July 2014 along the banks of the Lez River in South-West 
Ariège, between the localities of Moulis (42° 57′  43″ N; 1° 05′  30″ E) and Le Pont (42° 52′  32″ N 0° 57′  19″ E). A 
total of 5 females laid 56 eggs (clutch size =  11.20 ±  3.56 eggs) between the 12/7/2014 and the 27/7/2014. Eggs 
were collected within 12 hours post laying and individually marked for (1) identification purposes with a pencil 
using a letter (coding for clutch of origin) and a number (egg number within each clutch) and (2) positioning 
purposes13 (eggs were kept throughout the experiment in the position they were originally found). We used a 
split-clutch design to ensure an even repartition of eggs from each clutch in each treatment (hereafter called 
“group” and “single”; Pearson Chi-square =  0.15; df =  4; P =  0.99). Because egg mass influences both embryo 
metabolism and hatching phenotype in water snakes22, eggs were ranked within each clutch from heaviest to 
lightest and evenly regrouped into two half-clutches to ensure similar average egg mass within each treatment: 
egg mass averaged 4.89 ±  0.28 g in group versus 4.92 ±  0.28 g in single eggs (Anova with treatment and mother as 
factors, egg mass as variable; interaction term F4, 46 =  0.29; P =  0.89; effect of treatment F1, 46 =  0.14; P =  0.71). For 
each clutch, one half-clutch was incubated with eggs clustered (group treatment; N =  28 eggs; average half-clutch 
size =  5.60 ±  1.95 eggs), and the other with eggs separated into individual goblets (single treatment; N =  28 eggs).

Egg mass, embryo heart rate and hatchling body size. Eggs were measured in mass to the nearest 
0.01 g using a digital scale within 12 hours of oviposition and then every 10 days until hatching. We measured 
embryo heart rates using the Buddy®  digital egg monitor (MK2, Avitronics) under the standardised protocol 
described for eggs22,44. The Buddy®  system works by shining an infrared beam onto the surface of the egg, detect-
ing minute distortions caused by embryonic heart beats. The Buddy®  monitor was left inside the incubator at all 
times to prevent temperature variation during heart rate readings. Each egg was gently placed onto the sensor 
pad for heart rate reading (a stable reading was obtained after approximately 30 seconds) and then returned to its 
clutch. Embryo heart rates were measured at incubation day 10, 20 and 30, and then every two days until hatch-
ing. All eggs were individually placed into small jewellery bags (5 ×  4 cm, made of fine mesh material) a few days 
prior to hatching. This ensured juvenile snakes could be matched to their egg shell when multiple births occurred 
at the same time, while maintaining physical contact amongst group eggs. Hatchlings were measured in body 
mass (± 0.01 g) and snout-vent length (± 0.1 mm) within 12 hours of emergence.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:35752 | DOI: 10.1038/srep35752

Hatchling social behaviour. All young snakes were kept in individual opaque containers (20 ×  20 ×  10 cm 
with water and shelter) for 2 weeks prior to testing (i.e. to allow all unabsorbed yolk to be assimilated) as to 
minimise sensory contacts amongst siblings. For the purpose of the analysis we needed equal numbers of snakes 
from each clutch and each treatment (see below). We randomly selected 5 snakes from the group treatment and 
5 snakes from the single treatment from 4 of the 5 clutches (one clutch had too few snakes to be included in the 
behavioural tests). At 16h00 on testing day, the two groups of 5 snakes were each placed in an open top plastic box 
(60 ×  40 ×  40 cm), where direct physical contact between siblings (within treatment group) occurred for the first 
time. A digital video camera was fitted above the testing arenas and recorded the snake’s activities for 2.25 hours. 
The video was then edited on a computer and the data analysed. The first 15 minutes (acclimation time) were dis-
carded. Every two minutes for a two-hour period we calculated the area occupied by the 5 snakes on a snapshot of 
the video within each box using open source software ImageJ (see Fig. 3). Every 15 minutes we measured the dis-
tance covered by each snake during one minute bouts using Photofiltre 7 with the plugin “mesures”. Behavioural 
traits were also recorded: moving versus immobile, and making contact with siblings.

All experimental protocols were approved by the Préfecture de l’Ariège, which provided capture, breeding, 
experimentation, release and ethics permits (Arrété #2012-11). All experiments were carried out in accord-
ance with the approved guidelines. All females were returned to their exact site of capture within two weeks of 
egg-laying. Once tests were completed, young snakes were given their first meal (small dead minnows ranging 
from 0.5 g to 1 g; supplied by Armorvif® ) prior to being released at the maternal capture site.

Data analysis. Assumptions for normality of the data and equality of variances were tested on all variables 
(Lilliefors and Levene’s tests). Means ±  standard deviations are given unless otherwise stated.
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