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Abstract. In this work, the reliability and robustness of a nonlinear energy sink device concept are investi-
gated. The system is studied and optimized in deterministic and probabilistic cases. It is also studied under
various types of uncertainty modelings with different reliability based robust design optimization formula-
tions. The obtained results reveal the sensitivity of the device to the input uncertainties. The optimal designs
obtained with the formulation under uncertainties are very different from the deterministic optimal design.
New system configurations are obtained which ensure robust, highly reliable designs. In addition, a comparison
is made between the different formulations and a conclusion is drawn about the suitable formulations for such
a problem.
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1 Introduction

Vibration mitigation, and energy dissipation in mechani-
cal systems is a rapidly evolving field (e.g. [1–5]. The evo-
lution in this domain comes from the need to design more
rigorous devices of vibration mitigation. These devices
should satisfy the need to produce lighter and more sophis-
ticated mechanical products. There exist many types of
vibration mitigation methods (e.g. [6–8]), the most com-
mon type is the tuned mass-damper (TMD), which was
first designed by H. Frahm [9]. It is a passive linear sys-
tem, that consists of a mass connected to the primary
structure with a spring and a damper. TMD performs
well only in a narrow frequency range, however the pri-
mary structure could also be vibrating at other frequencies
due to many reasons [10]. To deal with the limitations of
a TMD system, alternative methods for vibration mit-
igation have been proposed. The nonlinear energy sink
(NES) is a promising device for vibration mitigation due
to its capability to work with various vibration frequency
ranges. The NES system typically consists of a secondary
mass connected to the primary mass with a highly nonlin-
ear stiffness. A NES system has been proposed recently by
Vakakis and Gendelman [11]. Younesian et al. [12] studied
the application of a NES system in vibration suppres-
sion of railway Bridges. The capability of a NES system
to suppress the aeroelastic instability has been demon-
strated in [13]. In [14], the application of a NES system
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to machine chatter has been investigated. A NES sys-
tem has been designed an applied, by Goyal and Whalen
[15], to mitigate vibrations of an air spring supported
slab.

A physical NES system has been designed by Qiu et al.
[16], the system being designed with two pairs of conical
and cylindrical springs. This is the system that we will
also investigate in the present work. The designed and the
constructed physical systems are given in Figures 1 and
2 respectively.

In mechanical construction, there exist many sources
of uncertainties such as the fabrication tolerances, the
material properties, the parts adjustment and assembling.
These uncertainties affect the performance, the robustness
and the reliability of the mechanical products. One of the
ways to limit their effects is through design under uncer-
tainties, by taking them into consideration in the early
phase of the mechanical design. Spring based systems and
NES systems are sensitive to parameters uncertainties,
which may lead to undesired spring stiffness values and
undesired response of the NES system.

In this paper, the effects of input uncertainties on
the performance, the reliability and the robustness of
the NES system are investigated. The deterministic opti-
mum is calculated and evaluated under uncertainty, then
optimization under uncertainty with various formulations
and various uncertainty modeling types is formulated
and performed. The obtained results are compared and
some conclusions regarding the problem formulation and
uncertainties modeling choice are outlined.
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Fig. 1. Designed NES system [16].

Fig. 2. Manufactured physical NES system [16].

In what follows, the physical NES system is detailed
in Section 2. The deterministic and the probabilistic
optimization framework are formulated in Section 3.
The optimization results are presented and compared in
Section 4. Finally, the conclusions and some perspectives
are outlined in Section 5.

2 The NES system

The physical NES system is designed to provide strongly
nonlinear stiffness. The aim of the NES system is to obtain
a pure cubic load–displacement (F–u) curve as given by
the curve denoted by Ft in Figure 3, where the cubic
relation is given in equation (1), where the corresponding
units of F and u are N and mm respectively.

F =
u3

400
(1)

This pure cubic relation is the theoretical one, however
the practical response of the NES system could have some
deviations as shown by the curve FN in Figure 3.

In addition, previous studies have observed that there
exists a lower limit of excitation or an activation threshold

for the NES system, below which the system is not acti-
vated and where it works as an almost traditional absorber
system. Indeed, deterministic optimization of the NES
system could locate a nonrobust optimum. This phenom-
ena was studied and detailed in [17–20]. This activation
threshold can make the NES system highly sensitive to
uncertainties on the design parameters and loading condi-
tions, including the primary structure. Boroson et al. [21]
also studied this issue and suggest to use parallel NES
and optimize them under uncertainty. In the present work
we consider a NES system designed in [16], working in
only one regime and sufficiently far from the activation
threshold such as not to require the modeling of the full
system (primary system + NES). The uncertainties on the
primary structure are not included in our work. The goal
of the optimization under uncertainty is then to robustly
obtain the target stiffness curve Ft, while simultaneously
satisfying additional reliability constraints.

The response of the NES system can be controlled
by changing the design parameters of the springs and
changing their adjustment parameters. The 2D schematic
drawing of the NES system is given in Figure 4, each
spring is identified by a number from 1 to 4. The spring
design parameters are listed below, where the index j
refers to the spring number:

– Fj : The cylindrical spring force (N).
– Fcj : The conical spring force (N).
– uj : Spring displacement (mm).
– Rj : Cylindrical Spring stiffness in the linear range
(N/mm).

– Rcj : Conical Spring stiffness (N/mm).
– Gj : Shear modulus of elasticity (MPa).
– dj : Wire diameter of the spring(mm).
– Dj : Mean diameter of the cylindrical spring (mm).
– DTj : Mean diameter of the smallest coil of the

conical spring (mm).
– DBj : Mean diameter of the largest coil of the conical

spring (mm).
– L0j : Free length of the spring (mm) .
– Laj : Initial active length of the spring (mm).
– Lsj : Solid length of active coils of the spring (mm).
– nj : Number of active coils (continuous).
– nfj : Number of free coils (continuous).
– nij : Parameter defining the influence of end coils on

the difference between L0j and Laj .

The adjustment parameters are also shown in Figure 4
and represented by δj and the displacement u of the
secondary mass (blue circle) is also shown.

In addition, the spring design and the adjustment
parameters are subjected to tolerance and fabrication
uncertainties. These uncertainties are inherent to the
spring fabrication process and cannot be ignored. These
uncertainties can be reduced by investment and imple-
mentation of new manufacturing process and technologies
which lead to an increase of the fabrication cost of the
spring. However, it is impossible to completely eliminate
them from the manufacturing process. Increasing inter-
est is thus devoted to taking into consideration these
uncertainties in the early phase of design.
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The deterministic optimization (DO) of spring design
is studied in many works. Paredes and Rodriguez [22]
studied the optimal design of conical springs. In [23],
the optimal design of composite material tubular helical
springs has been studied. The composite leaf spring has
been studied in [24]. Trabelsi et al. [25] propose an opti-
mization design method based on existing intervals and
constraint satisfaction problem (CSP) computer tools,
which are used in the preliminary design to size a com-
pression spring implemented in a linear vehicle suspension
system. In addition, many works have proposed physical
NES systems for mechanical and civil applications, Lu et
al. [26] propose and optimize a new track NES system for
vibration control under seismic excitation. A NES system
for a six-story structure has been studied and exper-
imented in [27]. A NES approach for whole-spacecraft
vibration reduction is proposed and experimented in [28].

As far as we are aware, the optimization under uncer-
tainty (OU) for spring-based system design has however
received much less interest. There exist some studies on
the OU of simple spring parts, for example, Hong et al.
[29] studied the robust optimization design for a cylindri-
cal helical compression spring. In [30], the reliability-based
design optimization considering probabilistic degradation
behavior is studied and applied to a helical compression
spring.

On the other hand, very few works have treated the
OU of NES system, Boroson and Missoum studied the
OU of NES in [31,32], also the same subject is stud-
ied in Pidaparthi and Missoum [33]. But these works
studied the behavior of theoretical NES systems under
uncertainties while no physical NES system with the real
spring construction and tolerance uncertainties was asso-
ciated to the theoretical design. On the other hand some
works considered the deterministic optimization of a NES
with application to real systems (e.g. [34]), but without
considering uncertainties. The optimization under uncer-
tainty of a physical NES systems, which is the main topic
of our paper, is to our best knowledge rarely addressed
in the literature. The sensitivity analysis, based on the
approach of [35], of the proposed NES system is studied
in the previous work [16], considering only the uncer-
tainties on the adjustment parameters of the springs.
The corresponding results encourage us to investigate the
robustness and the reliability of this system, considering
the uncertainties in all design variables. The minimiza-
tion of the error in the response of the physical NES
system and the influence of the input uncertainties on this
response are the main subject of the following sections.

3 Optimization framework

3.1 Objective function

As mentioned above, the objective of a NES design prob-
lem is to achieve a cubic stiffness, i.e. to fit the cubic curve
Ft shown in Figure 3. Thus, the optimization problem can
be formulated by minimizing the green surface between
Ft and FN , where FN denotes load-displacement curve
associated to the NES system and Ft the target curve.

Fig. 3. The target function Ft(u) and the NES function FN (u).

Fig. 4. Schematic drawing of the NES system.

To minimize this surface, the mean square error (MSE)
is calculated and the objective function is formulated in
equation (2). Where x is the vector of the design variables
and u is the set of values of u, i.e. a discretization, which
are used to estimate the MSE.

Fobj(x) =
1

n

n∑
i=1

(Ft(ui,x)− FN (ui,x))
2

u ={u1, u2, .., ui, .., un} ∈ Dn ⊂ Rn

where D = [−20; 20]
x ={n1, d1, DT1, DB1, L01, δ1, n2, d2, DT2, DB2,

L02, δ2, n3, d3, D3, L03, δ3, n4, d4, D4, L04, δ4}
(2)

The forces balance which corresponds to a displacement
u is given in Figure 5, and the resultant force

−→
FN for
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Fig. 5. NES forces diagram.

Table 1. Variable bounds.

Variable Nominal Lower Upper
value bound bound

n1, n2 nco 5 25
n3, n4 ncy
d1, d2 dco(mm)

dmin = 0.15 dmax = 5
d3, d4 dcy(mm)
DT1, DT2 DT (mm)

4× dmin 25× dmaxDB1, DB2 DB(mm)
D3,D4 D(mm)
L01, L02 Lco(mm)

22 240
L03, L04 Lcy(mm)
δ1, δ2 δco(mm) 22

100
δ3, δ4 δcy(mm) 2

a given u is calculated by equation (3).

−→
FN =

−→
F1 +

−→
F2 +

−→
F3 +

−→
F4

FN (u) =F1 − F2 − F3 sin(θ3)− F4 sin(θ4)

F1 =Fc1(δ1 + u)

F2 =Fc2(δ2 − u)

F3 =R3 ×
(
L03 −

√
(L03 − δ3)2 + u2

)
F4 =R4 ×

(
L04 −

√
(L04 − δ4)2 + u2

)
sin(θ3) =

u√
(L03 − δ3)2 + u2

sin(θ4) =
u√

(L04 − δ4)2 + u2

(3)

The cylindrical spring force is given in equation (4). The
conical spring force depends on the value of uj which is
compared to the transition value uTj to determine the
linear or nonlinear response of the spring. The analyti-
cal behavior law for a constant pitch conical compression

spring is generated in [36] and replicated in equation (5).

Fj = Rj × uj =
Gjd

4
juj

8njD3
j

(4)

Each springs couple and their adjustments are considered
identical, and each couple of their corresponding param-
eters have the same nominal value. Thus, the variables
vector can be decreased from 22 to 11 control variables.
The reduced variables vector x and their bounds are given
in Table 1.

If uj ≤ uTj

Fcj = Rcj × uj =
Gjd

4
juj

2nj(D2
Tj +D2

Bj)(DTj +DBj)

If uj ≥ uTj

Fcj =

(
K1

2

) 3
2

1− [1− 2

(
1−

(
1 +

K2

(K1)2

) 1
2

)] 1
2

3

K1 = K3 −
K2

3K3

K2 = −K6

K5

K3 =

K4

16
+

[(
K4

16

)2

+

(
K2

3

)3
] 1

2


1
3

K4 =

[
K7 − uj
K5

]2
K5 = −

2D4
Tjnj

Gjd4j (DBj −DTj)

K6 = − 3

8(DBj −DTj)

(
Gjd

4
j

(Laj − Lsj)4

nj

) 1
3

K7 = (Laj − Lsj)
DBj

DBj −DTj

Where:

uTj =
(Laj − Lsj)(D2

Tj +D2
Bj)(DTj +DBj)

4D3
Bj

Lsj =

√√√√max

[
(njdj)

2 −
(
DBj −DTj

2

)2

, 0

]
Laj = L0j − nijdj

(5)

3.2 Constraint functions

When seeking to optimize the NES system, several con-
straints must be considered. These problem constraints
are the individual functional constraint for each spring,
the deterministic constraints being considered equal for
each spring couple. Besides these constraints, new con-
straints can also be imposed to the NES system. The
problem constraints for the conical, the cylindrical springs
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and the NES system are given in equations (6), (7) and
(8) respectively. Note that the value of Mmax was chosen
to ensure a ratio which is less than 0.01 between the NES
mass and the mass of the primary system.

Conical spring constraints:
Buckling constraint:

g1(x) =
Lco
Dm
− 2.6 ≤ 0

where: Dm =
DB +DT

2
Spring index:

g2(x) =
DB

dco
− 25 ≤ 0

g3(x) = 4− DT

dco
≤ 0

Maximum shear stress constraint:
g4(x) = τmax1 − 0.48Rm1 ≤ 0

where Rm1 = 1919− 255.86 ln (dco)

Solid length constraint:
g5(x) = Lc1 − Lco + δ1 +max(u) + 2 ≤ 0

where Lc1 = Ls1 + ni1dco

Helix angle constraint:

g6(x) =
Lco − ni1dco

n1
− DT

1.5
≤ 0

Diameters constraint:
g7(x) = DT − 0.9DB ≤ 0

(6)

Cylindrical spring constraints:
Buckling constraint:

g8(x) =
Lcy
D
− 2.6 ≤ 0

Spring index:

g9(x) =
D

dcy
− 25 ≤ 0

g10(x) = 4− D

dcy
≤ 0

Maximum shear stress constraint:
g11(x) = τmax3 − 0.48Rm3 ≤ 0

where Rm3 = 1919− 255.86 ln (dcy)

Solid length constraint:
g12(x) = Ln3 − Lcy + δcy + 2 ≤ 0

Where: Ln3 = dcy(ncy + ni3) + Sa3

Sa3 = 1.5ncy
0.0015D2

dcy
+ 0.1dcy

Helix angle constraint:

g13(x) =
Lcy − ni3dcy

ncy
− D

1.5
≤ 0

Contact constraint:
g14(x) = (Lcy − δcy)2 − (Lcy − 2)2

+max(u)2 ≤ 0

(7)

NES system constraint:
Maximum mass constraint:
g15(x) =MNES −Mmax ≤ 0

where Mmax = 30 g

(8)

The formulations of τmax1 and τmax3 are given in
equations (9) and (10) respectively.

τmax1 =
8Da1Fmax1k1

πd31
Where:

k1 =
w1 + 0.5

w1 − 0.75

w1 =
Da

dco

Da =DT +
(DB −DT )nf1

ncy

Fmax1 =Fcj(max(u),x)

nf1 =max {0;µ}

µ = min

{
ncy

DB −DT
[A−DTj ] ;nj

}
A =

(
(La1 − Ls1)G1d

4

8Fc1ncy

) 1
3

(9)

τmax3 =
8DFc3k3
πd3cy

Where:

k3 =
w3 + 0.5

w3 − 0.75

w3 =
D

dcy

Fc3 =R3(δcy)

Lc3 =dcy(ncy + ni3)

(10)

Therefore the deterministic optimization problem can be
formulated in equation (11), xl and xu are the vectors of
the variables lower and upper bounds respectively.

Minimize: Fobj(x)
Subject to: gk(x) ≤ 0 k = {1, 2, ..., 15}

xl ≤ x ≤ xu

Where: x ={nco, dco, DT , DB , Lco, δco, ncy,

dcy, D, Lcy, δcy}

(11)

3.3 Optimization under uncertainty

The problem is reformulated in this section within an
optimization under uncertainty framework, allowing to
move toward reliability based robust design optimization
(RBRDO). The first step in this case is the identification
and modeling of the input uncertainties. We consider all
control variables subjected to fabrication uncertainties.
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These uncertainties are modeled using standard proba-
bility density functions (PDF), mainly the normal and
uniform distributions are used in this work.

In RBRDO formulation, the deterministic objective
function is replaced by a robustness measure (e.g. [37]),
and some problem constraints are replaced by their quan-
tile with α degree of reliability. In the literature, there
exist many measures of robustness, Gohler et al. [38]
identified 38 different measures of robustness. For this
problem, we choose to study three formulations for the
objective function:

The first one is the classical bi-objective formulation
performance (mean value) - stability (standard deviation),
this formulation is used by [39] to identify the neces-
sity of robust design optimization in mechanical design
problems. Another bi-objective formulation based on
mean-coefficient of variance is given in [40]. The bi-
objective formulation produces all possible trade-off solu-
tions between the performance and its stability, however,
the computational cost to construct the corresponding
Pareto front is quite expensive.

The second formulation is the aggregation between the
mean and the standard deviation, it is the most com-
mon one. The main advantage of this formulation is its
low computational cost, however, the obtained solution
depends on the associated weights for the mean and the
standard deviation. An example of this formulation can
be found in [41,42].

The third formulation is the minimization of the quan-
tile function of the probabilistic objective function, by
fixing a robustness degree for the quantile. In case of
Gaussian distribution, the quantile is obtained by a simple
aggregation between the mean and the standard devia-
tion of the corresponding function which may reduce the
computational cost of its evaluation. However, for other
types of distribution such as the one involved in our NES
problem, the evaluation of the quantile function needs the
evaluation of the entire distribution of the correspond-
ing function, which demands an expensive sampling-based
tool for uncertainty propagation like Monte Carlo sim-
ulations (MCs) [43]. V. Baudoui [44] uses the quantile
function for robust optimization of an injection system.

In our problem, the probabilistic variables are mod-
eled with standard PDF. The mean of each variable
corresponds to its deterministic value, and the standard
deviation is given in each case. In contrast to the DO
case, the identical control variables for each spring couple
should be treated separately under uncertainties. Indeed,
these variables are identical in their nominal values, how-
ever the associated uncertainties affect the real values for
each nominally identical spring and lead to two differ-
ent ones. One way to take into account this difference
is to affect to each probabilistic variable a different real-
ization of the corresponding PDF. All random variables
of the problem and their nominal value are shown in
Table 2. This differentiation does not change the size of
the problem variables, because the optimization is con-
trolled by the nominal values. However, it may increase
the cost of the uncertainties propagation tool, and it
affects the results of the probabilistic problem outputs.
In this RBRDO problem, only the buckling constraints

Table 2. The problem’s random variables.

Random Nominal Associated Formulationvariable value uncertainties
ñ1 nco

ε̃n1 nco + ε̃n1

ñ2 ε̃n2 nco + ε̃n2

d̃1 dco
ε̃d1 dco + ε̃d1

d̃2 ε̃d2 nco + ε̃d2
D̃T1 DT

ε̃DT1 DT + ε̃DT1

D̃T2 ε̃DT2 DT + ε̃DT2

D̃B1 DB
ε̃DB1 DB + ε̃DB1

D̃B2 ε̃DB2 DB + ε̃DB2

L̃01 Lco
ε̃L01 Lco + ε̃L01

L̃02 ε̃L02 nco + ε̃L02

δ̃1 δco
ε̃δ1 δco + ε̃δ1

δ̃2 ε̃δ2 δco + ε̃δ2
ñ3 ncy

ε̃n3 ncy + ε̃n3

ñ4 ε̃n4 ncy + ε̃n4

d̃3 dcy
ε̃d3 dcy + ε̃d3

d̃4 ε̃d4 dcy + ε̃d4
D̃3 D

ε̃D3 D + ε̃D3

D̃4 ε̃D4 D + ε̃D4

L̃03 Lcy
ε̃L03 Lcy + ε̃L03

L̃04 ε̃L04 Lcy + ε̃L04

δ̃3 δcy
ε̃δ3 δcy + ε̃δ3

δ̃4 ε̃δ4 δcy + ε̃δ4

for all springs are formulated under uncertainty, since all
other constraints were considered as noncritical , thus not
requiring a high probability of being satisfied. The three
formulations are given in equation (12), where E [Fobj ],
σ [Fobj ] are the mean and standard deviation of the prob-
abilistic objective function and Qα

[
gjk

]
are the quantile

of the kth probabilistic constraint, the index j refers to
the corresponding spring.

The aggregation problem is resolved with three different
values of µ, for µ = 0 and µ = 1 the problem is equivalent
to the minimization of the σ [Fobj ] and E [Fobj ] individ-
ually. The third value is µ = 1

3 which is equal to the
minimization of E [Fobj ] + 2σ [Fobj ] and it is equivalent to
the minimization of Qα [Fobj ] with α = 95% in Gaussian
PDF case.

Minimize:
the bi-objective formulation:

E [Fobj(x̃)] ;σ [Fobj(x̃)]

or the aggregation formulation:
µE [Fobj(x̃)] + (1− µ)σ [Fobj(x̃)]

µ = {0, 1
3
, 1}

or the quantile formulation:
Qα [Fobj(x̃)] α = {90%, 95%}

Subject to: gk(x) ≤ 0 k = {1, 2, ..., 12} − {1, 8}

Qα
[
gj1(x̃)

]
≤ 0 j = {1, 2}

Qα
[
gj8(x̃)

]
≤ 0 j = {3, 4}

(12)
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Table 3. Different cases considered corresponding to different modelling assumptions

Case number

Distributions of variables Distribution of dco and dcy
other than dco and dcy

Type
σ [x̃]

Type
σ [dco] & σ [dcy]

or bounds or bounds
1 Uniform Constant Uniform Constant
2 Normal constant (v = 3) Normal Constant

(v = 3)
3 Normal (±3σ) Constant (v = 1) Uniform Staircase
4 Normal (±3σ) Constant (v = 2) Uniform Staircase
5 Normal (±3σ) Constant (v = 2) Normal (±3σ) Staircase
6 Normal (±3σ) Constant (v = 3) Uniform Staircase
7 Normal (±3σ) σ [x̃] = 0.02E [x̃] Uniform Staircase
8 Normal (±3σ) σ [x̃] = 0.02E [x̃] Normal (±3σ) Staircase

Table 4. Constant bounds for uniform distribution (units are those given in Table 1).

Variables nco DT DB Lco ncy D Lcy dco dcy δco δcy

Bounds E [x̃]± 0.1 E [x̃] E [x̃]
±0.02 ±0.2

xl ≤ x ≤ xu

α = 90%

Where: x ={nco, dco, DT , DB , Lco, δco, ncy,

dcy, D, Lcy, δcy}

3.4 Uncertainties modeling

The choice of uncertainties modeling affects the opti-
mization results; Braydi et al. [45] studied the effects
of uncertainties and objective function modeling on the
results of robust optimization. The results show the great
influence of these parameters either on the reliability or
the robustness of the optimization results. In order to
investigate the influence of uncertainties modeling on the
results of the present RBRDO problem, the problem is
solved for 8 different cases that are given in Table 3.
Beside the uniform distribution, two different types of
normal distribution are used for the problem variables,
the non-truncated one and the truncated between ±3σ [x̃].
In addition, for the uniform distribution, we distinguish
between the constant bounds and the staircase bounds
for the wire diameters. We only study the wire diameters
in staircase bounds, because there exist tolerance tables
which indicate these bounds. The corresponding constant
bounds and staircase bounds are given in Table 4 and
Table 5. For the normal distribution, we distinguish three
cases of the standard deviation:

1. The proportional standard deviation where, σ [x̃] =
0.02E [x̃].

2. The Constant standard deviation which depends on
the value of the parameter v as shown in Table 6.

3. The staircase standard deviation for the wire diam-
eter as shown in Table 7.

In the following section, the results of each case are
presented and compared, allowing to draw relevant con-
clusions in the last section.

Table 5. Staircase bounds for the wire diameter (in mm).

Upper
0.6 1.1 2.5 4.5 7.5bound

Lower
0.1 0.6 1.1 2.5 4.5bound

Tolerance ±0.008 ±0.01 ±0.015 ±0.02 ±0.025

4 Optimization results

All optimizations are performed using a deterministic
algorithm with multistart from 200 initial points. The
Matlab function “fmincon” with multi-start option is used
to perform the optimizations. Monte Carlo simulations
with 103 points generated using common random number
generation (CRN) technique [46] are used to propagate
uncertainties.

The optimization of the aggregation and the quantile
function formulations are performed in the 8 cases shown
in Table 3, however the Pareto front for the bi-objective
formulations is constructed for the first case of Table 3
only. In order to compare the results, the deterministic
MSE, the mean, the standard deviation and the 90% and
95% quantile functions are evaluated at all determinis-
tic and RBRDO optimum points. Three main kinds of
comparison are made:

1. The robustness and the reliability of the determinis-
tic optimum are compared to those of the RBRDO
optimum points.

2. The optimum points, E [Fobj ], σ [Fobj ], Qα [Fobj ] and
the Pareto optimal points are compared in order to
analyze the suitable RBRDO formulations for such
a problem.

3. The optimum points of E [Fobj ] + 2σ [Fobj ] are com-
pared to those of Q95 [Fobj ] in order to evaluate
the effectiveness of the estimation of the quantile
function by aggregation.
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Table 6. Constant standard deviation for normal distribution (v = {1, 2, 3}) (same units of Table 1).

Variables nco DT DB Lco ncy D Lcy dco dcy δco δcy

σ [x̃] 0.1/v 0.02/v 0.2/v

Table 7. Staircase standard deviation for the wire diameter (in mm).

Upper bound 0.6 1.1 2.5 4.5 7.5

Lower bound 0.1 0.6 1.1 2.5 4.5

σ
[
d̃
]

0.008
2

0.01
2

0.015
2

0.02
2

0.025
2

Table 8. The deterministic and RBRDO optimum points for case 1.

Minimum nco dco DT DB Lco δco ncy dcy D Lcy δcy

DO 6.2 1.52 16.8 37.9 70.1 38.8 5 1.46 17 44 10.6
E [Fobj ] 6.3 1.58 18.9 39.5 50.2 22 5.3 1.2 15 34.9 8.8
σ [Fobj ] 6.1 1.66 24.3 39.6 82.9 22 15.5 0.5 12.4 32 9.6
Q90 [Fobj ] 7.1 1.56 16.15 39.1 53.3 22 5.8 1.15 14.6 32.6 9.5
Q95 [Fobj ] 7.2 1.58 16.22 39.3 53.6 22 5.2 1.12 14.7 32.5 9.6
E [Fobj ] 7.1 1.58 16.5 39.4 53.2 22 5.37 1.12 14.6 32.3 9.6
+2σ [Fobj ]

Table 9. Evaluation of the optimum points under uncertainty (Case 1).

Minimum Fobj E [Fobj ] σ [Fobj ] Q90 [Fobj ] Q95 [Fobj ]

DO 0.000 03 0.68 0.62 1.56 2
E [Fobj ] 0.009 0.24 0.189 0.5106 0.6232
σ [Fobj ] 10.262 10.3702 0.1026 10.5123 10.5895
Q90 [Fobj ] 0.028 0.2518 0.1809 0.4963 0.6078
Q95 [Fobj ] 0.034 0.258 0.183 0.507 0.6075
E [Fobj ] 0.028 0.2498 0.1787 0.5063 0.6132
+2σ [Fobj ]

Table 10. Reliability degree for the buckling constraints
(Case 1).

Minimum P
[
g11 ≤ 0

]
P
[
g21 ≤ 0

]
P
[
g38 ≤ 0

]
P
[
g48 ≤ 0

]
DO 0.74 0.76 0.77 0.77
E [Fobj ] 0.999 0.999 0.999 0.999
σ [Fobj ] 0.92 0.91 0.90 0.90
Q90 [Fobj ] 0.999 0.999 0.999 0.999
Q95 [Fobj ] 0.999 0.999 0.999 0.999
E [Fobj ] 0.999 0.999 0.999 0.999
+2σ [Fobj ]

At first, the deterministic optimum and the RBRDO opti-
mum points for the first case of Table 3 are given in
Table 8. A first remark we can make based on this table
concerns the importance of considering the uncertainties.
Indeed, the optimal design when considering uncertain-
ties is very different from the deterministic optimum.
Smaller differences between the designs corresponding to
the different formulations of the optimization under uncer-
tainties can also be noticed and will be discussed in the
following. The corresponding values of the deterministic
Fobj , E [Fobj ], σ [Fobj ], Q90 [Fobj ] and Q95 [Fobj ] are given
in Table 9, and the corresponding reliability degree for the
buckling constraints are given in Table 10.

The obtained results highlight the influence of the input
uncertainties on the robustness and the reliability of the

deterministic optimum. Despite having the best value
of Fobj , the deterministic optimum has the worst value
of σ [Fobj ]. In addition, the optimum point of E [Fobj ]
is quite far from the deterministic one, which reflects
the non-symmetrical distribution of Fobj(x̃) as shown in
Figure 6. The deterministic optimum has also worse reli-
ability degree in the buckling constraints as shown in
Table 10, however all RBRDO results have reliability
degrees the respect the imposed minimum value of 90%.

The optimum point obtained by the minimization of
E [Fobj ] has a good deterministic value of Fobj , however it
is not the robust one, it has the highest value of σ [Fobj ]
between the RBRDO optimum points. In contrast, the
minimization of σ [Fobj ] leads to bad values of both Fobj
and E [Fobj ], despite that the corresponding optimum
point has the lowest value of σ [Fobj ], which reflects its
high robustness.

Alternate solutions which ensure either high perfor-
mance and robustness degrees are found by the minimiza-
tion of the Qα [Fobj ] or the minimization of the estimated
quantile by the aggregation function. The minimization of
Qα [Fobj ] ensures that α% of the population has a value
of Fobj better than that of the corresponding optimum.
In addition it ensures a high performance in contrast to
the results of the minimization of σ [Fobj ]. In addition, the
minimization of Q90 [Fobj ] and Q95 [Fobj ] explores a new
optimal configuration of the design variables compared
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Fig. 6. MSE values in the neighborhood of the optimum point
of E [Fobj ].

to the configurations obtained by the minimization of
E [Fobj ] and σ [Fobj ].

In this case, the minimization of Q95 [Fobj ] produces
slightly better optimum than that of the minimization
of the estimated quantile function E [Fobj ] + 2σ [Fobj ].
The corresponding difference is not significant, and the
two optimum points are close. However, this situation is
different for some other cases of uncertainties modeling.

The obtained F–u curves in the neighborhood of the
deterministic solution are plotted in Figure 7, all pos-
sible outputs lie in the gray area which represents the
population of the random response of the corresponding
NES design. The target curve is represented by Ft, and
the worst and second worst realizations of F–u curves
are also plotted, and the F–u curve which corresponds
to an MSE ≈ E [Fobj ] is represented by the blue circles.
In addition the F–u curves samples are plotted for all
RBRDO optimum points in Figures 8–12, respectively.

These figures show how the gray area are decreased in
all RBRDO optimum points compared to the gray area for
the deterministic optimum. The minimum of σ [Fobj ] has
the smallest gray area, however the corresponding curve
does not fit the target curve Ft at all. It is a linear response
which reflects the deficiency of the NES system with the
corresponding variables configurations. For this configura-
tion, the deactivation phenomena mentioned in Section 2
has occurred, and the NES is deactivated. Accordingly the
corresponding design has no practical interest at all, but
this is not surprising given that only the dispersion is opti-
mized without any consideration of the target function.
The other figures have well-fitting curves with increasingly
smaller gray areas.

The Pareto front of the bi-objective RBRDO prob-
lem is plotted in Figure 13. On the same figure,
the corresponding optimum points of E [Fobj ], σ [Fobj ],
Q90 [Fobj ], Q95 [Fobj ] are also plotted, these optimum
points are presented by PE , Pσ, Q90 and Q95 respectively.
The Pareto front can be divided into two zones, the first
one contains all points located above of the point A , all

Fig. 7. All obtained F–u curves in the neighborhood of the
deterministic optimum.

Fig. 8. All obtained F–u curves in the neighborhood of the
optimum of E [Fobj ].

these points have low values of E [Fobj ]. The first anchor
point PE and the points Q90 and Q95 are located in this
zone. The second zone is located at the right of the point
B and it contains the points with lower value of σ [Fobj ]
including the second anchor points Pσ.

The Pareto front produces a lot of trade-off points
between E [Fobj ] and σ [Fobj ]. However the most useful
points are those of the first zone due to their high-
performance values. The two-boundary points A and B
are compared in Tables 11 and 12 and the corresponding
probabilistic F–u curves are plotted in Figures 14 and 15.
The points A and B have quasi equal σ [Fobj ], however the
performance of the point A is much better. The difference
on this performance is very clear when the F–u curves
of these points are compared. The conical spring index
constraint g2 is activated in points A and B, however
the cylindrical spring index constraint g9 is activated only
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Fig. 9. All obtained F–u curves in the neighborhood of the
optimum of σ [Fobj ].

Fig. 10. All obtained F–u curves in the neighborhood of the
optimum of Q90 [Fobj ].

in point B, which create the discontinuity in the Pareto
front.

A comparison, between the optimum points of E [Fobj ]
and Q90 [Fobj ] and between the optimum points of
Q95 [Fobj ] and E [Fobj ] + 2σ [Fobj ], for all uncertainties
modeling cases is made in Tables 13. The two first optima
are not identical in cases {1, 3, 5, 7, 8}, however they are
identical in cases {2, 4, 6}, which correspond to small val-
ues of inputs uncertainties (v = {2, 3}). In addition, the
estimated quantile function by aggregation of E [Fobj ] and
σ [Fobj ] is not efficient in cases 6 and 8. All obtained results
in variables spaces and their robustness and reliability
evaluations are presented in Tables A.1 and A.2 in the
appendix A.

Fig. 11. All obtained F–u curves in the neighborhood of the
optimum of Q95 [Fobj ].

Fig. 12. All obtained F–u curves in the neighborhood of the
optimum of E [Fobj ] + 2σ [Fobj ].

5 Conclusions and perspectives

NES systems are promising devices for energy dissi-
pation and vibration mitigation, and can be used in
different industrial domains such aeronautics, railways,
and machining. In this paper the influence of uncertain-
ties on the reliability and the robustness of a physical
NES system is investigated. The problem is studied with
various optimization formulations and with various uncer-
tainties modeling. The obtained results show the high
sensitivity of this system to the tolerance and fabri-
cation uncertainties. The robustness and the reliability
levels of the deterministic optimum are low, hence the
need to perform the reliability based robust design opti-
mization (RBRDO). The RBRDO solutions have high
reliability degree which is ensured automatically when
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Table 11. The Pareto solutions A and B in variables space.

Point nco dco DT DB Lco δco ncy dcy D Lcy δcy

A 8.9 1.6 10.87 40.3 66.2 22 5 0.715 11.7 24.1 14.7
B 9.9 1.47 16.3 36.85 58.78 22 5.8 0.75 18.8 26.5 12.3

Table 12. The evaluations of Pareto solutions A and B.
Point Fobj E [Fobj ] σ [Fobj ] Q90 [Fobj ] Q95 [Fobj ] g2 g9

A 0.49 0.67 0.14789 0.89 0.98 −8× 10−4 −8.6
B 2.43 2.6 0.14788 2.8 2.87 −2× 10−5 −6× 10−5

Fig. 13. Pareto front for RBRDO NES problem (Case 1).

Fig. 14. All obtained F–u curves in the neighborhood of the
Pareto point A.

the optimization problem is formulated under uncertain-
ties. The optimal designs obtained with the formulation
under uncertainties are very different from the determin-
istic optimal design. As expected the optimum points of

Fig. 15. All obtained F–u curves in the neighborhood of the
Pareto point B.

Table 13. Summary of comparison results for all uncer-
tainties modeling cases

Case Min E [Fobj ] 6= Min Q95 [Fobj ] 6=
Min Q90 [Fobj ] Min E [Fobj ] + 2σ [Fobj ]

1 Yes No
2 No No
3 Yes No
4 No No
5 Yes No
6 No Yes
7 Yes No
8 Yes Yes

the mean, the quantile functions and the first zone of the
Pareto front have a higher performance than the second
zone of the Pareto front and the optimum of the standard
deviation.

The optimum point of the minimization of the mean
value is very far from the deterministic optimum, this
is usually obtained with a nonsymmetric distribution of
the performance. Although, it has a good performance,
it has the worst robustness degree between the RBRDO
points.

The optimization of the quantile function produces well
balanced solutions with a high performance and better
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robustness degree than the optimum of the mean value.
The quantile function can be calculated directly or esti-
mated by the aggregation function, in some cases, but in
other cases, the aggregation function fails to appropriately
estimate the quantile function.

The Pareto front produces a lot of RBRDO optimum
points, which gives a lot of choices to the designer to
choose the suitable one for its design. However it is too
expensive and it produces some points with high robust-
ness but with bad performance. For this problem, the
suitable formulation is the quantile one, which ensures an
RBRDO solution with quite low computational cost.

In addition, the difference between the optimization
results, with different uncertainties modeling, reveals the
importance of choosing the most realistic modeling. In
some cases, especially when the associated uncertainties
are small, the minimization of E [Fobj ] under probabilistic
constraints is sufficient. However when the inputs uncer-
tainties are larger, minimizing a robustness metrics like
the aggregation or the quantile functions is necessary. Also

the approximation of the quantile by a simple aggregation
function is not valid in all cases.

Further works are needed to investigate the optimiza-
tion under uncertainties (OU) of vibration mitigation
systems based on their theoretical dynamic models. Fur-
thermore, the integration the uncertainties of the loading
condition and the external excitations of the primary
structure and carrying out the OU of the total system is
also a relevant future work direction. Another perspective
for these works is to treat the deterministic and the prob-
abilistic optimization of NES system with mixed integer
control variables.

Appendix A: Results of RBRDO for other
uncertainties cases

All results in deterministic and RBRDO optimization
problems in variables space and their evaluations under
uncertainties are given in the following tables.

Table A.1. The deterministic and RBRDO optimum points for cases 2 to 8.

Case Minimum nco dco DT DB Lco δco ncy dcy D Lcy δcynumber
DO 6.2 1.52 16.8 37.9 70.1 38.8 5 1.46 17 44 10.6

C
as

e
2

E [Fobj ] 6.66 1.55 17.69 38.79 50.62 22.04 5.42 1.22 15.32 34.98 8.93
σ [Fobj ] 5.74 1.67 23.53 41.68 84.67 22.00 16.45 0.52 13.06 33.84 9.07
Q90 [Fobj ] 6.86 1.59 17.46 39.69 51.82 22.01 5.17 1.13 14.11 34.11 9.02
Q95 [Fobj ] 6.86 1.59 17.46 39.69 51.82 22.01 5.17 1.13 14.11 34.11 9.02
E [Fobj ] + 2σ [Fobj ] 6.86 1.59 17.46 39.69 51.82 22.01 5.17 1.13 14.11 34.11 9.02

C
as

e
3

E [Fobj ] 7.29 1.10 10.68 27.47 49.00 22.03 5.65 1.10 17.06 28.72 11.10
σ [Fobj ] 9.42 1.56 24.56 27.32 67.09 22.00 14.61 0.48 11.94 30.68 10.12
Q90 [Fobj ] 7.23 1.62 21.02 38.79 54.96 22.00 5.00 0.78 11.07 28.00 11.39
Q95 [Fobj ] 7.32 1.10 10.64 27.49 49.19 22.01 5.12 1.28 22.40 27.77 11.54
E [Fobj ] + 2σ [Fobj ] 7.32 1.10 10.64 27.49 49.19 22.01 5.12 1.28 22.40 27.77 11.54

C
as

e
4

E [Fobj ] 7.36 1.10 10.81 27.46 48.63 22.04 6.75 1.10 16.14 28.87 11.09
σ [Fobj ] 7.36 1.63 24.89 34.07 76.50 22.00 14.09 0.46 11.54 29.82 10.48
Q90 [Fobj ] 7.36 1.10 10.81 27.46 48.63 22.04 6.75 1.10 16.14 28.87 11.09
Q95 [Fobj ] 7.36 1.10 10.81 27.46 48.63 22.04 6.75 1.10 16.14 28.87 11.09
E [Fobj ] + 2σ [Fobj ] 7.32 1.10 10.88 27.46 48.55 22.04 6.25 1.09 16.45 28.52 11.25

C
as

e
5

E [Fobj ] 7.40 1.10 10.67 27.38 48.80 22.07 5.72 1.30 20.56 29.60 10.72
σ [Fobj ] 7.11 1.63 24.81 34.93 77.51 22.00 14.82 0.48 11.95 30.89 10.04
Q90 [Fobj ] 7.36 1.10 10.78 27.39 48.66 22.06 5.26 1.40 23.63 29.39 10.85
Q95 [Fobj ] 7.36 1.10 10.79 27.39 48.66 22.06 5.26 1.40 23.63 29.39 10.85
E [Fobj ] + 2σ [Fobj ] 7.36 1.10 10.76 27.44 48.69 22.06 5.26 1.40 23.63 29.38 10.85

C
as

e
6

E [Fobj ] 7.30 1.10 10.80 27.47 48.73 22.09 6.01 1.31 20.87 29.19 10.95
σ [Fobj ] 6.83 1.10 12.17 27.46 49.74 22.08 6.05 1.41 32.79 79.24 8.55
Q90 [Fobj ] 7.30 1.10 10.80 27.47 48.73 22.09 6.01 1.31 20.87 29.19 10.95
Q95 [Fobj ] 7.37 1.10 10.81 27.38 48.62 22.09 5.94 1.30 20.85 29.26 10.93
E [Fobj ] + 2σ [Fobj ] 7.35 1.10 10.76 27.35 48.87 22.16 5.61 1.09 16.97 28.83 11.20

C
as

e
7

E [Fobj ] 6.23 1.50 16.65 37.51 53.49 22.00 5.72 1.10 15.27 29.21 10.77
σ [Fobj ] 5.00 1.67 33.54 37.26 69.82 22.00 16.37 0.56 13.91 34.90 8.78
Q90 [Fobj ] 6.34 1.44 15.78 35.99 53.79 22.01 5.64 1.00 15.35 26.73 12.22
Q95 [Fobj ] 5.71 1.10 12.69 26.70 49.30 22.02 5.61 0.75 12.06 25.19 13.54
E [Fobj ] + 2σ [Fobj ] 5.76 1.10 12.64 26.78 49.47 22.02 5.26 0.67 11.16 24.36 14.53

C
as

e
8

E [Fobj ] 6.20 1.48 16.37 36.81 53.20 22.01 5.90 1.10 15.18 29.19 10.81
σ [Fobj ] 5.00 1.66 33.37 37.08 69.64 22.00 16.73 0.57 14.29 35.85 8.54
Q90 [Fobj ] 5.87 1.46 17.08 36.01 52.83 22.01 5.30 1.31 20.96 27.93 11.45
Q95 [Fobj ] 5.67 1.53 19.21 38.21 52.49 22.01 5.13 1.10 18.28 26.36 12.48
E [Fobj ] + 2σ [Fobj ] 6.37 1.40 15.13 34.87 53.62 22.00 5.28 0.93 15.16 25.74 12.97
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Table A.2. Evaluation of optimum points under uncertainty for cases 2 to 8.

Case Minimum Fobj E [Fobj ] σ [Fobj ] Q90 [Fobj ] Q95 [Fobj ] P
[
g11 ≤ 0

]
P
[
g21 ≤ 0

]
P
[
g38 ≤ 0

]
P
[
g48 ≤ 0

]
number

C
as

e
2

DO 0.00003 0.2281 0.2524 0.5463 0.7362 0.90 0.89 0.94 0.93
E [Fobj ] 0.007 0.083 0.076 0.182 0.240 0.999 0.999 0.999 0.999
σ [Fobj ] 10.299 10.336 0.044 10.391 10.428 0.94 0.92 0.92 0.91
Q90 [Fobj ] 0.013 0.087 0.073 0.181 0.238 0.999 0.999 0.999 0.999
Q95 [Fobj ] 0.013 0.087 0.073 0.181 0.238 0.999 0.999 0.999 0.999
E [Fobj ] 0.013 0.087 0.073 0.181 0.238 0.999 0.999 0.999 0.999
+2σ [Fobj ]

C
as

e
3

DO 0.00003 0.665 0.627 1.497 1.905 0.66 0.66 0.70 0.70
E [Fobj ] 0.010 0.204 0.181 0.450 0.544 0.999 0.999 0.999 0.999
σ [Fobj ] 10.226 10.320 0.095 10.444 10.499 0.96 0.96 0.90 0.93
Q90 [Fobj ] 0.033 0.231 0.168 0.441 0.542 0.999 0.999 0.999 0.999
Q95 [Fobj ] 0.020 0.208 0.175 0.446 0.540 0.97 0.97 0.999 0.999
E [Fobj ] 0.020 0.208 0.175 0.446 0.540 0.97 0.97 0.999 0.999
+2σ [Fobj ]

C
as

e
4

DO 0.00003 0.432 0.422 1.054 1.291 0.79 0.79 0.85 0.85
E [Fobj ] 0.010 0.110 0.089 0.233 0.286 0.999 0.999 0.999 0.999
σ [Fobj ] 10.197 10.266 0.068 10.362 10.411 0.93 0.94 0.92 0.90
Q90 [Fobj ] 0.010 0.110 0.089 0.233 0.286 0.999 0.999 0.999 0.999
Q95 [Fobj ] 0.010 0.110 0.089 0.233 0.286 0.999 0.999 0.999 0.999
E [Fobj ] 0.014 0.116 0.092 0.244 0.296 0.999 0.999 0.999 0.999
+2σ [Fobj ]

C
as

e
5

DO 0.00003 0.312 0.340 0.730 1.051 0.79 0.80 0.83 0.86
E [Fobj ] 0.007 0.084 0.075 0.184 0.245 0.999 0.999 0.999 0.999
σ [Fobj ] 10.234 10.283 0.057 10.355 10.401 0.95 0.93 0.90 0.90
Q90 [Fobj ] 0.008 0.085 0.075 0.180 0.243 0.999 0.999 0.999 0.999
Q95 [Fobj ] 0.009 0.085 0.076 0.190 0.238 0.999 0.999 0.999 0.999
E [Fobj ] 0.008 0.084 0.074 0.180 0.243 0.999 0.999 0.999 0.999
+2σ [Fobj ]

C
as

e
6

DO 0.00003 0.375 0.323 0.825 1.005 0.89 0.90 0.92 0.94
E [Fobj ] 0.008 0.092 0.064 0.173 0.213 0.999 0.999 0.999 0.999
σ [Fobj ] 4.121 4.176 0.049 4.240 4.262 0.999 0.999 0.999 0.999
Q90 [Fobj ] 0.008 0.092 0.064 0.173 0.213 0.999 0.999 0.999 0.999
Q95 [Fobj ] 0.011 0.095 0.064 0.182 0.209 0.999 0.999 0.999 0.999
E [Fobj ] 0.009 0.093 0.064 0.173 0.213 0.999 0.999 0.999 0.999
+2σ [Fobj ]

C
as

e
7

DO 0.00003 3.665 4.046 8.233 11.400 0.50 0.53 0.54 0.55
E [Fobj ] 0.099 1.026 0.977 2.219 2.884 0.999 0.999 0.999 0.999
σ [Fobj ] 10.395 10.747 0.450 11.288 11.570 0.999 0.999 0.90 0.90
Q90 [Fobj ] 0.233 1.072 0.893 2.075 2.737 0.999 0.999 0.999 0.999
Q95 [Fobj ] 0.305 1.087 0.836 2.126 2.584 0.94 0.94 0.999 0.999
E [Fobj ] 0.387 1.142 0.809 2.157 2.615 0.93 0.93 0.999 0.999
+2σ [Fobj ]

C
as

e
8

DO 0.00003 3.541 3.919 7.955 10.929 0.50 0.53 0.54 0.55
E [Fobj ] 0.096 0.989 0.944 2.086 2.722 0.999 0.999 0.999 0.999
σ [Fobj ] 10.405 10.741 0.432 11.231 11.527 0.999 0.999 0.90 0.90
Q90 [Fobj ] 0.176 1.026 0.914 2.016 2.704 0.999 0.999 0.999 0.999
Q95 [Fobj ] 0.325 1.096 0.848 2.068 2.551 0.999 0.999 0.999 0.999
E [Fobj ] 0.308 1.076 0.822 2.054 2.598 0.999 0.999 0.999 0.999
+2σ [Fobj ]
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