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Abstract This paper is dedicated to the optimal de-

sign of a bistable nonlinear energy sink (NES) for the

vibration control of a periodically excited linear oscilla-

tor. This system with negative linear and cubic nonlin-

ear coupling is analytically studied with the method of

multiple scales. As a result, a slow invariant manifold

(SIM) is obtained and is applied to predict four typ-

ical response regimes at different energy levels. More-

over, asymptotic analysis and Melnikov analysis are re-

spectively used to obtain the thresholds of these typ-

ical responses. Through their efficiency comparison, it

is observed that the bistable NES can be efficient and

robust in a broad-range of excitation amplitude. With

the Hilbert transform and wavelet transform, Targeted

energy transfer (TET) with transient or permanent 1:1

resonance is found to be responsible for the effectiveness
of such responses as strongly modulated response and

1:1 resonance. Finally, an optimal design criterion and

a corresponding parameter configuration are proposed

to guide the application of this type of NES.
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1 Introduction

Mitigation of unwanted vibration is an important is-

sue in many fields of engineering. Since the emergence

of innovative absorber Nonlinear Energy Sink (NES),

more attentions are paid to this promising technique

[1,2]. This type of absorber is characterized by a sec-

ondary mass strongly coupled with a nonlinear stiffness

to the main structure that needs to be protected. By

triggering resonances between related nonlinear normal

modes, the nonlinearity allows energy to be irreversibly

transfered from the main structure to the secondary

mass [3,4]. Unlike the traditional linear absorber, the

Tuned Mass Damper (TMD), which needs to be tuned

to a specific natural frequency, NES can passively ab-

sorb energy over a wide range of natural frequencies [5].

In addition, its relatively small mass, makes it particu-

larly attractive in a wide variety of applications such as

space and aero-structures [6], vibrating machinery [7,

8], buildings [9,10] and vehicle suspensions [11].

The design of the nonlinearity is a key element to ob-

tain optimum performance of NES. Depending on the

type of nonlinearity, various kinds of NES have been

proposed and studied, such as oscillating dissipative

attachments with essentially strong cubic stiffness [12,

13], rotational element [14,15], piece-wise NES [16,17],

vibro-impact NES [18,19], NES by nonlinear membrane

[20] and magnet based NES [21]. Substantial theoreti-

cal experimental work has been achieved to verify the

performance of NES under transient and periodic exci-

tation [22–27]. In these works, the topological structure

of Slow Invariant Manifold (SIM) is commonly used to

predict the response of NES. In this structure, the un-

stable branch corresponds well to the strongly mod-

ulated response (SMR) which exhibits more efficient

performance than the other steady-state response [27].
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However, the energy threshold corresponding to SMR

is normally narrow, making the NES sensitive to the

excitation amplitude and thus restricting its use in en-

gineering applications.

Recent works seeking to improve the robustness of

excitation have observed that the bistable NES shows

significant advantages with respect to energy pump-

ing efficiency [28–34]. This NES, with negative stiffness

and nonlinear stiffness components, has nonzero dis-

placement relative to the linear oscillator (LO) away

from the NES equilibrium positions [32]. This leads to

strong suppression of the vibration amplitude of the

LO in the first cycle of oscillation for a wide range

of initial input energies induced in the linear struc-

ture. The analytical and numerical aspects of the tran-

sient dynamics of bistable NES are explored in [35] and

[36], respectively. With the Limiting Phase Trajecto-

ries (LPTs) and Poincare section, dynamic mechanisms

depending on different types of impulse input are pro-

posed: for high energy levels, strongly modulated oscil-

lation occurs and the dynamics are governed by funda-

mental (1:1) and superharmonic (1:3) resonances; for

low energy levels, chaotic cross-well oscillations of the

nonlinear attachment together with subharmonic res-

onances lead to strong energy exchanges between the

two oscillators. In [37], Lyapunov characteristic expo-

nents and Melnikov analysis are adopted to identify the

region where chaotic cross-well oscillations exist as low-

intensity impulse applied to the LO. The experimental

aspect of a system consisting of a Bernouli-Euler beam

coupled to a continuous bistable NES is developed in

[38] and shows that this NES can achieve efficient TET

under a wide-range of impacts. In [39], a system of two

coupled cantilever beams coupled to a bistable light at-

tachment is tested and proves that this NES has better

efficiency in frequency than existing passive devices.

From these researches, it reveals that an appropri-

ately designed bistable NES can be more efficient than

the NES types enumerated above. However, recent stud-

ies have mainly focused on the transient dynamics be-

tween a conservative system with impulsively excited

LO and a NES. The efficiency of each response regime

and its corresponding threshold under periodic excita-

tion are uncertain, so the optimal design criterion of

bistable NES needs to be further studied. With this in

mind, the main objective of the work presented here is

first to study the efficiency of different response regimes

and then to establish the relation of optimization for

different excitation conditions.

In this paper, a 2 DOF system comprising a harmon-

ically excited LO strongly coupled to a bistable NES is

investigated theoretically. In Sec. 2, the equation of mo-

tion is studied analytically with the method of multiple

1m 2m
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3k

2k
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x yex

Fig. 1 Schematic of the 2 DOF system comprising a LO and
a bistable NES

scales. The response regimes and the transient trajec-

tory projected in the SIM are observed. Then asymp-

totic analysis and Melnikov analysis are respectively

used to obtain the thresholds at different energy levels.

In Sec. 3, the efficiency of different response regimes is

compared and their underlying TET is presented. An

optimal design criterion of bistable NES is proposed.

Finally, the conclusion is addressed.

2 Theoretical Development

2.1 Modelling and analytical treatment

The system of a harmonically excited linear oscillator

(LO) with a bistable NES is illustrated in Fig. 1, and

the equations of motion are as follows:


m1ẍ+ k1x+ c1ẋ+ c2 (ẋ− ẏ) + k2 (x− y)

3

+k3(x− y) = k1xe + c1ẋe

m2ÿ + c2(ẏ − ẋ) + k2 (y − x)
3

+ k3(y − x) = 0

(1)

where x, m1, c1, k1 and y, m2, c2, k2, k3 are the dis-

placement, mass, damping and stiffness of the LO and

the bistable NES respectively, the dots denote differ-

entiation with respect to time. The imposed harmonic

displacement xeis expressed as follows:

xe = Gcos(ωt) (2)

After rescaling, the system of equation (1) can be

reduced to the dimensionless form:


ẍ+ x+ ελ1ẋ+ ελ2 (ẋ− ẏ) + εK (x− y)

3
+ εδ(x− y)

= εF cosΩτ

εÿ + ελ2 (ẏ − ẋ) + εK (y − x)
3

+ εδ(y − x) = 0

(3)

where the term containing ε2 is small and can be ne-

glected. The corresponding physical parameters are ex-

pressed as follows:

Donghai
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ε =
m2

m1
, ω0

2 =
k1

m1
, K =

k2

m2ω0
2
,

δ =
k3

m2ω0
2
, λ1 =

c1
m2ω0

, λ2 =
c2

m2ω0
,

F =
G

ε
, Ω =

ω

ω0
, τ = ω0t

(4)

New variables representing the displacement of the

centre of mass and the internal displacement of the

bistable NES are introduced:

v = x+ εy, w = x− y (5)

Substituting Eqs. (5) into Eqs. (3):


v̈ + ελ1

v̇ + εẇ

1 + ε
+
v + εw

1 + ε
= εF cosΩτ

ẅ + ελ1
v̇ + εẇ

1 + ε
+
v + εw

1 + ε
+ λ2 (1 + ε) ẇ

+K (1 + ε)w3 + δ(1 + ε)w = εF cosΩt

(6)

The system is studied in the vicinity of the 1:1 res-

onance, where both the LO and the NES execute time-

periodic oscillations with identical frequency Ω. To ob-

tain the analytical periodic solution, two new complex

variables are introduced:

φ1e
iΩτ = v̇ + iΩv, φ2e

iΩτ = ẇ + iΩw (7)

Substituting Eqs. (7) into Eqs. (6) and keeping only

the secular term containing eiΩτ yields the following

slowly modulated system:


φ̇1 + iΩ

2 φ1 + ελ1(φ1+εφ2)
2(1+ε) − i(φ1+εφ2)

2Ω(1+ε) −
εF
2 = 0

φ̇2 + iΩ
2 φ2 + ελ1(φ1+εφ2)

2(1+ε) − i(φ1+εφ2)
2Ω(1+ε) + λ2(1+ε)φ2

2

− 3iK(1+ε)φ2
2φ̄2

8Ω3 − εF
2 −

iφ2δ(1+ε)
2Ω = 0

(8)

A detuning parameter σ representing the nearness

of the excitation frequency ω to the reduced natural

frequency of the LO is introduced:

Ω = 1 + εσ (9)

In the context of energy pumping, the mass ratio ε

is taken to be small (≈ 1%). In this case, Eq. (8) may

be analysed by a perturbation method with respect to

this small parameter. For this purpose, the method of

multiple scales is introduced in the following form:

φi = φi(τ0, τ1, . . .),
d

dτ
=

∂

∂τ0
+ ε

∂

∂τ1
+ . . .

τk = εkτ, k = 0, 1, . . .
(10)

Substituting Eq. (9) and Eqs. (10) into Eqs. (8) and

equating coefficients of ε0 and ε1 gives:

Order ε0:


d
dτ0
φ1 = 0

d
dτ0
φ2 + 1

2 i(φ2 − φ1) + 1
2 φ2λ2

− 3
8 iKφ2

2φ̄2 − 1
2 iδ φ2 = 0

(11)

Order ε1:


d
dτ1
φ1 + 1

2λ1 φ1 + 1
2 i (φ1 − φ2) + iσ φ1 − 1

2 F = 0
d
dτ1
φ2 + 1

2 λ1 φ1 + 1
2φ2λ2 + 1

2 iσ (φ1 + φ2)

+ 1
2 i (φ1 − φ2)− 3

8 iK (1− 3σ)φ2
2φ̄2 − 1

2 F

+ 1
2 iδ (σ − 1)φ2 = 0

(12)

Then we introduce the new variables:

φ1(τ1) = N1e
iθ1 , φ2(τ1) = N2e

iθ2 (13)

where N1, N2 and θ1, θ2 respectively represent the am-

plitude and phase angle of the LO and NES. With this

change of variables in Eqs. (11), the expression for a

slow invariant manifold (SIM) is obtained:

Z1 = λ2
2Z2 + (δ − 1)2Z2 +

3K

2
(δ − 1)Z2

2 +
9K2

16
Z2

3

Z1 = N1
2, Z2 = N2

2

(14)

By taking the derivative of the right-hand side with

respect to Z2, the multiplicity of solutions can be stud-

ied. After resolution, the singular values of Z2 are cal-

culated:

Z2i =
4
(

2(1− δ)±
√

(1− δ)2 − 3λ2
2

)
9K

(15)

In Eq. (15), the existence of two roots and a pair of

saddle-node bifurcations needs to satisfy the condition:

δ < 1−
√

3λ2 (16)

If δ is greater than this critical value, the SIM is

monotonous. Otherwise, the SIM admits extrema and

Donghai
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Fig. 2 The SIM structure with different value of δ. The solid
line represents the stable branch, and the dotted line the un-
stable branch

can be divided into two stable branches and one unsta-

ble branch.

An illustration of a SIM with different values of δ

is given in Fig. 2. When the value of δ decreases, the

topological shape of the SIM becomes larger and the

unstable branch is shifted towards the right up direc-

tion. For a cubic NES as δ = 0, the unstable branch of

SIM is mainly responsible for the possible occurrence

of energy pumping and it may give rise to the strongly

modulated response (SMR)[26]. For a bistable NES as

δ < 0, the relation between the unstable branch and the

SMR is uncertain. So in the next section, the response

regimes and the corresponding SIM positions will be

discussed.

2.2 Response regimes

The parameters identified on the simulation setup and

used for the calculations are given in Tab. 1. The corre-

sponding force-displacement relation of a bistable NES

is presented in Fig. 3, where the curve has two sta-

Table 1 Parameters of bistable NES

Physical Parameters

m1 5 kg k1 11.4 × 103N/m
m2 50 g k2 2 × 105N/m3

c1 4Ns/m k3 −50N/m
c2 0.4Ns/m

Reduced Parameters

ε 1% λ1 1.67
K 1742 λ2 0.167
δ −0.44

−40 −20 0 20 40
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−5

0
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10

Displacement (mm)

F
or

ce
 (

N
)

Fig. 3 The force displacement relation of a bistable NES:
the two side points represent the two stable equilibria, and
the middle point represents the unstable equilibrium

ble equilibria and an unstable equilibrium. The region

of negative stiffness is located between the two stable

equilibrium points. In this area, the dynamic transition

is rapid and sweeps out a large stroke, thus including

viscous damping that can provide high levels of energy

dissipation. If these parameters are transferred to the

double-well restoring force potential, four different re-

sponse regimes are obtained, as shown in Fig. 4, which

illustrates that, with different levels of input energy, the

dynamic response of a bistable NES can be classified as

(a) intra-well oscillation, (b) chaotic inter-well oscilla-

tion, (c) strongly modulated response and (d) stable

periodic response.

To demonstrate these regimes, the time-displacement

response of the LO and NES, and the projection of mo-

tion of the system into SIM are presented in Fig. 5, in

the first and second column, respectively. Where the

simulation model is described by Fig. 1 under peri-

odic excitation, the transient modulus of the LO and

NES are calculated by Z1 =
∣∣(v̇ + iΩv)e−iΩτ

∣∣2 and

Z2 =
∣∣(ẇ + iΩw)e−iΩτ

∣∣2. As a result, the following re-

sponse regimes will occur consecutively with increasing

excitation amplitude:

(a) Intra-well oscillation with G = 0.06 mm. In this

case, the NES exhibits a small amplitude response of os-

cillation about one of the stable equilibria (the dashed

line). Owing to the asymmetric of amplitude of the

NES, the projection in the SIM structure is a cyclic

motion around the stable equilibrium, and the location

is far away from the first stable branch of the SIM;

(b) As the excitation amplitude G increases to 0.1

mm, chaotic alternating in-well and cross-well oscilla-

tions are observed, the two stable equilibria of which are

Donghai
高亮
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Fig. 4 Responses at different levels of energy: a intra-well
oscillation; b chaotic inter-well oscillation; c strongly modu-
lated response; d stable periodic response

indicated by two horizontal dashed lines in the time re-

sponse plots and by the vertical dashed line in the SIM

plots. Taking the dashed line as a reference, it illustrates

that the amplitude of cross-well oscillations is close to

the value of stable equilibrium. With the characteristics

of irregular in both duration and occurrence, the tran-

sient trajectory in SIM is chaotic and not repeatable;

(c) For a relatively higher level of excitation am-

plitude G = 0.42 mm, a quasi-periodic regime with

slow variation of the amplitudes of both oscillators is

observed. For the LO, the amplitude increases and de-

creases repeatedly in a regular fashion. The amplitude

of the bistable NES can be roughly classified into two
regimes: a small region (chaotic and growing envelope)

corresponding to the increase of the LO amplitude, and

a large region (relatively stable envelope) corresponding

to the decrease of the LO amplitude. This alternating

regime of strongly modulated response (SMR) produces

the jump phenomenon in SIM. However, unlike the cu-

bic NES, the hypothetical jump of bistable NES does

not start from the first singular point, which means

that the first stable branch of SIM can not predict the

threshold of targeted energy transfer;

(d) As the excitation amplitude is increased still fur-

ther to G = 0.55 mm, both the LO and NES show a sta-

ble periodic response, the amplitudes of which are sym-

metrical. This means that 1:1 resonance of LO and NES

is produced. The corresponding right sub-figure shows

that the steady projected motion focuses on the second

stable branch of the SIM, and it has been demonstrated

in [27] that this projection can be represented by a fixed

point of the SIM.

Knowing the variation mechanism of the response

regimes, it would be interesting to investigate the effi-

ciency of each regime and the corresponding threshold

for periodic excitation so as to guide the design of a

bistable NES. When the input energy is high, as shown

in Fig. 4, there is a threshold that fixes whether SMR

(c) or the stable periodic response (d) is obtained. By

comparing the two SIM projections of Fig. 5, a critical

fixed point located at the lowest point of the second sta-

ble branch can be found, and its position can be used to

evaluate the type of response regime. For the low level

of energy, the state of the bistable NES can be imag-

ined as a ball moving in the ’double-well’ structure, the

dynamic response of which is restricted to oscillations

confined to one stable state corresponding to response

(a). When sufficient energy is input to elevate the state

beyond the hilltop, the second response (b) alternating

in-well and cross-well oscillation is produced. In physi-

cal terms, this hilltop analogy can be defined as a force

threshold or critical load. Based on the above analysis,

the threshold and the efficiency of each regime will be

studied further in the following sections.

3 Study of threshold at different levels of

energy

3.1 Asymptotic analysis for high energy level

To obtain the threshold at high energy level, asymptotic

analysis will continue to be used so as to analyse the

bifurcations of the SMR regime. The fixed point corre-

sponding to periodic responses is described in Eqs. (11),

and we assume the solution on the stable branch to be

Φ(τ1) = limτ0→∞ φ2(τ0, τ1). By introducing this expres-

sion and Eqs. (11) into the first equation of Eqs. (12),

the asymptotic stability of the points of the stable branch

with respect to time scale τ1 is studied in the following

form:

d
dτ1
Φ(1− iλ2 − δ − 3

2KΦΦ̄)− d
dτ1
Φ̄ 3

4KΦ
2

− 3
8 iKΦ

2Φ̄(1− iλ1 + 2σ) + 1
2Φ(2iσ + λ1 + λ2

−σλ1 − iδ + 2σλ2 − 2iσδ − iλ1λ2)− 1
2F = 0

(17)

By transferring Φ(τ1) into polar coordinates, the ex-

pression governing the evolution of amplitude N2 and

the phase angle θ2 are obtained:

∂N2

∂τ1
=
f2(N2, θ2)

g(N2)
,

∂θ2

∂τ1
=
f1(N2, θ2)

g(N2)
(18)

where

Donghai
高亮
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Fig. 5 Time-displacement response of LO and bistable NES, and the motion of the system projected into SIM (a) intra-well
oscillation with G = 0.06 mm (b) chaotic inter-well oscillation with G = 0.1 mm (c) strongly modulated response with
G = 0.42 mm (d) stable periodic response with G = 0.55 mm
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

f1 = −54K2N2
4σ − 27K2N2

4 − 96KN2
2δ σ

−24KN2
2λ1 λ2 + 36FKN2 sin θ2 − 48KN2

2δ

+96σKN2
2 + 12KN2

2 − 32 δ2σ − 32λ2
2σ

−16 δ2 + 64σ δ − 16λ2
2 + 16 δ − 32σ

+ 1
N2

(16Fδ sin θ2 + 16F cos θ2λ2 − 16F sin θ2)

f2 = −9K2N2
5λ1 − 24KN2

3δ λ1 + 24λ1KN2
3

−12FKN2
2 cos θ2 − 16N2δ

2λ1 − 16N2λ1 λ2
2

+16F sin θ2λ2 − 16Fδ cos θ2 + 32λ1 δ N2

+16F cos θ2 − 16λ1N2 − 16N2λ2

g = 54K2N2
4 + 96KN2

2δ − 96KN2
2

+32λ2
2 + 32(δ − 1)2

(19)

In [27], it is shown that Eq. (18) has two kinds of

fixed point. The first is referred to as an ordinary fixed

point. It is located at the branch of SIM and satisfies the

condition f1 = f2 = 0 and g 6= 0. The others correspond

to the folded singularities. In this case the derivative of

Eq. (14) is related to the third equation of Eqs. (19), so

it can be found that g = 0. Based on this, the system

f1 = f2 = 0 will be discussed and is rewritten in the

following matrix form:

[
α1 α2

β1 β2

] [
sin θ2

cos θ2

]
=

[
η1

η2

]
(20)

where



α1 = 1
N2

(36FKN2
2 − 16F + 16Fδ), α2 = 16Fλ2

N2

β1 = 16λ2F, β2 = −12FKN2
2 + 16F − 16Fδ

η1 = 54K2N2
4σ + 27K2N2

4 + 96KN2
2δ σ

+24KN2
2λ1 λ2 + 48KN2

2δ − 96σKN2
2

−12KN2
2 + 32 δ2σ + 32λ2

2σ + 16 δ2

−64σ δ + 16λ2
2 − 16 δ + 32σ

η2 = 9K2N2
5λ1 + 24KN2

3δ λ1 − 24λ1KN2
3

+16N2δ
2λ1 + 16N2λ1 λ2

2 − 32λ1 δ N2

+16λ1N2 + 16N2λ2

(21)

By solving Eq. (20), the phase angle of ordinary

points θ2 can be obtained as the determinant does not

vanish. For the folded singularities Zic, it is observed

that det(A) = 8F 2g/N = 0, which means that, when

f2 = 0 is eliminated, the condition f1 = 0 can be auto-

matically satisfied by Eq. (20). Thus we can study the

expression of f2 only:

√
β2

1 + β2
2 cos(θ2 − γ) = η2, γ = arctan(β1

β2
) (22)

Then θ2 can be deduced as:

θ2 = arctan(β1

β2
) + arccos( η2√

β2
1+β2

2

) (23)

Based on this, the critical condition of the excitation

amplitude for the existence of the folded singularities is:

| η2√
β2
1+β2

2

| = 1 (24)

Thus the threshold of SMR is calculated as:

Gic = εN2i

4
F1

F2
(25)

where

F1 = 9K2N2i
4λ1 + 24KN2i

2δ λ1 − 24KN2i
2λ1

+16 δ2λ1 + 16λ1 λ2
2 − 32 δ λ1 + 16λ1 + 16λ2

(26)

F2 = (9K2N2i
4 + 24KN2i

2δ − 24KN2i
2

+16λ2
2 + 16( δ2 − 1)2)

1
2

(27)

3.2 Melnikov analysis for low energy level

The criterion of excitation amplitude to produce SMR

at high level of energy having been detected, the next

objective is to predict the ignition area of chaotic re-

sponse at low level of energy. For this, Melnikov analysis

is introduced. It is a function that can measure the dis-

tance between the stable and unstable manifolds for a

saddle of the perturbed system [40,41]. The dynamical

system is written as:

ż = f(z) + εg(z, t); z =

{
u1

u2

}
∈ R2 (28)

where f(z) is a Hamiltonian vector field on R2 and

εg(z, t) is a small perturbation which does not need to

be Hamiltonian itself. To fit this function, the second

equation of the system of equations (3) is equivalent to:

ẅ + λ2ẇ +Kw3 + δw = ẍ (29)

Then we define that

{
λ2 = ελ̂2

ẍ = εx̂
(30)

Substituting Eq. (30) into Eq. (29) and transferring

it into the form of Eq. (28), the expression can be writ-

ten as:
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8 Donghai Qiu et al.

{
u̇1 = u2

u̇2 = −δu1 −Ku3
1 + ε(x̂− λ̂2u2)

(31)

For ε = 0, Eq. (31) has two centres at (u1, u2) =

(±
√

(−δ/K), 0) and a hyperbolic saddle at(u1, u2) =

(0, 0), the Hamiltonian of the system is:

H(u1, u2) =
u2

2

2
+ δ

u2
1

2
+K

u4
1

4
(32)

where the potential function can be written as:

U(u1) = δ
u2

1

2
+K

u4
1

4
(33)

The corresponding curve is presented in Fig. 6(a).

It shows that, when the energy has the local maximum

at u1 = 0, a global homoclinic bifurcation will be pro-

duced, which implies a transition from intra-well oscil-

lation to inter-well oscillation. The unperturbed homo-

clinic orbits that connect the saddle point of the poten-

tial energy curve are given by:

{
q0
+(τ) = (R · sech(Sτ),−RS · sech(Sτ) tanh(Sτ))

q0
−(τ) = −q0

+(τ)

(34)

where S = ±
√
−δ and R =

√
−2δ/K. Additionally,

two homoclinic orbits based at q0
± = (±R, 0) are pre-

sented in Fig. 6(b). Its function as the pseudo-separatrix

for the occurance of chaotic motion will be discussed

later.

According to the Melnikov function, the distance

between stable and unstable manifolds is given byM(τ0):

M(τ0) =

∫ ∞
−∞

f(q0(τ)) ∧ g(q0(τ), τ + τ0)dτ (35)

The ∧ operator is the wedge product of f(q0(τ)) and

g(q0(τ), τ + τ0). To present the computation of M(τ0)

for q0
+(τ), f and g are written as:

f(q0(τ)) =

(
−RS · sech(Sτ)tanh(Sτ)

−δR · sech(Sτ)−KR3 · sech3(τ)

)
(36)

g(q0(τ, τ + τ0)) =

(
0

x̂− λ̂2RS · sech(Sτ)tanh(Sτ)

)
(37)

Thus,
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Fig. 6 (a) Potential energy and (b) Hamilton phase plane:
pseudo-separatrix

M(τ0) = −RS
∫∞
−∞ sech(Sτ)tanh(Sτ)x̂(τ + τ0)dτ

−R2Sλ̂2

∫ ∞
−∞

S · sech2(Sτ)tanh2(Sτ)dτ︸ ︷︷ ︸
=[ tanh

2

3 ]+∞−∞=2/3

(38)

Yielding

M(τ0) = −RS
∫ ∞
−∞

sech(Sτ)tanh(Sτ)x̂(τ + τ0)dτ

−2R2Sλ̂2

3

(39)

As the energy of excitation decreases, the response

of the NES will change from aperiodic alternating cross-

well and intra-well oscillation to intra-well oscillation.

During this process, the phase trajectory will pass the
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Fig. 7 The critical amplitude for the appearance of intra-
well and chaotic oscillations as a function of the excitation
frequency, with the various values of (a) cubic stiffness and
(b) negative stiffness.

pseudo-separatrix, the amplitude of LO will tend to be

stable, and pass through the critical maximum value

N0c. To obtain this value, we suppose that the periodic

response of x̂ is written as:

x̂ = Âcos(Ωτ + φ) (40)

Substituting Eq. (40) into Eq. (39), and using the

theorem that trigonometric functions are even or odd

since cos(Ω(τ + τ0) + φ) = cos(Ωτ0 + φ)cos(Ωτ) −
sin(Ωτ0 + φ)sin(Ωτ), M(τ0) can be expressed as:

M(τ0) = −
∫ ∞
−∞

sech(Sτ)tanh(Sτ)sin(
Ω

S
Sτ)dSτ

×RÂsin(Ωτ0 + φ)− 2R2Sλ̂2

3

(41)

With the method of residues, the integral term can

be calculated as:

M(τ0) = −RÂπΩ
S

sin(Ωτ0 + φ)sech(
πΩ

2S
)− 2R2Sλ̂2

3
(42)

According to Eq. (30), Â = −N1Ω
2/ε. By substitut-

ing this equation to Eq. (42), M(τ0) finally becomes:

M(τ0) =

√
2

K

N1πΩ
3

ε
sin(Ωτ0 + φ)sech(

πΩ

2
√
−δ

)

±4δ
√
−δ

3K

λ2

ε

(43)

From Melnikov theory, the fact that M(τ0) has a

zero solution means that the transverse interaction be-

tween stable and unstable manifolds exists in the sys-

tem, which leads to the appearance of chaos. Then we

can obtain the necessary condition for this chaos inter-

action as:

N0c =
2
√

2(−δ) 3
2 cosh( πΩ

2
√
−δ )

3
√
KπΩ3

λ2 (44)

When N1 < N0c, the movement of the NES will

enter one of the two wells. When the excitation exceeds

this value, inter-well motion will occur as a consequence

of the homoclinic bifurcation. So there is an analytical

border that indicates whether the response is likely to

chaos or not.

The effects of negative stiffness δ and cubic stiff-

ness K on the Melnikov threshold for homoclinic bi-

furcation are illustrated in Fig. 7, where the excitation

frequency is given by f = ω/2π. The curves shown rep-

resent a boundary with the upper domain indicating

the area for corresponding chaotic inter-well oscillation.

From the perspective of the LO amplitude in Fig. 7(a),

we can find that increasing the value of cubic stiffness

will result in a decreased amplitude threshold for ho-

moclinic bifurcation. In Fig. 7(b), an increase in the

negative stiffness δ leads to a shift of the stationary

point (∂N0c/∂f = 0) toward a higher frequency, which

means that, if a system has resonance in the high fre-

quency range, using higher negative stiffness is an easier

way to obtain a low amplitude threshold.

4 Dynamical efficiency and design criterion

4.1 Efficiency of bistable NES and cubic NES

Since the thresholds have been deduced for each level

of energy, the corresponding dynamical efficiency will
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be discussed in this section. For a better understand-

ing of the performance of a bistable NES, Fig. 8 and

Fig. 9 provide a comparison between a cubic NES and

a bistable NES for the energy dissipation ratio and the

amplitude of the LO. The energy dissipated by the LO

and the NES in the time interval (τ0, τ) is:

{
ELO(τ) =

∫ τ
τ0
ελ1ẋ

2dτ

ENES(τ) =
∫ τ
τ0
ελ2(ẋ− ẏ)2dτ

(45)

Therefore, the energy dissipation ratio of the NES

(i.e. the efficiency) can be defined as:

rNES =
ENES

ELO + ENES
× 100% (46)

For the cubic NES in Fig. 8, the areas a, c and d

respectively represent the fixed point, SMR and fixed

point in the SIM structure. Where Ae is the mean am-

plitude (i.e. average value of the slowly varying en-
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Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design 11

velopes), Am is the maximum amplitude (i.e. maximum

value of the slowly varying envelopes). When the input

energy is too low to activate the energy pumping of the

cubic NES, the efficiency is poor, and the amplitude of

LO increases linearly with the excitation amplitude. As

the input increases to the range [G1, G2], the difference

between the mean amplitude and the maximum ampli-

tude is distinguished for SMR, in which the amplitude

of NES is no longer stable. When the excitation ampli-

tude passes the threshold G2 and makes the NES work

in area d, an optimal point Dm is observed where Ae

and Am are the same at the minimum value, and the

efficiency ratio of the NES is maximum, almost 74% of

the targeted energy is dissipated by the cubic NES.

For bistable NES in Fig. 9, the areas a, b, c and d

represent four different regimes: intra-well oscillation,

chaotic inter-well oscillation, SMR and stable periodic

response, respectively, where the points A, B, C and D

correspond to the excitations G = 0.06 mm, G = 0.1

mm, G = 0.42 mm and G = 0.55 mm that we observed

previously. Unlike the cubic NES, as the input energy

is low, the bistable NES shows high efficiency, even it

works in the intra-well oscillation area with small dis-

placement, it can produce a higher dynamical perfor-

mance. For relatively higher levels of excitation in area

b, this regime of chaotic response is observed to have low

efficiency of energy dissipation. Comparing the excita-

tion threshold of SMR to that of the cubic NES, as given

in Tab. 2, shows that the amplitude band [G1c,G2c] is

broader once the contribution of negative stiffness is

added. Moreover, owing to the higher speed and larger

stroke swept in the dynamic transition of negative stiff-

ness area, the efficiency of the bistable NES will be

higher than that of the cubic NES. An interesting point

is that the threshold of G1c is close to the correspond-

ing value G1 of cubic NES. A further study of the the-

oretical aspects may be useful here. For area d, there

is a minimum amplitude Dm, where the LO amplitude

starts to increase and the efficiency of NES decreases

with the growth of excitation amplitude. By comparing

the threshold of G2c = 0.42 mm to the calculation re-

sult of Eq. (25) that equals 0.422 mm, it can be demon-

strated that these two solutions correspond with each

other well. So in the following section, the analytical

solution of G2c can be used to predict the location of

Dm.

Here, it is important to emphasize that at the con-

dition of monochromatic external excitation (ω/ω0 ≈
1), the TMD performs better than the cubic NES or

bistable NES. The configuration of the primary system

coupled either to the TMD or the NES can be obtained

by setting k2 to zero or non-zero value in Eqs. (1), re-

spectively. The main expected advantage of the NES

Table 2 Excitation threshold

bistable NES (mm)

G1c 0.21 G2c 0.42
G0c 0.08

cubic NES (mm)

G1 0.22 G2 0.36

were observed when it was applied to linear multi-dof

systems (with remote frequencies), as demonstrated in

[42]. Owing to its self-tuning property, energy pump-

ing may be excited in the vicinity of each natural fre-

quency (under periodic excitation), thus providing a

substantial reduction of energy for the main structure

as compared to the TMD case (which may be tuned

to a single frequency only). Additionally, the NES can

be effective over a much broader range of frequencies

than the TMD and does not suffer from the problem

of amplification just outside the target bandwidth [5],

thus making it preferable for various engineering appli-

cations when the primary system is subject to harmonic

forcing in a wide range of excitation frequencies.

4.2 Detailed analysis of each regime

To further explain the efficiency and verify the thresh-

olds proposed in previous methods, the pseudo-separatrix

mentioned above, the Hilbert transform and wavelet

transform are introduced to discuss the detailed dy-

namics in the following subsection.

4.2.1 Intra-well oscillation

In Fig. 9, the threshold G0c exists between areas a and

b, when the LO excited at this value, the corresponding

oscillation amplitude Ac obtained is close to the dashed

line N0c calculated by Eq. (44), so it proves that the

numerical result coincides with the analytical predic-

tion. When the energy is lower than G0c, as shown

in Fig. 10(b), the cyclic projection in the SIM struc-

ture is under the dashed line N0c, which corresponds

to Fig. 10(d) where the phase trajectory is inner the

pseudo-separatrix. The red curve in Fig. 10(c) shows

that the bistable NES works around the stable equilib-

rium on the force-displacement curve. Due to the asym-

metricity of the force-displacement curve, the two sides

of the amplitude of NES presented in Fig. 10(a) are also

asymmetric. Since the initial nonlinear stiffness around

the stable equilibrium is far larger than that of cubic

NES, which is close to zero, the bistable NES can pro-

duce nonlinear beating even under a small excitation.
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Therefore, the bistable NES can have a high efficiency

ratio with low energy input.

4.2.2 Chaotic inter-well oscillation

As the excitation amplitude increases to the range of

response b, the working force-displacement range of the

NES becomes large and starts to pass the two stable

equilibria. It is observed that the dynamic trajectory

escapes from one potential well to the other, achieving

a global snap-through motion. The chaotic behaviour

in this regime is identified in [37], where the Lyapunov

characteristic exponents are calculated and the values

of exponents are found to be positive. In Fig. 11(b),

the chaotic projection in the SIM structure is above

the dashed line N0c, which means that enough energy

is supplied so to overcome the potential barrier: the hill-

top of Fig. 4. With reference of the pseudo-separatrix,

the outer, inner and crossing transient trajectories on

the phase diagram are observed consecutively in Fig. 11

(d). These three regimes correspond respectively to the

steady transition motion between two stable equilibria,

the transition motion captured by a stable equilibrium

and the subharmonic nonlinear beating.

In Fig. 9 it is interesting to note the existence of

a particular response at point B1, where the energy

dissipation ratio is the lowest. Fig. 12 shows the cor-

responding time-displacement response and the phase

trajectory. It can been seen that this response is no

longer chaotic and shows periodic performance. By in-

troducing the wavelet transform method, the frequency

components of the LO and bistable NES are obtained,

which illustrates that the transition point represents

a resonance capture with the frequency of 1:3 subhar-

monic. With the increase of input energy, the periodic

performance will disappear while the component of 1:3

subharmonic response will hold for the following re-

sponse.

4.2.3 Strongly modulated response

To illustrate the global performance of the SMR, three

specified responses with the excitation amplitude of

0.21 mm, 0.25 mm and 0.42 mm are calculated and

presented in Fig. 13, where the first and the last cor-

responding points are located at the two thresholds of

SMR. In these responses, three different TET mecha-

nisms of bistable NES are observed and classified as:

1. Fundamental TET (1:1 resonance capture);

2. Subharmonic resonance capture TET;

3. TET initiated by nonlinear beating.

The first column of Fig. 13 shows the time displace-

ment response of the LO and bistable NES, the sec-

ond column shows the corresponding instantaneous am-
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Fig. 13 SMR response in the first column, and the corresponding instantaneous amplitude and frequency in the second column,
for different types of energy: (a) input G = 0.21 mm, corresponding to point C1; (b) input G = 0.25 mm, corresponding to
point C2; (c) input G = 0.42 mm, corresponding to point C. Where the instantaneous amplitude of w is inferred from the
leading (first) IMF, the instantaneous frequency of bistable NES is defined as f , and the natural frequency of LO is defined as
f0.

plitude and frequency. To illustrate the basic underly-

ing dynamic mechanism of bistable NES, the empirical

mode decomposition (EMD) applied to decomposition

of nonlinear and nonstationary signals is adopted [43].

With this method, a collection of intrinsic mode func-

tions (IMFs) is obtained. Then Hilbert Transform is

used to calculate the instantaneous frequency and am-

plitude. Fig. 14 illustrates the frequency components of

the LO and bistable NES with the wavelet transform

method. By combing these two figures, it can be found

that: as the instantaneous frequency of leading (first)

IMF of the bitable NES is concentrated on the natural

frequency of the LO (i.e. the area of ellipses), the funda-

mental TET takes place and the dynamics is captured

in the domain of attraction of 1:1 resonant manifold.

This area is additionally demonstrated by the red zone

of bistable NES in Fig. 14. It is also represented the in

phase NNM manifold S11+ in the Frequency Energy

Plot (FEP) [44]. At this regime, large targeted energy

is extracted and dissipated by bistable NES, leading to

a fast decrease of the LO amplitude.
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Fig. 14 Wavelet transform for different type of energy: (a) input G = 0.21mm corresponding to point C1; (b) input G =
0.25mm corresponding to point C2; (c) input G = 0.42mm corresponding to point C

When the LO amplitude decreases to a certain value,

the dynamics transfers to the subharmonic resonance

capture TET, where the contribution of 1:3 subhar-

monic resonance response is observed. Owing to its low

energy dissipation ratio and the continuous energy in-

put, the LO amplitude starts to increase, and the dura-

tion of this transition is small, resulting in a fast reso-

nance escape to the last regime: TET initiated by non-

linear beating. In this regime, three different response

components are observed: a) Fundamental nonlinear

beating, occurs in the motion that captured by a sta-

ble equilibrium, b) Subharmonic nonlinear beating, c)

Nonlinear beating that occurs in the steady transition

motions between two stable equilibria.

From Fig. 14, it can be found that the contribu-

tion of each regime is related to the input of excita-

tion energy. When the input G is 0.21 mm, the interval

of fundamental TET is small and the nonlinear beat-

ing regime plays a large prolonged part in the process.

When G = 0.25 mm, the duration of the fundamental

TET regime starts to increase with the decrease of TET

initiated by nonlinear beating. As the input reaches the

maximum of 0.42 mm, the fundamental TET makes the

largest contribution to the process while the transition

of subharmonic TET and TET initiated by nonlinear

beating are decreased to a narrow zone. In this case, the

chaotic aspect almost disappears, and the 1:1 resonance

is the strongest, making the NES transfer a relatively

high amount of energy in a finite time interval.

4.3 Optimal design criterion

As shown in Fig. 9, the optimal working point is lo-

cated at the lowest value of the second stable branch

of the SIM, in which the efficiency reaches its maximal

value. In this case, there exist 1:1 resonance between
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Fig. 15 Controlling the optimal working point of NES by adjusting the nonlinear stiffness K and negative stiffness δ

bistable NES and LO. The comparison of SIM structure

between cubic NES and bistable NES can be found in

Fig. 2, which shows that, after the addition of the neg-

ative stiffness part, the location of optimal point Dm

shifts to right, and the corresponding excitation ampli-

tude becomes higher. For this, it is suggested that, if

the primary system is excited at a fixed periodic load-

ing, the objective of the optimal design should be to

adjust the parameters of NES so as to make it work

at the location Dm. By introducing Eq. (25), the ex-

citation amplitude at this point is calculated with the

nonlinear stiffness K and negative stiffness δ, as shown

in Fig. 15. Here, it can be observed that, adjusting these

two variables K and δ is feasible to control the value of

G2c in a certain range, so as to ensure the response of

NES located at its optimal point.

For this, a configuration to achieve the negative stiff-

ness and the cubic stiffness is proposed. Where the pure

cubic stiffness is obtained by means of two transverse

linear springs with no pretension in their vertical direc-

tion [5], the essentially negative stiffness component is

produced by adopting the method of pre-compressing

two springs at initial position [32], so as to achieve the

bistable geometry. In this structure, an amount of po-

tential energy is pre-stored and the two stable equilibria

are obtained when both springs are in the unstretched

state. The corresponding force displacement relation-

ship based on Taylor expansion is given by:

f(w) = −2k
lp
l0
w + k

lp + l0
l30

w3 (47)

In this equation, the value of cubic stiffness K is

related to the stiffness of spring k and the free length

l0, where the influence of pre-compressed length lp is so

small that it can be neglected. For the negative stiffness

δ, it mainly depends on the value of the pre-compressed

length lp since the two springs are installed. As the two

springs of a cubic NES are fixed for engineering appli-

cations, adjusting the pre-compressed length lp would

provide an alternative way to increase the band in which

excitation amplitude is robust. By obtaining the antic-

ipated negative stiffness, the NES can be adjusted to

work at the optimal point with its best performance.

5 Conclusion

In this paper, the dynamic response of a 2 DOF system

comprising a harmonically excited LO strongly coupled

to a bistable NES is investigated. An analytically ob-

tained SIM is used to explain the different response

regimes. Unlike cubic NES, bistable NES only follows

the second stable branch of the SIM. Asymptotic anal-

ysis and Melnikov analysis are respectively used to ob-

tain the thresholds of different response regimes at dif-

ferent energy levels. These analytical solutions are ver-

ified in numerical simulation, which correctly predicts

the occurrence of intra-well oscillation or chaotic inter-

well oscillation, and the transition between SMR and

stable periodic response.

The efficiency of different response regimes is stud-

ied and demonstrates that a bistable NES working in

the first regime with intra-well oscillation can transfer

the targeted energy with a relatively high efficiency,

but the chaotic inter-well response dissipates energy

with low efficiency. For this regime, a point with 1:3

subharmonic resonance captures exists where its effi-
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ciency is the lowest. This result is contrary to the tra-

ditional idea that 1:3 subharmonic resonance may result

in a strong energy exchange and dissipation under peri-

odic excitation. About the band of excitation amplitude

with the occurrence of SMR, it becomes broader with

the addition of negative stiffness, and the efficiency of

bistable NES in this band is larger than that of cubic

NES. With the Hilbert transform and wavelet trans-

form, three different TET mechanisms are observed and

it shows that 1:1 resonance is mainly responsible for the

efficient TET.

Finally, an optimal point located at the boundary

between the SMR and stable periodic response is found,

at which the efficiency of NES is largest and the ampli-

tude of LO is smallest. Based on this, an optimal de-

sign criterion and the corresponding configuration are

proposed. By adjusting the pre-compressed length of

spring, bistable NES can be designed to robustly work

at its best performance for a range of excitation.
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