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In this paper we consider a shape optimization problem in which the data in the cost functional and in the state equation may change sign, and so no monotonicity assumption is satisfied. Nevertheless, we are able to prove that an optimal domain exists. We also deduce some necessary conditions of optimality for the optimal domain. The results are applied to show the existence of an optimal domain in the case where the cost functional is completely identified, while the right-hand side in the state equation is only known up to a probability P in the space L 2 (D).

Introduction

In this paper we consider a shape optimization problem of the form min F (Ω) : Ω ∈ A where F is the shape cost function and A the class of admissible domains. For this kind of problems in general one should not expect the existence of an optimal domain, since minimizing sequences could be made of finely perforated domains, leading at the limit to existence of only relaxed solutions that are not domains but Borel measures. In some particular cases however an optimal domain exists; the most general existence result providing optimal solutions that are domains and not measures is still given by Theorem 2.5 of [START_REF] Buttazzo | An existence result for a class of shape optimization problems[END_REF] (see also [START_REF] Buttazzo | Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions[END_REF]), where the crucial assumption is that the shape cost functional F is monotone decreasing with respect to the set inclusion. A similar result for monotone costs in the framework of optimization problems for Schrödinger potentials has been obtained in [START_REF] Buttazzo | Optimal potentials for Schördinger operators[END_REF].

The cost functional F we consider here is not in general monotone decreasing for the set inclusion; nevertheless we are able to prove the existence of an optimal domain for it. We fix:

• a bounded Lipschitz domain D ⊂ R d , • a right-hand side f ∈ L 2 (D), • a cost coefficient g ∈ L 2 (D),
and we consider the admissible class of domains

A = Ω ⊂ D, Ω quasi open, |Ω| ≤ 1 , (1.1) 
where | • | denotes the Lebesgue measure in R d . In order the problem be nontrivial we assume that |D| > 1.

1.1. Statement of the problem and main results. For every Ω ∈ A we denote by u Ω the unique solution of the Dirichlet problem

-∆u = f in Ω, u ∈ H 1 0 (Ω), (1.2) 
where H 1 0 (Ω) is the Sobolev space of functions in H 1 (R d ) vanishing capacity quasi everywhere outside Ω. The optimization problem we are dealing with is min D g(x)u Ω (x) dx : Ω ∈ A .

(1.3)

Note that, by the definition of u Ω , problem (1.3) is an optimal control problem, where H 1 0 (D) is the space of states, A is the set of controls, (1.2) is the state equation, and D g(x)u Ω (x) dx is the cost function. We stress the fact that we do not assume any sign condition on the data f, g.

It is well known that in the special case g = -f /2 the optimization problem (1.3) can be written, through an Euler-Lagrange derivation and an integration by parts, as min E(Ω) : Ω ∈ A where E(Ω) is the Dirichlet energy

E(Ω) = min 1 2 |∇u| 2 -f (x)u dx : u ∈ H 1 0 (Ω) .
This would allow to see easily, thanks to the inclusion of the Sobolev spaces

Ω 1 ⊂ Ω 2 =⇒ H 1 0 (Ω 1 ) ⊂ H 1 0 (Ω 2 ),
that the shape function E(Ω) is decreasing with respect to the set inclusion, and then an immediate application of the existence Theorem 2.5 of [START_REF] Buttazzo | An existence result for a class of shape optimization problems[END_REF] would give a solution Ω opt of problem (1.3), with the additional property that |Ω opt | = 1.

The same conclusion would easily hold when f ≥ 0 and g ≤ 0; indeed, in this case, thanks to the maximum principle, the solutions u Ω would be monotonically increasing with respect to Ω, and again the shape cost function Ω → D g(x)u Ω (x) dx would turn out to be decreasing with respect to Ω, providing then (again by the existence Theorem 2.5 of [START_REF] Buttazzo | An existence result for a class of shape optimization problems[END_REF]) an optimal solution Ω opt of problem (1.3), with |Ω opt | = 1.

On the contrary, when f and g are general functions in L 2 (D), the existence Theorem 2.5 of [START_REF] Buttazzo | An existence result for a class of shape optimization problems[END_REF] cannot be applied and the existence of an optimal domain for the minimization problem (1.3) requires a deeper investigation. Our main existence result is the following. Theorem 1.1. Let f, g ∈ L 2 (D) be given; then the minimization problem (1.3) admits a solution Ω opt in the admissible class A.

Moreover, the optimal sets have the following properties:

• if g ≥ 0 we have either |Ω opt | = 1 or |Ω opt | < 1 and {f < 0} ⊂ Ω opt (Theorem 4.5); similarly, if f ≥ 0 we have either |Ω opt | = 1 or |Ω opt | < 1 and {g < 0} ⊂ Ω opt ;
• if Ω opt is smooth, the state functions u and v on Ω opt , corresponding to the solutions of the PDE (1.2) with right-hand side f and g respectively, satisfy

∂u ∂n ∂v ∂n = const on ∂Ω opt ∩ D, the constant being zero if |Ω opt | < 1 (Section 3); • if |Ω opt | < 1 
and f ≥ 0, then the function v Ω , corresponding to the function g, is a solution of an obstacle problem (Proposition 5.4) and thus, under some appropriate assumptions on the regularity of g, the optimal set Ω opt is open and its boundary is smooth (Corollary 5.5);

• if D = R d and f, g are radially symmetric functions, f radially decreasing and g radially increasing, then the optimal set Ω opt is a ball centered in zero (Proposition 6.1).

1.2.

A stochastic optimal control problem. A probabilistic counterpart of the optimization problem (1.3) is given by the case when the function g appearing in the cost functional (1.3) is completely known, while the right-hand side f in (1.2) has the form f = f 0 + h, where f 0 is given and h is some random perturbation. The purpose of such a model is to obtain shapes corresponding to mechanical structures that are robust and reliable even if the data are not completely known. Several models involving uncertainties has been already studied; from the numerical point of view we refer for instance to [START_REF] Allaire | Dapogny: A deterministic approximation method in shape optimization under random uncertainties[END_REF] and the references therein, while in most of the cases there are no available theoretical results, even in some simplified situations.

An interesting result in this spirit is concerned with the existence of optimal domains for the worst-case functional min

Ω∈A sup h∈L p D g(x)R Ω (f 0 + h) dx ,
and was proved in [START_REF] Bellido | Worst-case shape optimization for the Dirichlet energy[END_REF] under the assumptions that g ≤ 0, f 0 > 0, and the perturbation h is small. Here R Ω denotes the resolvent operator which associates to every f ∈ L 2 (D) the solution u Ω of (1.2).

Another situation of practical interest is when the perturbation h belongs to some probability space and the cost functional is given by the average over all possible choices of h. The existence of minimizer in this situation can be deduced from Theorem 1.1 without any smallness assumption on the incertainty h.

More precisely, given a probability P on L 2 (D), we aim to minimize the averaged cost

F (Ω) = D g(x)R Ω (f ) dx dP (f ) (1.4)
over the admissible class A given by (1.1). We assume that the barycenter

B P := f dP (f )
belongs to L 2 (D) and we notice that it is well defined when P has a finite first moment

f L 2 dP (f ) < +∞ .
Thus, setting u, v := D u(x)v(x) dx, for u, v ∈ L 2 (D), and using the fact that the resolvent operator R Ω is self-adjoint, we obtain that the cost functional in (1.4) can be written as

F (Ω) = R Ω (f ), g dP (f ) = R Ω (g), f dP (f ) = R Ω (g), B P (f ) = D g(x)R Ω (B P ) dx .
In this way we are then in the framework of the existence Theorem 1.1.

1.3. Organization of the paper. In Section 3 we prove the existence of an optimal domain Ω opt (Theorem 1.1). Then we compute the so called shape derivative assuming that Ω opt is regular enough. The study of the regularity properties of the optimal domains is an interesting and difficult issue; obtaining the regularity of a general solution Ω opt from its minimality would be a very interesting result.

In Section 4 we study the minimizers for which the constraint |Ω opt | ≤ 1 is not saturated. Note that this is a rather general situation, since no monotonicity of the shape cost function is assumed. Nevertheless, in several cases (f ≥ 0 and |{g < 0}| ≥ 1) we may still obtain that the optimal domain verifies |Ω opt | = 1 as we see in Theorem 4.5. In Section 5 we show that Ω opt is a solution of an obstacle problem and as a consequence we obtain that it has a regular free boundary in the sense of Corollary 5.5.

Finally, in Section 6 we study the case of radially symmetric functions f and g. It is natural to expect that under this assumption the optimal domains are balls centered at zero. Also in this case the lack of monotonicity of the functional represents a difficult issue since the energy does not necessarily decrease under symmetrization. Nevertheless, we are able to prove that for every Ω there is a ball B (not necessarily of the same measure as Ω) having a smaller energy. We also provide an example of an optimal set Ω opt of measure strictly smaller than one.

Sobolev spaces, quasi-open sets and capacitary measures

In this section we briefly recall several notions related to capacity theory, quasi open sets, and capacitary measures; we refer to the book [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF] for more details concerning these notions.

2.1. Sobolev functions and their representatives. The Sobolev space

H 1 (R d ) is the closure of C ∞ c (R d ) with respect to the norm u H 1 = R d |∇u| 2 dx + R d u 2 dx 1/2 . For every function u ∈ H 1 (R d ) there is a set E u ⊂ R d such that: • every point in R d \ E u is a Lebesgue point for u, that is u(x 0 ) = lim r→0 1 |B r | Br(x 0 ) u(x) dx , for every x 0 ∈ R d \ E u ;
• E u has capacity zero, cap(E u ) = 0, where for a set E ⊂ R d , cap(E) is defined as

cap(E) := inf φ 2 H 1 : φ ∈ H 1 (R d ), φ = 1 in a neighborhood of E .
We notice that a Sobolev function u is defined up to a set of zero capacity, that is

u 1 ∼ u 2 if and only if cap({u 1 = u 2 }) = 0.

2.2.

Quasi-open sets and the space H 1 0 (Ω). We say that a set

Ω ⊂ R d is quasi open if it is of the form Ω = {u > 0} for some u ∈ H 1 (R d ). We notice that all the open sets are quasi-open. Given a quasi-open set Ω ⊂ R d we define the Sobolev space H 1 0 (Ω) := u ∈ H 1 (R d ) : cap({u = 0} \ Ω) = 0 . We notice that H 1 0 (Ω) is a closed subspace of H 1 (R d ). In fact, if u n → u in H 1 (R d ), then up to a subsequence u n → u pointwise outside of a set of zero capacity. If Ω is open then H 1 0
(Ω) coincides with the usual Sobolev space defined as the closure of C ∞ c (Ω) with respect to the H 1 norm. Let Ω ⊂ R d be a quasi-open set of finite measure and let f ∈ L 2 (Ω). We say that a function u ∈ H 1 0 (Ω) is a solution of the equation

-∆u = f in Ω, u ∈ H 1 0 (Ω), if we have Ω ∇u • ∇ϕ dx = Ω f ϕ dx , for every ϕ ∈ H 1 0 (Ω).
2.3. Capacitary measures. We say that a nonnegative Borel measure µ is capacitary if for every set E ⊂ R d with cap(E) = 0, we have µ(E) = 0. We denote by M cap (R d ) the class of capacitary measures on R d . In particular, if two functions u 1 and u 2 are in the same equivalence class of H 1 (R d ), and µ is a capacitary measure, then u 1 and u 2 are in the same equivalence class of L 2 (µ). For a quasi-open set Ω ⊂ R d and for a measure µ ∈ M cap (R d ) we define the space

H 1 µ (Ω) = H 1 0 (Ω) ∩ L 2 (µ) = u ∈ H 1 0 (Ω) : R d u 2 dµ < ∞ . For a given function f ∈ L 2 (Ω) we say that u ∈ H 1 µ (Ω) is a solution of the equation -∆u + µu = f in Ω, u ∈ H 1 µ (Ω), if we have Ω ∇u • ∇ϕ dx + Ω uϕ dµ = Ω f ϕ dx ∀ϕ ∈ H 1 µ (Ω).
Let µ be a capacitary measure in R d . The set of finiteness Ω µ of µ is defined as

Ω µ = u∈H 1 µ (R d ) {u = 0}.
We notice that the set Ω µ is a quasi-open set due to the fact that 

H 1 µ is separable. Moreover, if µ = 0 on Ω µ , then H 1 µ (R d ) = H 1 0 (Ω µ ).
M cap (D) = µ ∈ M cap (R d ) : Ω µ ⊂ D .
For every capacitary measure µ ∈ M cap (D) we consider the torsion function w µ , solution of the equation

-∆w µ + µw µ = 1 in D, w µ ∈ H 1 µ (D)
. We notice that w µ uniquely determines the measure µ. In fact, we have

Ω µ = {w µ > 0} and µ = ∆w µ + 1 w µ on Ω µ .
The set M cap (D), endowed with the distance

d γ (µ 1 , µ 2 ) = w µ 1 -w µ 2 L 2 ,
is a compact metric space (see for instance [START_REF] Maso | Wiener's criterion and Γ-convergence[END_REF]). Moreover, the family of capacitary measures

I Ω associated to smooth domains Ω ⊂ D is dense in M cap (D)
, where the measure I Ω is defined by

I Ω (E) = 0 if cap(E \ Ω) = 0, +∞ otherwise.

Existence of optimal shapes and optimality conditions

In this section we prove the existence Theorem 1.1. We first relax the problem to the class of capacitary measures M cap (D) that represents the closure of the admissible class A with respect to the γ-convergence. The relaxed problem is written again as an optimal control problem, with admissible class given by

M = µ ∈ M cap (D), |Ω µ | ≤ 1 ,
being Ω µ the set of finiteness of µ. For every admissible µ ∈ M we consider the state equation

-∆u + µu = f in D, u ∈ H 1 0 (D) ∩ L 2 (µ), (3.1) 
and we indicate its unique solution by u µ . The relaxed optimization problem related to (1.3) can be then stated as

min D g(x)u µ dx : µ ∈ M . (3.2)
It is convenient to introduce the resolvent operator R µ : L 2 (D) → L 2 (D) which associates to every f ∈ L 2 (D) the solution u µ of (3.1). Thanks to the fact that R µ is self-adjoint we can write the cost function as

D g(x) R µ (f ) dx = D R µ (g) f (x) dx.
Proof of Theorem 1.1. It is well known that the relaxed admissible class M is compact with respect to γ-convergence and that the cost function is γ-continuous (see for instance [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF]); therefore an optimal relaxed solution µ to problem (3.2) exists.

For every bounded continuous function φ and for every ε > 0 small enough we consider the capacitary measure µ ε = (1 + εφ)µ; since φ is bounded and ε is small we have that µ ε ∈ M and Ω µε = Ω µ . Moreover, the spaces H 1 µε and H 1 µ coincide. Let us denote by u ε the solution of the PDE

-∆u ε + µ ε u ε = f in D, u ε ∈ H 1 µε
and by u the solution of

-∆u + µu = f in D, u ∈ H 1 µ . By the minimality of µ we have D gu ε dx ≥ D gu dx, which gives D g u ε -u ε dx ≥ 0. (3.3)
Denoting by w ε the function (u ε -u)/ε we have that w ε satisfies the PDE

-∆w ε + µw ε = -φu ε µ in D, w ε ∈ H 1 µ . Since µ ε γ-converges to µ we have that u ε → u weakly in H 1 µ ; hence w ε → w weakly in H 1
µ , where w is the solution of the PDE

-∆w + µw = -φuµ in D, w ∈ H 1 µ . Passing to the limit in (3.3) as ε → 0 gives 0 ≤ D gw dx = D gR µ (-φuµ) dx = - D R µ (g)φu dµ.
Since φ is arbitrary, we obtain that

R µ (g)u = 0 µ-a.e. (3.4) 
Since u = 0 where µ = +∞, by the form of the cost functional, without loss of generality we may assume that Ω µ = {u = 0}. Analogously, since the cost functional can also be written as D R µ (g)f dx, we may assume that µ = +∞ on R µ (g) = 0. Thus by (3.4) the capacitary measure µ takes only values 0 and +∞ and hence it is a domain.

We now formally deduce the optimality condition on the boundary of an optimal set Ω ⊂ D (for the rigorous proof we refer to [START_REF] Henrot | Variation et Optimisation de Formes[END_REF]Chapter 5]). We assume that Ω is sufficiently regular (∂Ω ∈ C 2,α ) and we set for simplicity u = R Ω (f ) and v = R Ω (g). For a smooth vector field V ∈ C ∞ c (D; R d ) we consider the perturbation Ω t = (Id + tV )(Ω) and the solutions u t = R Ωt (f ) and v t = R Ωt (g). The formal derivatives

u = d dt t=0 u t and v = d dt t=0 v t ,
are solutions respectively of the problems:

∆u = 0 in Ω, u + V • ∇u = 0 on ∂Ω; ∆v = 0 in Ω, v + V • ∇v = 0 on ∂Ω.
Thus, the derivative of the cost functional is given by

d dt t=0 Ωt u t g dx = Ω u g dx = Ω ∇u ∇v dx - ∂Ω u ∂v ∂n = ∂Ω ∂v ∂n V • ∇u = ∂Ω V • n ∂u ∂n ∂v ∂n .
We now consider two cases: Case 1. If the volume constraint is saturated, that is |Ω| = 1, then we have to consider perturbations only with respect to divergence-free vector fields V . In this case we obtain

∂Ω (V • n) ∂u ∂n ∂v ∂n = 0 for every V ∈ C ∞ c (D; R d ) such that div V = 0,
which gives the optimality condition ∂u ∂n ∂v ∂n = const on ∂Ω.

Case 2. If the volume constraint is not saturated, that is |Ω| < 1, then we have

∂Ω V • n ∂u ∂n ∂v ∂n = 0 for every V ∈ C ∞ c (D; R d ),
which gives the optimality condition ∂u ∂n ∂v ∂n = 0 on ∂Ω.

In the case when f ≥ 0, we have that |∇u| > 0 on the boundary of the optimal set Ω = {u > 0}. Thus the optimality condition can be written in the simplified form

∂v ∂n = 0 on ∂Ω.
This situation is untypical for the shape optimization problem, where the cost functional is usually monotone with respect to the set inclusion. We give an explicit example of a case when the constraint is not saturated in Section 6. In the next section we analyze this type of solutions and their connection with the obstacle problem.

Minimizers with nonsaturated constraint

In this section we consider minimizers Ω which do not saturate the volume constraint, that is |Ω| < 1. We restrict our attention to the case f ≥ 0 on D, while the cost coefficient g may change sign. Equivalently, since the resolvent operators are self-adjoint, we may consider g ≥ 0 and f changing sign. In Subsection ?? we prove that an optimal set Ω necessarily contains the set {g < 0}. In Subsection 5 we establish a relation of the minimizer Ω with the obstacle problem.

The main result of this section is a necessary condition of optimality (Theorem 4.5). The argument is carried out from the point of view of the state function u = R Ω (f ) relative to a nonnegative right-hand side f . Before we pass to the statement and the proof of Theorem 4.5 we recall several classical results concerning the function u. 

-∇u • ∇ϕ + f ϕ dx ≥ 0 for every nonnegative ϕ ∈ C ∞ c (D).
It is well-known that ν := ∆u + f is a (positive) measure. Moreover, ∆u + f is a Radon measure in D. In fact, if B r (x 0 ) ⊂ D, there is a nonnegative function ϕ ∈ C ∞ c (D) such that ϕ = 1 on B r (x 0 ); thus

(∆u + f ) B r (x 0 ) ≤ D ϕ dν = D -∇u • ∇ϕ + f ϕ dx < +∞.
In what follows we use an important characterization of ∆u+f to construct competitors for the solution of the problem (3.2). For the proof we refer to [START_REF] Maso | Asymptotic behavior and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators[END_REF] (Theorem 5.1). (ii) there exists a capacitary measure µ ∈ M cap (D) such that Ω µ = {u > 0} and

-∆u + µu = f in D, u ∈ H 1 µ . Let now Ω ⊂ R d be a bounded quasi-open set and let u ∈ H 1 0 (Ω) be the solution of -∆u = f in Ω, u ∈ H 1 0 (Ω). (4.1)
The following lemma describes the behavior of u around the boundary points of low density for Ω. The result is classical and we give the proof for the sake of completeness.

Lemma 4.3. Let r 0 > 0, x 0 ∈ R d and f ∈ L 2 (B r 0 (x 0 )), with f ≥ 0. Suppose that M := sup 0<r≤r 0 1 |B r | Br(x 0 ) f 2 (x) dx 1/2 < +∞.
Then there exists a constant ε > 0, depending only on the dimension d and on M , such that if Ω satisfies the hypothesis |B r (x 0 ) ∩ Ω| |B r | ≤ ε for every 0 < r < r 0 , then for the solution u of (4.1) we have the estimate

1 r 2 |B r | Br(x 0 ) |∇u| 2 dx ≤ 2 d+2 sup 1, 1 r 2 0 |B r 0 | Br 0 (x 0 ) |∇u| 2 dx .
Proof. Suppose, without loss of generality, that x 0 = 0. Let 0 < r < r 0 and φ ∈ C ∞ 0 (B r ) be a function such that 0 ≤ φ ≤ 1 on B r , φ = 1 on B r/2 and |∇φ| ≤ 3/r. The proof is obtained by iteration of the following Caccioppoli inequality:

B r/2 |∇u| 2 dx ≤ Br |∇(φu)| 2 dx = Br |∇φ| 2 u 2 dx + Br ∇u • ∇(φ 2 u) dx = Br |∇φ| 2 u 2 dx + Br f φ 2 u dx ≤ 9 r 2 Br u 2 dx + Br f 2 dx 1/2 Br u 2 dx 1/2
. Now, there are constants Λ 1 > 0 and

δ 0 > 0 such that if |Ω ∩ B r | ≤ δ 0 |B r | and v ∈ H 1 (B r ) is such that v = 0 on B r \ Ω, then Br v 2 dx ≤ Λ 1 r 2 |Ω ∩ B r | |B r | 2/d Br |∇v| 2 dx. (4.2)
This follows by rescaling of the estimate from Lemma 4.4 applied to the domain D = B 1 . Thus, we obtain,

B r/2 |∇u| 2 dx ≤ 9Λ 1 ε 2/d Br |∇u| 2 dx + Br f 2 dx 1/2 Λ 1 ε 2/d r 2 Br |∇u| 2 dx 1/2 . Dividing by r 2 |B r | we get 1 r 2 |B r | B r/2 |∇u| 2 dx ≤ 9Λ 1 ε 2/d r 2 |B r | Br |∇u| 2 dx + 1 |B r | Br f 2 dx 1/2 Λ 1 ε 2/d r 2 |B r | Br |∇u| 2 dx 1/2 ≤ 9Λ 1 ε 2/d r 2 |B r | Br |∇u| 2 dx + M Λ 1/2 1 ε 1/d 1 r 2 |B r | Br |∇u| 2 dx 1/2 .
Let us indicate by r n and a n the quantities

r n = r 0 2 -n , a n = 1 r 2 n |B rn | Br n |∇u| 2 dx.
Then, for ε small enough we have

a n+1 ≤ 1 2 a n + 1 2 a 1/2 n ,
which gives that a n ≤ sup{1, a 0 }, for every n ≥ 1.

In the next lemma we prove the estimate (4.2), which essentially follows by the argument explained in Example 5.3 of [START_REF] Buttazzo | Velichkov: The spectral drop problem[END_REF], carried out in dimension 2, but which can be adapted to any dimension d ≥ 2. 

| Ω m | (d-1)/d = m (d-1)/d = n -(d-1)/d |B(nm)| (d-1)/d = n -(d-1)/d C d P (B(nm)) = n 1/d C d P ( Ω m ; Dn ),
where C d is a dimensional constant. For every set Ω ⊂ D we now consider the symmetrized set Ω * = Ω m , where m = |Ω|. Thus, we have

P (Ω; D) ≥ C D |Ω| (d-1)/d = C D |Ω * | (d-1)/d = C D n 1/d C d P (Ω * ; D n ).
Fixing n large enough, such that n 1/d C D C d ≥ 1, we get P (Ω; D) ≥ P (Ω * ; D n ). Now, for every non-negative function v ∈ H 1 (D) we define the symmetrized function v * ∈ H 1 ( D n ) obtained through the symmetrization of each level of v, that is {v * > t} = {v > t} * for every t ≥ 0. Then, we have D v 2 dx = Dn |v * | 2 dx, while for the gradient of v we proceed precisely as in [START_REF] Buttazzo | Velichkov: The spectral drop problem[END_REF]Example 5.3] and using the co-area formula we estimate

D |∇v| 2 dx = +∞ 0 {v=t} |∇v| dH d-1 dt ≥ +∞ 0 {v=t} |∇v| -1 dH d-1 -1 H d-1 {v = t} ∩ D 2 dt = +∞ 0 |f (t)| -1 H d-1 {v = t} ∩ D 2 dt ≥ +∞ 0 |f (t)| -1 H d-1 {v * = t} ∩ D n 2 dt = +∞ 0 {v * =t} |∇v * | -1 dH d-1 -1 H d-1 {v * = t} ∩ D n 2 dt = +∞ 0 {v * =t} |∇v * | dH 1 dt = Dn |∇v * | 2 dx,
where

f (t) = |{v > t}| = |{v * > t}|.
Finally, the claim follows by the Faber-Krahn inequality in R d , which gives that there is a dimensional constant C d for which Proof. Suppose by contradiction that this is not the case. Then there is a point x 0 ∈ D such that x 0 is a point of density 0 for Ω and x 0 is a Lebesgue point for f and g with f (x 0 ) > 0 and g(x 0 ) < 0, that is

Dn |v * | 2 dx ≤ 1 λ 1 (B * ) Dn |∇v * | 2 dx = C d n 2/d {v * > 0}
lim r→0 1 |B r | Br(x 0 ) f (x) dx = f (x 0 ) > 0, lim r→0 1 |B r | Br(x 0 ) g(x) dx = g(x 0 ) < 0, lim r→0 |Ω ∩ B r (x 0 )| |B r | = 0.
Let r > 0 be fixed. Consider the functions u, v solutions of the problems

-∆u = f in Ω, u ∈ H 1 0 (Ω), -∆v = f in B r (x 0 ), v = u on ∂B r (x 0 ), set ν = ∆u + f 1 {u>0} and take r > 0 such that ν(∂B r (x 0 )) = 0. The function v -u is a solution of the PDE -∆(v -u) = ν + f 1 Br(x 0 )\Ω in B r (x 0 ), v -u ∈ H 1 0 (B r (x 0 )),
in the sense that for all ψ ∈ H 1 0 (B r (x 0 )) we have

Br(x 0 ) ∇(v -u) • ∇ψ dx = Br(x 0 )\Ω ψf dx + Br(x 0 ) ψ dν .
In particular, by the maximum principle, we have that v -u > 0 on B r (x 0 ). We now show that

∆(v -u) + ν1 Br(x 0 ) + f 1 Br(x 0 )\Ω ≥ 0 in D, (4.3 
) in sense of distributions. Let φ ∈ C ∞ c (D) be a nonnegative function. For every ε > 0, consider the function

p ε (t) =      1 if t ≥ ε, 0 if t ≤ 0, t/ε if 0 ≤ t ≤ ε. Then p ε (v -u)φ ∈ H 1 0 (B r (x 0 )
) and so we have

Br(x 0 ) ∇(v -u) • ∇ p ε (v -u)φ dx = Br(x 0 )\Ω p ε (v -u)φf dx + Br(x 0 ) p ε (v -u)φ dν,
which, by developing the gradient, gives

Br(x 0 ) p ε (v -u)∇(v -u) • ∇φ dx ≤ Br(x 0 )\Ω p ε (v -u)φf dx + Br(x 0 ) p ε (v -u)φ dν.
Passing to the limit as ε → 0, we obtain

Br(x 0 ) ∇(v -u) • ∇φ dx ≤ Br(x 0 )\Ω φf dx + Br(x 0 )
φ dν, which concludes the proof of (4.3). Define now ũ ∈ H 1 0 (D) by

ũ(x) = u(x) if x ∈ D \ B r (x 0 ), v(x) if x ∈ B r (x 0 ).
We aim to show that ∆ũ + f 1 {ũ>0} ≥ 0 on D. In fact, using φ as a test function for ∆ũ + f 1 {ũ>0} we have

D (-∇ũ • ∇φ + f 1 {ũ>0} φ) dx = Ω\Br(x 0 ) (-∇u • ∇φ + f φ) dx + Br(x 0 ) -∇v • ∇φ + f φ dx + Ω∩Br(x 0 ) (-∇u • ∇φ + f φ) dx - Ω∩Br(x 0 ) (-∇u • ∇φ + f φ) dx = Ω (-∇u • ∇φ + f φ) dx + Br(x 0 ) -∇(v -u) • ∇φ + f φ1 Br(x 0 )\Ω dx ≥ D φ dν - Br(x 0 ) φ dν ≥ 0,
which proves the claim. Thus, by Lemma 4.2, we have that there is a capacitary measure μ ∈ M cap (D) such that Ω μ = {ũ > 0} = Ω ∪ B r (x 0 ) and

-∆ũ + μũ = f on D, ũ ∈ H 1 μ(D).
Now, by the optimality of Ω we have that for r > 0 sufficiently small

0 ≤ D gũ dx - D gu dx = Br(x 0 ) g(v -u) dx. (4.4) 
In order to conclude it is now sufficient to study the asymptotic behavior of the integral on the right-hand side as r → 0. Assume for simplicity that x 0 = 0. We consider the functions w and h solutions of the equations

-∆w = f in B r , w ∈ H 1 0 (B r ), ∆h = 0 in B r , h -u ∈ H 1 0 (B r ),
and we set

f r (x) = f (rx), g r (x) = g(rx), w r (x) = 1 r 2 w(rx), h r (x) = 1 r 2 h(rx), u r (x) = 1 r 2 u(rx).
We notice that:

(i) Since x 0 = 0 is a Lebesgue point for both f and g, we have that f r → f (0) and g r → g(0) strongly in L 2 (B 1 ), as r → 0. (ii) The function w r is a solution of the equation

-∆w r = f r in B 1 , w ∈ H 1 0 (B 1 ),
and w r → w 0 strongly in H 1 0 (B 1 ), where

w 0 (x) = f (0) 2d (1 -|x| 2 ) is the solution of -∆w 0 = f (0) in B 1 , w 0 ∈ H 1 0 (B 1 ).
(iii) There is a constant C, not depending on r, such that

B 1 |∇h r | 2 dx ≤ B 1 |∇u r | 2 dx ≤ C. (4.5) 
The first inequality is due to the harmonicity of h r , while the second one is a consequence of Lemma 4.3. Thus, h r -u r 2 H 1 ≤ C and so, up to a subsequence, we may assume that z r = h r -u r converges weakly in H 1 0 (B 1 ) and strongly in L 2 (B 1 ) to some function z 0 ∈ H 1 0 (B 1 ). We now prove that z 0 = 0. In fact, given a function φ ∈ C ∞ c (B 1 ) we have that

B 1 ∇φ • ∇z r dx = - B 1 ∇φ • ∇u r dx ≤ ∇φ L ∞ |{u r = 0} ∩ B 1 | 1/2 B 1 |∇u r | 2 dx 1/2 ≤ C ∇φ L ∞ |Ω ∩ B r | |B r | 1/2
, where the equality is due to the fact that h r is harmonic, the first inequality is by Cauchy-Schwartz, and the last inequality is due to the estimate (4.5). Now since the density of Ω is zero in 0, passing to the limit as r → 0, we obtain

B 1 ∇φ • ∇z 0 dx ≤ 0.
Since φ is arbitrary we obtain that z 0 is harmonic in B 1 and since z 0 = 0 on ∂B 1 we get that z 0 = 0. Thus we conclude that

lim r→0 B 1 |h r -u r | 2 dx = 0.
By the results from (i), (ii) and (iii), we get that

Br g(v -u) dx = r 2-d B 1 g r (w r + h r -u r ) dx = r 2-d B 1 g(x 0 )w 0 (x) dx + o(r) ,
which is strictly negative, for r > 0 sufficiently small, so contradicting (4.4).

Remark 4.6. Since the resolvent operator is self-adjoint, in Theorem 4.5 we may equivalently assume g ≥ 0 and deduce that if |Ω| < 1 then {gf < 0} ⊂ Ω. By a simple change of sign in the data we also have that if f ≤ 0 (or if g ≤ 0) and |Ω| < 1, then {gf < 0} ⊂ Ω. where we removed the measure constraint on Ω. In Proposition 5.4 we prove that the solution of (5.1) is related to the solution of the obstacle problem

min 1 2 D |∇v| 2 dx + D g(x)v(x) dx : v ∈ H 1 0 (D), v ≥ 0 on D . (5.2) 
We first prove the following lemma characterizing the solutions of (5.2). 

satisfies v = sup Ω⊂D v Ω , (5.3) 
where the maximum is over all quasi-open subsets Ω ⊂ D and v Ω is the solution of

∆v Ω = g in Ω, v Ω ∈ H 1 0 (Ω).
(5.4)

Proof. Suppose that Ω ⊂ D is a quasi-open set. It is sufficient to prove that v ≥ v Ω in D.
Indeed, set

J(u) = 1 2 D |∇u| 2 dx + D u(x)g(x) dx ,
and consider the test functions v ∨v Ω and v ∧v Ω . Since v ∨v Ω ≤ 0 in D and v ∧v Ω ∈ H 1 0 (Ω), we have the inequalities

J(v) ≤ J(v ∨ v Ω ) and J(v Ω ) ≤ J(v ∧ v Ω ).
On the other hand, by the definition of J we have

J(v) + J(v Ω ) = J(v ∨ v Ω ) + J(v ∧ v Ω ).
Thus, we obtain

J(v) = J(v ∨ v Ω ) and J(v Ω ) = J(v ∧ v Ω ).
By the uniqueness of the solution of the obstacle problem and of the equation (5.4), we have that v = v ∨ v Ω and v Ω = v ∧ v Ω which concludes the proof. 

v ≥ v Ω . Since f ≥ 0 we have that D R Ω (g)f dx = - D v Ω f dx ≥ - D vf dx = D R {v>0} (g)f dx,
which concludes the proof.

As a corollary we obtain the following result.

Taking the derivative with respect to R we get that

f (R) = ω d d R(R d -2r d 0 ).
Thus, the function f achieves its minimum at 2 Then the Steiner symmetrization u * of u is a solution of the equation

-div (1 + a(u * ))∇u * = 1 in Ω * , u * ∈ H 1 0 (Ω * ), (6.4) 
where a : [0, M ] → R is a nonnegative function.

Proof. We use the notation introduced at the begining of the section. Let f : [0, M ] → R be a given C 1 function such that f (0) = 0. Then f (u * ) ∈ H 1 0 (Ω * ) and we have, by using the coarea formula,

Ω * ∇u * • ∇f (u * ) dx - Ω * f (u * ) dx = Ω * f (u * )|∇u * | 2 dx - Ω f (u) dx = M 0 f (t) ∂Ω * t |∇u * | dH d-1 dt - Ω f (u) dx = - M 0 f (t)a(t) ∂Ω * t |∇u * | dH d-1 dt + M 0 f (t) ∂Ω * t |∇w t | dH d-1 dt - Ω f (u) dx, (6.5) 
where we set

a(t) := ∂Ω * t |∇w t | dH d-1 - ∂Ω * t |∇u * | dH d-1 ∂Ω * t |∇u * | dH d-1
. By the coarea formula the function a is well defined for a.e. t ∈ [0, M ] and, thanks to (6.3), it turns out to be nonnegative. We also notice that the difference of the last two terms in (6.5) vanishes. Indeed, using an integration by parts for w t we get On the other hand, by the co-area formula, the first term in the last line of (6.5) can be rewritten as Thus, by (6.5) we infer

Ω * (1 + a(u * ))∇u * • ∇f (u * ) dx = Ω * f (u * ) dx.
Since the equality is true for every f , with f (0) = 0, we obtain (6.4).

In the next subsection we establish which is the optimal function a on a ball of fixed radius R. Integrating in r we get that u a,R is explicitly given by u a,R (r) = 1 d R r s 1 + a(s) ds.

We consider a radial nondecreasing function g : R d → R such that g(0) < 0 and the associated cost functional F(a, R) given by Since g is nondecreasing and g(0) < 0, we have that the set {g ≤ 0} is an interval of the form [0, R g ] (we set R g = +∞ in the case when g ≤ 0 on R d ). Then we have

F(a, R) = B R g(x)u a,R ( 
F(a, R) ≥ F(0, R) if R ≤ R g , F(a, R) ≥ F(0, R g ) if R > R g . (6.6) 
Indeed, if R ≤ R g , then G ≤ 0 and (6.6) follows since in this case the functional F(a, R) is monotone increasing in a. On the other hand, if R > R g , we have that 
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 5 Unconstrained minimizers and the obstacle problem Let D ⊂ R d be a bounded open set. We say that Ω ⊂ D is an unconstrained minimizer if it is a solution of the optimization problem min Ω R Ω (g)f (x) dx : Ω quasi-open, Ω ⊂ D (5.1)
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 525354 The supremum in (5.3) is realized by the quasi-open set Ω = {v > 0}. By the density of the (smooth) open sets in the family of quasi-open sets we have that v = sup v Ω : Ω open, Ω ⊂ D . Let D ⊂ R d be a bounded open set and let f, g ∈ L 2 (D) with f ≥ 0 on D. Then the unique minimizer of the unconstrained problem (5.1) is the quasi-open set Ω = {v > 0}, where v is the solution of the obstacle problem (5.2). Proof. Let Ω ⊂ D be a quasi-open set. By Lemma 5.1 we have that

  Analogously, since u -t is the solution of -∆(u -t) = 1 on Ω t we get∂Ωt |∇u| dH d-1 = -∂Ωt ∂u ∂n dH d-1 = -Ωt ∆u dx = |Ω t |. Since |Ω t | = |Ω * t | we obtain

  dH d-1 dt = Ω * f (u * )a(u * )|∇u * | 2 dx = Ω * a(u * )∇u * • ∇f (u * ) dx.

6. 2 .

 2 An optimization problem for radially decreasing functions. Let a : [0, R 0 ] → [0, +∞) be a given nonnegative measurable function. Let R ≤ R 0 and u a,R be the solution of the PDE -div (1 + a)∇u = 1 in B R , u ∈ H 1 0 (B R ). Then u a,R = u a,R (r) is radially symmetric and is a solution of the problem -1 r d-1 ∂ r r d-1 (1 + a(r))∂ r u(r) = 1 in (0, R), u(R) = u (0) = 0.
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 1 a(s) ds = F(a, R g ), and (6.6) again follows since F(a, R g ) is monotone increasing in a.Proof of Proposition 6.1. Given a quasi-open set Ω ⊂ R d and a function u solution of (6.2) we consider the ball Ω * of measure Ω and the symmetrized function u * . By the Riesz inequality we have thatΩ g(x)u(x) dx ≥ Ω * g * (x)u * (x) dx.By Lemma 6.4 we get thatΩ * g * (x)u * (x) dx = F a(u * ), R ,where R is the radius of Ω * . Now the inequality (6.6) gives thatF(a(u * ), R) ≥ F(0, R ∧ R g ) ≥ F(0, ω -1/d d ∧ R g ). If B is the ball of radius ω -1/d d ∧ R g , by the definition of F we have that F(0, R ∧ R g ) = B g(x)u B (x) dx,which concludes the proof of Proposition 6.1.

  1/d r 0 , if 2r d 0 ≤ ω * be the ball centered at zero of measure |Ω| and let u * : Ω * → R be the radially decreasing rearrangement of u. We set M = u L ∞ (Ω) and Ω t = {u > t}, for every t ∈ [0, M ]. Then the set Ω * t = {u * > t} is the ball centered at zero of measure |Ω * t | = |Ω t |. On every set Ω * t we consider the function w t solution of the PDE -∆w t = 1 in Ω *

	ω d -1/d	, which gives the claim.	-1/d d	, and at 1, if 2r d 0 ≥
	The rest of the section is dedicated to the proof of Proposition 6.1.	
	6.1. The Schwarz rearrangement of a torsion function. Let Ω ⊂ R d be a bounded
	open or quasi-open set and u ∈ H 1 0 (Ω) be the torsion function of Ω, that is the solution of
		-∆u = 1 in Ω,	u ∈ H 1 0 (Ω).	(6.2)
	Let Ω t ,	w t ∈ H 1 0 (Ω * t ).	
	A well-known result of Talenti [16] gives that		
		u		

* (x) -t ≤ w t (x) for every x ∈ Ω * t and every t ∈ [0, M ].

(6.3) 

In the next lemma we use this comparison to obtain that the function u * is itself a solution of a certain PDE on Ω * . Lemma 6.4. Let Ω ⊂ R d be a bounded quasi-open set and let u be the solution of (6.2).
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regular in the set {g > 0} and |∇v| = 0 on the free boundary ∂Ω ∩ {g > 0}; (iii) under the hypotheses from the previous point, the free boundary ∂Ω ∩ {g > 0} can be decomposed into two disjoint sets Reg (∂Ω) and Sing (∂Ω), where:

• Reg (∂Ω) is an open subset of ∂Ω ∩ {g > 0} and is locally the graph of a C 1,α function, for some

k=0 S k , where each S k is contained in the union of countably many submanifolds of dimension k and class C 1,log (C 1,α in dimension two).

Proof. We first notice that since Ω is such that |Ω| < 1, it is an unconstrained minimizer of (5.1) in the set D = Ω∪B r (x 0 )∩D, for every sufficiently small ball B r (x 0 ). By Proposition 5.4, the function R Ω (-g) is a solution of the obstacle problem (5.2) in D. Thus, all the regularity result for the obstacle problem are valid for v = R Ω (g), in particular the statements (i), (ii) and (iii). For the proof of (i) we refer to [START_REF] Brezis | Stampacchia: Sur la régularité de la solution d'inéquations elliptiques[END_REF]; for (ii) was first proved in [START_REF] Caffarelli | The obstacle problem revisited[END_REF] (see also [START_REF] Kinderlehrer | Regularity in free boundary problems[END_REF] for the higher regularity of the free boundary and [START_REF] Weiss | A homogeneity improvement approach to the obstacle problem[END_REF] for an alternative approach), while for (iii) we refer to the recent papers [START_REF] Colombo | A logarithmic epiperimetric inequality for the obstacle problem[END_REF] and [START_REF] Figalli | On the fine structure of the free boundary for the classical obstacle problem[END_REF].

The case of radially symmetric cost functional

In this section we consider a special class of functionals, where f = 1 and g : R d → R is radially symmetric and nondecreasing on each radius. It is natural to conjecture that in this situation the optimal set is a ball centered at the origin. In the case when g ≤ 0 this follows by a classical symmetrization argument; on the other hand, if g changes sign, the cost functional is nonmonotone and the known symmetrization results fail in the comparison argument of a general domain with a ball of the same measure. In this section we prove the following proposition. Proposition 6.1. Suppose that f = 1 and g : R d → R is a given radially symmetric nondecreasing function such that g(0) < 0. Then, setting

, R g } and centered at the origin, is a solution of the problem

Remark 6.2. The condition g(0) < 0 assures that the solution of (6.1) is nontrivial. Indeed, if g ≥ 0 on R d , then the empty set is a solution as well as every quasi-open subset of {g = 0}.

As a consequence of Proposition 6.1 we obtain the following example. for some radius r 0 > 0. Then the solution Ω opt of the problem (6.1) is unique and is given by the ball of volume min{2|B r 0 |, 1}. Indeed, the solution is a ball B R that contains the set B r 0 = {g < 0}. The energy of the ball B R is given by the formula