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REGULARITY OF THE OPTIMAL SETS FOR SOME SPECTRAL FUNCTIONALS

DARIO MAZZOLENI, SUSANNA TERRACINI, BOZHIDAR VELICHKOV

Abstract. In this paper we study the regularity of the optimal sets for the shape optimization problem

min
{
λ1(Ω) + · · ·+ λk(Ω) : Ω ⊂ Rd open , |Ω| = 1

}
,

where λ1(·), . . . , λk(·) denote the eigenvalues of the Dirichlet Laplacian and | · | the d-dimensional

Lebesgue measure. We prove that the topological boundary of a minimizer Ω∗k is composed of a relatively
open regular part which is locally a graph of a C∞ function and a closed singular part, which is empty

if d < d∗, contains at most a finite number of isolated points if d = d∗ and has Hausdorff dimension

smaller than (d− d∗) if d > d∗, where the natural number d∗ ∈ [5, 7] is the smallest dimension at which
minimizing one-phase free boundaries admit singularities.

To achieve our goal, as an auxiliary result, we shall extend for the first time the known regularity

theory for the one-phase free boundary problem to the vector-valued case.
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1. Introduction

Functionals involving the eigenvalues of the Laplacian are the object of a growing interest in the analysis
of PDEs from Mathematical Physics. Particularly challenging are the links between the spectrum of the
Laplace operator and the geometry of the domain, a typical example being the Weyl asymptotic law. In
this paper we study the regularity properties of the sets Ω that minimize the sum λ1(Ω) + · · ·+ λk(Ω) of
the first k eigenvalues of the Dirichlet Laplacian among all sets of fixed volume. That is, we are interested
in the solutions of the shape optimization problem

min
{
λ1(Ω) + · · ·+ λk(Ω) : Ω ⊂ Rd open , |Ω| = 1

}
, (1.1)

where λ1(Ω) ≤ · · · ≤ λi(Ω) ≤ · · · ≤ λk(Ω), for i = 1, . . . , k, denote the eigenvalues of the Dirichlet
Laplacian on the set Ω counted with the due multiplicity1.

From the point of view of the shape optimization theory, problem (1.1) is a special model case of the
more general spectral optimization problem

min
{
F
(
λ1(Ω), . . . , λk(Ω)

)
: Ω ⊂ Rd, |Ω| = 1

}
, (1.2)

where the cost function is defined through a function F : Rk → R. The optimization problems of the
form (1.2) naturally arise in the study of physical phenomena as, for example, heat diffusion or wave
propagation inside a domain Ω ⊂ Rd, for a detailed introduction to the topic we refer to the books
[7, 24, 23]. The solution of (1.2) is known explicitly only in the special cases F (λ1, . . . , λk) = λ1 and
F (λ1, . . . , λk) = λ2. For more general functionals the existence of a solution in the class of quasi-open
sets2 was first proved by Buttazzo and Dal Maso in [10] for F increasing in each variable and lower
semi-continuous, under the assumption that the candidate sets Ω are all contained in a bounded open
set D ⊂ Rd. This last assumption was later removed by Bucur in [6] and Mazzoleni and Pratelli in [33].

The regularity of the optimal sets and of the corresponding eigenfunctions turns out to be a rather
difficult issue, due to the min-max nature of the spectral cost functionals, and was an open problem since
the general Buttazzo-Dal Maso existence theorem. The only known result prior to the present paper
concerning the regularity of the free boundary of the optimal sets is due to Briançon and Lamboley [5]
who prove that the optimal sets for the problem

min
{
λ1(Ω) : Ω ⊂ D open, |Ω| = 1

}
, (1.3)

in a bounded open set D ⊂ Rd have smooth boundary up to a set of finite (d− 1)-dimensional Hausdorff
measure. Based on the techniques introduced in the seminal paper of Alt and Caffarelli [2], this result
depends strongly on the fact that the first eigenvalue is the minimum of the variational problem

λ1(Ω) = min
{∫

Rd
|∇u|2 dx : u ∈ H1

0 (Ω),

∫
Rd
u2 dx = 1

}
and so the shape optimization problem (1.3) can be written as a one-phase free boundary problem

min
{∫

D

|∇u|2 dx+ Λ|{u > 0}| : u ∈ H1
0 (D),

∫
D

u2 dx = 1
}
,

where the level set {u > 0} corresponds to Ω and Λ is a Lagrange multiplier. The extension of this result
to the general case of functionals involving higher eigenvalues presents some major difficulties since the
higher eigenvalues are variationally characterized through a min-max procedure and thus it is not possible
to reduce the shape optimization problem (1.2) to a one-phase free boundary problem. Nevertheless, some
properties of the optimal sets were deduced in [6], [33], [8] and [9], as for example the fact that they are
bounded, have finite perimeter and Lipschitz continuous eigenfunctions. We summarize the known results
for the functional F

(
λ1(Ω), . . . , λk(Ω)

)
= λ1(Ω) + · · ·+ λk(Ω) in the following theorem.

Theorem 1.1. (i) (Buttazzo-Dal Maso [10]) Given a bounded open set D ⊂ Rd, there is a solution to
the shape optimization problem

min
{
λ1(Ω) + · · ·+ λk(Ω) : Ω ⊂ D quasi-open, |Ω| = 1

}
.

1We recall that on an open set of finite volume the Dirichlet Laplacian has compact resolvent and its spectrum is real

and discrete.
2A quasi-open set is a level set {u > 0} of a Sobolev function u ∈ H1(Rd). In particular, every open set is also quasi-open.
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(ii) (Bucur [6]; Mazzoleni-Pratelli [33]) There is a solution to the shape optimization problem

min
{
λ1(Ω) + · · ·+ λk(Ω) : Ω ⊂ Rd quasi-open, |Ω| = 1

}
. (1.4)

Moreover every solution Ω∗ of (1.4) is bounded.
(iii) (Bucur [6]) Every solution Ω∗ of (1.4) has finite perimeter.
(iv) (Bucur-Mazzoleni-Pratelli-Velichkov [9]) Let Ω∗ be a solution of (1.4). Then the first k normalized

eigenfunctions u1, . . . , uk on Ω∗, extended by zero over Rd \Ω∗, are Lipschitz continuous on Rd and
‖∇ui‖L∞ ≤ Cd,k, for every i = 1, . . . , k, where Cd,k is a constant depending only on k and d. In
particular, every solution of (1.4) is an open set and is also a solution of (1.1).

The aim of this paper is to prove that the boundary of the optimal sets, solutions of (1.1), is regular
up to a set of lower dimension, precisely we prove that Ω∗ is d∗-regular in the sense of the following
definition.

Definition 1.2. We call a set Ω ⊂ Rd d∗-regular if ∂Ω is the disjoint union of a regular part Reg(∂Ω)
and a (possibly empty), singular part Sing(∂Ω) such that:

• Reg(∂Ω) is an open subset of ∂Ω and locally a C∞ hypersurface of codimension one;
• Sing(∂Ω) is a closed subset of ∂Ω and has the following properties:

– If d < d∗, then Sing(∂Ω) is empty,
– If d = d∗, then the singular set Sing(∂Ω) contains at most a finite number of isolated points,
– If d > d∗, then the Hausdorff dimension of Sing(∂Ω) is less than d− d∗.

In our work, d∗ is the smallest dimension at which the free boundaries of the local minima of scalar
the one-phase functional

u 7→
∫
|∇u|2 dx+ |{u > 0}|,

admit singularities. Up to our knowledge d∗ ∈ [5, 7], see [19] and the recent work [26]. The main result
of the paper is the following.

Theorem 1.3. Let the open set Ω∗k ⊂ Rd be an optimal set for problem (1.1). Then Ω∗k is connected and
d∗-regular. Moreover the vector U = (u1, . . . , uk) of the normalized eigenfunctions is such that |U | has a
C1 extension on the regular part of the free boundary and satisfies the optimality condition∣∣∇|U |∣∣ =

√
Λ on Reg(Ω∗k), (1.5)

where the constant Λ is given by Λ =
2

d

k∑
i=1

λi(Ω
∗
k).

Proof of Theorem 1.3. The fact that Ω∗k is connected will be proved in Corollary 4.3. The regular part
of the free boundary will be the object of Proposition 5.14 and of Proposition 5.16, while for the singular
part we refer to Proposition 5.18. The extremality condition (1.5) is a consequence of the optimality
condition in viscosity sense (see Lemma 5.2) and the fact that ∇|U | is well defined on the regular part of
the free boundary. �

In order to prove Theorem 1.3 we first show that the vector of eigenfunctions U = (u1, . . . , uk) is a
local quasi-minimizer of the vector-valued functional

H1(Rd;Rk) 3 V 7→
∫
Rd
|∇V |2 dx+ Λ

∣∣{|V | > 0}
∣∣,

that is, U is a local minimizer of the functional

H1(Rd;Rk) 3 V 7→
(

1 +K‖V − U‖L1

)∫
Rd
|∇V |2 dx+ Λ

∣∣{|V | > 0}
∣∣.

Our proofs mostly rely on the free boundary approach for this shape optimization problem, suitably
modifying many seminal ideas from [34, 2, 39], that we are extending for the first time to the vectorial
case. The intrinsic differences are mainly related with the vectorial nature of the variable U . This causes
a number of new difficulties, starting from the non-degeneracy at the boundary, the classification of conic
blow-ups, the validity and consequences of the extremality condition in a proper sense. We first use
a Weiss-like monotonicity formula to classify the boundary points through a blow-up analysis. Then,
a key point of our argument is to prove an optimality condition (1.5) for |U | on the boundary, which
is fulfilled in a proper viscosity sense. In the scalar case this is a well-established approach, for which
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classical references are [11, 12], which however cannot be easily reproduced in the vectorial case. Next,
in order to reduce our problem to a scalar one, we need to compare the boundary derivatives of the
different components involved in the optimality condition. We first prove that the regular part of the free
boundary is Reifenberg flat, which implies that it is an NTA domain, following the works by Kenig and
Toro [27, 28]. For NTA domains, Jerison and Kenig [25] proved a boundary Harnack inequality, which is
enough for our aims. Then we are able to obtain an optimality condition which involves only u1 on the
regular part of the free boundary and then apply the classical results to obtain C1,α regularity. In order
to get C∞ regularity with a bootstrap argument, we need an improved boundary Harnack principle [20],
which allows us to use the general result by Kinderlehrer and Nirenberg [29] on the one-phase problem
for u1, which otherwise would not work directly in the vectorial setting. Finally, the analysis of the
dimension for the singular set follows as in [39, Section 4] by an adaptation of the classical arguments
from the theory of minimal surfaces.

Further remarks and comments. As a consequence of the regularity theory developed for vector-
valued functions, we obtain an auxiliary regularity result, which better highlights the analogy with the
free boundary problem studied by Alt and Caffarelli [2] and Weiss [39]. We note that the extension to the
vectorial case that we are able to prove still requires one function to have a positive trace (and so to be
positive in the interior). A major open problem, up to our knowledge, is to prove Theorem 1.4 with all
the φi changing sign on ∂D. How to deduce Theorem 1.4 from our arguments is explained in Section 6.

Theorem 1.4. Let D ⊂ Rd be an open set with smooth boundary, Λ > 0, and let φ1, . . . , φk ∈ C0(∂D)
be given functions, with φ1 > 0 on ∂D. Then, there is a solution U = (u1, . . . , uk) ∈ H1(D;Rk) to the
problem

min
{∫

D

|∇U |2 dx+ Λ |{|U | > 0}| , U ∈ H1(D;Rk), ui = φi on ∂D, ∀i = 1, . . . , k
}
. (1.6)

Moreover, for every solution U = (u1, . . . , uk) the set {|U | > 0} is d∗-regular and the optimality condi-
tion (1.5) holds on the regular part of the free boundary.

Remark 1.5. We highlight that in Theorem 1.4 above, the hypothesis φ1 > 0 is not the optimal one. In
fact it is sufficient to suppose that, in each connected component of the open set {|U | > 0}, there is at
least one component ui of the vector U which is positive. This holds for example if all φi are non-negative
(as it is required in [15]).

Our results can be extended to the case of smooth functionals F (λ1, . . . , λk) which are invariant
under permutations of the variables and non-decreasing in each variable. The sum of powers of the first k
eigenvalues for example is of great interest also from the point of view of applications to the Lieb–Thirring
theory, as it is explained by Lieb and Loss in [32, Chapter 12], and it can be considered a more natural
functional to study than the lone λk, when one has in mind, for example, the Lieb–Thirring inequalities.
An extension of Theorem 1.3 to more general functionals of eigenvalues of the form (1.2) (still involving
λ1) can be proved starting from the techniques of this work with some careful approximation procedures
and will be the object of a forthcoming paper.

An alternative approach to the regularity of its solutions would be to see (1.1) as a two-partition prob-
lem of Rd with the Lebesgue measure being the cost functional for one of the two competing populations
and the sum of the eigenvalues the cost functional for the other one. Indeed, functionals involving higher
eigenvalues were successfully treated in the framework of the optimal partition problems, for example in
the recent work [34] (see also [38]), where it is proved the existence of an optimal regular partition, i.e.
with free boundary that is C1,α regular, up to a set of Hausdorff dimension less than d−2. Unfortunately,
some key techniques used for partitions fail when dealing with (1.1). For example, we are not able to
establish an Almgren monotonicity formula, which is one of the principal tools used in [34]. This is due,
mainly, to the measure term, which does not seem to behave well with the quantities involved in the
Almgren quotient.

As it was proved in [6] an optimal set Ω∗k for (1.1) has finite perimeter P (Ω∗k) <∞. This means that
there is a constant P > 0 such that Ω∗k is also a solution to the problem

min
{
λ1(Ω) + · · ·+ λk(Ω) : Ω ⊂ Rd , |Ω| = 1, P (Ω) = P

}
.

Unfortunately, up to our knowledge, there is no way to directly replace the condition P (Ω) = P by
a (non-zero) Lagrange multiplier or to reasonably approximate Ω∗k by optimal sets for the functional
λ1(Ω) + · · ·+ λk(Ω) + ΛP (Ω), for which a regularity theory was developed in [17] (see also [8]).
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Remark 1.6. The study of the optimal sets for the problem (1.1) might suggest a new approach to some
inequalities involving the spectrum of the Dirichlet Laplacian, as the well-known Li-Yau inequality [31],
or to more refined lower bounds on λ1(Ω) + · · · + λk(Ω) in terms of the geometry of Ω, as for example
the ones suggested by the Weyl’s asymptotic expansion.

Plan of the paper. In Section 2 we deal with the quasi-minimality of the eigenfunctions for a more gen-
eral free boundary problem and then we provide some non-degeneracy and density estimates. In Section 3
we prove a monotonicity formula in the spirit of Weiss [39]. In Section 4 we perform the analysis of the
blow-up limits and prove their optimality and 1-homogeneity. Finally, in Section 5 we are ready to prove
the regularity of the free boundary. We study the optimality condition in the viscosity sense, we identify
the regular and singular part of the topological boundary and then we reduce ourselves to a problem with
only one non-negative function and apply the regularity result for the classical Alt-Caffarelli free bound-
ary problem. At the end we provide the estimates on the Hausdorff dimension for the singular part of
the boundary. Section 6 is devoted to highlight how with a similar scheme also Theorem 1.4 can be proved.

Note. After the submission and the upload on arXiv of this paper, we discovered the preprint [15] by
Caffarelli-Shahgholian-Yeressian, which appeared few days before ours. Our Theorem 1.4 is very similar
to their main result, which requires the additional hypothesis that all φi are non-negative. We stress that
the two teams agreed that they worked in a completely independent way.

A recent preprint [30] by Kriventsov-Lin appeared on arXiv few days later than ours. It contains a
result similar to our Theorem 1.3, for a slightly more general class of functionals. We point out that our
result is stronger: whereas we prove C∞ regularity of the free boundary, up to a d − 5 dimensional set,
they prove only C1,α regularity up to a d− 3 dimensional set, with completely different techniques.

Preliminaries and notations. We will denote by d the dimension of the space and by Cd a generic
constant depending only on the dimension. For x = (x1, . . . , xd) ∈ Rd and r > 0 we will denote by Br(x)
the ball centered in x of radius r with respect to the Euclidean distance |y| = (y2

1 + · · · + y2
d)1/2. We

will use the notation Br, when the ball is centered in zero. For a generic measurable set Ω ⊂ Rd, by |Ω|
we denote the Lebesgue measure of Ω, while for the measure of the unit ball B1 ⊂ Rd we will use the
notation ωd. For a point x0 ∈ Rd we recall that the density of the measurable set Ω in x0 is given by

lim
r→0

|Ω ∩Br(x0)|
|Br|

,

whenever the above limit exists. We recall the classical notation

Ω(γ) :=
{
x0 ∈ Rd : lim

r→0

|Ω ∩Br(x0)|
|Br|

= γ
}
,

for the set of point of density γ ∈ [0, 1]. For α > 0 we will denote by Hα the α-dimensional Hausdorff
measure, for example the surface area of the unit sphere is Hd−1(∂B1) = dωd. By dH(A,B) we denote
the Hausdorff distance between the sets A,B ⊂ Rd,

dH(A,B) := max

{
sup
a∈A
{dist(a,B)}; sup

b∈B
{dist(b, A)}

}
,

where for x ∈ Rd and A ⊂ Rd we set dist(x,A) = infy∈A |x− y|.
For an open set Ω ∈ Rd we denote with H1

0 (Ω) the Sobolev space obtained as a closure of the
smooth real-valued functions with compact support C∞c (Ω) with respect to the Sobolev norm ‖u‖H1 =(∫

Ω

|∇u|2 dx+

∫
Ω

u2 dx

)1/2

. For a vector valued function U = (u1, . . . , uk) : Ω → Rk we will say that

U ∈ H1
0 (Ω;Rk) if all of its components are Sobolev, ui ∈ H1

0 (Ω) for every i = 1, . . . , k,. Thus we have

|U |2 = u2
1 + · · ·+ u2

k , |∇U |2 = |∇u1|2 + · · ·+ |∇uk|2 and ‖U‖H1 =

(∫
Ω

|∇U |2 dx+

∫
Ω

|U |2 dx
)1/2

.

If Ω = Rd, then the index zero will be omitted and we will use the usual notations H1(Rd) and H1(Rd;Rk),
for the vector-valued functions. Moreover, we will suppose that all the Sobolev functions u ∈ H1

0 (Ω) and
U ∈ H1

0 (Ω;Rk) are extended by zero outside Ω. Thus H1
0 (Ω;Rk) ⊂ H1(Rd;Rk).

Let Ω ⊂ Rd be an open set of finite Lebesgue measure |Ω| < ∞. The spectrum σ(Ω) of the Dirichlet
Laplacian on Ω is given by an increasing sequence λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) ≤ . . . , of strictly
positive, non-necessarily distinct real numbers. We call the elements of σ(Ω) eigenvalues and we count
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them with the due multiplicity. A real number λ is an eigenvalue if there exists a non-trivial function
u ∈ H1

0 (Ω) (an eigenfunction) solution of the equation

−∆u = λu in Ω , u ∈ H1
0 (Ω) ,

∫
Ω

u2 dx = 1.

We will denote by uk the eigenfunction corresponding to the eigenvalue λk(Ω). The family of eigenfunc-
tions {uk}k∈N form a (complete) orthonormal system in L2(Ω), that is,∫

Ω

uiuj dx = δij :=

{
1, if i = j,

0, if i 6= j.

The supremum of an eigenfunction on a set Ω can be estimated by a power of the corresponding eigenvalue
independently on the regularity and the geometry of Ω. The following estimate was proved in [16, Example
2.1.8]

‖uk‖L∞(Rd) ≤ e1/8πλk(Ω)d/4.

First of all we use capital letters for denoting vectors of functions like U = (u1, . . . , uk) and we denote by
ΩU :=

{
x ∈ Rd : |U(x)| > 0

}
.

The eigenvalues of the Dirichlet Laplacian on Ω can be variationally characterized by the following
min-max principle

λk(Ω) = inf
Sk⊂H1

0 (Ω)
sup
Sk\{0}

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

,

where the infimum is over all k-dimensional linear subspaces Sk of H1
0 (Ω). Thus, for λ1(Ω) we have

λ1(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

.

A similar variational formulation, involving vector-valued functions, holds for the sum of the first k
eigenvalues (see for example [32] or [34])

k∑
i=1

λi(Ω) = min
{∫

Ω

|∇U |2 dx : U = (u1, . . . , uk) ∈ H1
0 (Ω;Rk),

∫
Ω

uiuj dx = δij

}
, (1.7)

the minimum being attained for the vector U whose components are the first k normalized eigenfunctions
on Ω.

Viewed as a a functional over the family of open sets, λk(·) is decreasing with respect to the set
inclusion and is homogeneous of order −2, i.e. we have that for any t > 0

λk(tΩ) =
1

t2
λk(Ω) and

k∑
i=1

λi(tΩ) =
1

t2

k∑
i=1

λi(Ω), (1.8)

where, as usual, we denote by tΩ the set tΩ := {x ∈ Rd :
x

t
∈ Ω}.

2. Properties of the eigenfunctions on the optimal sets

In this section we study the normalized eigenfunctions on an optimal set for problem (1.1). We will
denote by Ω a solution of (1.1) and by U the corresponding vector of normalized eigenfunctions on Ω,

U = (u1, . . . , uk). We also set Λ :=
2

d

k∑
i=1

λi(Ω).

In subsection 2.1 we will show that U is a local quasi-minimizer of a variational problem in the sense
of the following proposition.

Proposition 2.1 (Minimality of U). Suppose that the set Ω ⊂ Rd is a solution to the shape optimization
problem (1.1). Then the vector U = (u1, . . . , uk) ∈ H1

0 (Ω;Rk) of normalized eigenfunctions on Ω satisfies
the following quasi-minimality condition:

There are constants K > 0 and ε > 0 such that∫
Rd
|∇U |2 dx+ Λ

∣∣{|U | > 0}
∣∣ ≤ (1 +K‖U − Ũ‖L1

)∫
Rd
|∇Ũ |2 dx+ Λ

∣∣{|Ũ | > 0}
∣∣,

for every Ũ ∈ H1(Rd;Rk) such that ‖Ũ‖L∞ ≤ ε−1 and ‖U − Ũ‖L1 ≤ ε.

(2.1)
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In subsection 2.2 we will use Proposition 2.1 to show that the vector of the eigenfunctions on the
optimal set does not degenerate at the free boundary. The following proposition describes the behavior
of the eigenfunctions close to the boundary. We notice that the first claim is simply a restatement of
Theorem 1.1 (iv).

Proposition 2.2 (Boundary behavior of the eigenfunctions). Let Ω be optimal for (1.1) and let U =
(u1, . . . , uk) ∈ H1

0 (Ω;Rk) be the vector of the first k normalized eigenfunctions on Ω.

(1) The vector-valued function U : Rd → Rk is Lipschitz continuous on Rd.
(2) The real-valued function |U | is non-degenerate, i.e. there are constants c0 > 0 and r0 > 0 such

that for every x0 ∈ Rd and r ∈ (0, r0] the following implication holds(
−
∫
Br(x0)

|U | dx < c0r
)
⇒
(
U ≡ 0 in Br/2(x0)

)
.

(3) The first eigenfunction u1 is non-degenerate, i.e. there are constants c0 > 0 and r0 > 0 such that
for every x0 ∈ Rd and r ∈ (0, r0] the following implication holds(

−
∫
Br(x0)

u1 dx < c0r
)
⇒
(
u1 ≡ 0 in Br/2(x0)

)
.

As a corollary of Proposition 2.2 we obtain that the optimal sets for (1.1) satisfy a density estimate.

Corollary 2.3 (Density estimate). Let Ω be optimal for (1.1). Then Ω = {|U | > 0} and there are
constants ε0, r0 and δ such that:

(1) The following density estimate holds:

ε0|Br| ≤
∣∣Ω ∩Br(x0)

∣∣ ≤ (1− ε0)|Br|, for every x0 ∈ ∂Ω and r ≤ r0.

(2) For every x0 ∈ ∂Ω and r ≤ r0 there is a point x1 ∈ ∂Br/2(x0) such that Bδr(x1) ⊂ Ω.

2.1. Quasi-minimality of the eigenfunctions. In this subsection we prove that the vector of eigen-
functions U ∈ H1

0 (Ω;Rk) on the optimal set Ω for (1.1) is a local minimum of a functional of the form

FK : H1(Rd;Rk)→ R , FK(V ) =
(

1 +K‖U − V ‖L1

)∫
Rd
|∇V |2 dx+ Λ

∣∣{|V | > 0}
∣∣,

that can alternatively be interpreted as a local quasi-minimum of the functional

F0(V ) =

∫
Rd
|∇V |2 dx+ Λ

∣∣{|V | > 0}
∣∣.

We first prove the following Lemma which assures the existence of the Lagrange multiplier for (1.1).

Lemma 2.4. Suppose that Ω is a solution of (1.1). Then Ω is a solution of the shape optimization
problem

min
{
λ1(Ω̃) + · · ·+ λk(Ω̃) + Λ|Ω̃| : Ω̃ ⊂ Rd open

}
,

where Λ =
2

d

k∑
i=1

λi(Ω).

Proof. Let Ω̃ ⊂ Rd be a generic open subset of Rd of finite Lebesgue measure. By the optimality of Ω
and the homogeneity of the eigenvalues (1.8) we have that

k∑
i=1

λi(Ω̃) ≥
k∑
i=1

λi(tΩ) =
1

t2

k∑
i=1

λi(Ω),

where t is such that |tΩ| = td|Ω| = |Ω̃|. Thus, we have

k∑
i=1

λi(Ω̃) + Λ|Ω̃| ≥ 1

t2

k∑
i=1

λi(Ω) + tdΛ|Ω| ≥
k∑
i=1

λi(Ω) + Λ|Ω|,

where the last inequality is due to the fact that the function

t 7→ 1

t2

k∑
i=1

λi(Ω) + tdΛ|Ω|,

achieves its maximum at t = 1. �
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In view of the variational characterization (1.7) of the sum of the first k eigenvalues and Lemma 2.4
we have that U is a solution of the problem

min
{∫

Rd
|∇V |2 dx+ Λ|{|V | > 0}| : V = (v1, . . . , vk) ∈ H1(Rd;Rk),

∫
Rd
vivj dx = δij

}
. (2.2)

In the following lemma we remove the orthogonality constraint

∫
Rd
vivj dx = δij .

Lemma 2.5 (Orthonormalization of small perturbations). Let U = (u1, . . . , uk), where u1, . . . , uk are

eigenfunctions on an open domain Ω. Let δ > 0 be fixed, and let Ũ = (ũ1, . . . , ũk) ∈ H1(Rd;Rk) be such
that

εk :=

k∑
i=1

∫
Br

|ũi − ui| dx ≤ 1 and sup
i=1,...,k

{
‖ui‖L∞(Br) + ‖ũi‖L∞(Br)

}
≤ δ.

Let V = (v1, . . . , vk) ∈ H1
0 (Ω ∪ Br) be the vector obtained orthonormalizing Ũ by the Gram-Schmidt

procedure, i.e.

v1 = ‖ũ1‖−1
L2 ũ1,

v2 =
∥∥∥ũ2 −

( ∫
ũ2v1 dx

)
v1

∥∥∥−1

L2

(
ũ2 −

( ∫
ũ2v1 dx

)
v1

)
,

v3 =
∥∥∥ũ3 −

( ∫
ũ3v2 dx

)
v2 −

( ∫
ũ2v1 dx

)
v1

∥∥∥−1

L2

(
ũ3 −

( ∫
ũ3v2 dx

)
v2 −

( ∫
ũ2v1 dx

)
v1

)
,

...

vk =
∥∥∥ũk −∑k−1

i=1

( ∫
ũkvi dx

)
vi

∥∥∥−1

L2

(
ũk −

∑k−1
i=1

( ∫
ũkvi dx

)
vi

)
.

There exist constants 1 ≥ εk > 0 and Ck > 0, depending on the dimension d, the constant k, the bound
δ and the measure |Ω|, such that the following estimate holds for every Ũ as above with εk ≤ εk.∫

Rd
|∇V |2 dx ≤

(
1 + Ckεk

)∫
Rd
|∇Ũ |2 dx. (2.3)

Proof. We first prove that there is εk and Ck such that the following estimates hold whenever εk ≤ εk.

k∑
i=1

‖ui − vi‖L1 ≤ Ckεk,

max
i=1,...,k

‖vi‖L∞ ≤ Ck,

where Ck and εk are constants depending on the dimension d, the constant k, the bound δ and the
measure |Ω|. We proceed by induction. In fact for k = 1 we have

‖u1 − v1‖L1 ≤ ‖u1 − ũ1‖L1 + ‖ũ1 − v1‖L1 = ‖u1 − ũ1‖L1 +

∣∣‖ũ1‖L2 − 1
∣∣

‖ũ1‖L2

‖ũ1‖L1

≤ ‖u1 − ũ1‖L1 +

∣∣‖ũ1‖2L2 − 1
∣∣

‖ũ1‖2L2

‖ũ1‖L1

= ‖u1 − ũ1‖L1 +

∣∣‖u1 + (ũ1 − u1)‖2L2 − 1
∣∣

‖u1 + (ũ1 − u1)‖2L2

‖u1 + (ũ1 − u1)‖L1

= ‖u1 − ũ1‖L1 +
2
∫
u1|ũ1 − u1| dx+ ‖ũ1 − u1‖2L2

1− 2
∫
u1|ũ1 − u1| dx

(
‖u1‖L1 + ‖ũ1 − u1‖L1

)
=

1 + ‖ũ1 − u1‖2L2

1− 2
∫
u1|ũ1 − u1| dx

‖u1 − ũ1‖L1 +
2
∫
u1|ũ1 − u1| dx+ ‖ũ1 − u1‖2L2

1− 2
∫
u1|ũ1 − u1| dx

‖u1‖L1

≤
1 + ‖ũ1 − u1‖L1‖ũ1 − u1‖L∞ + ‖u1‖L1

(
2‖u1‖L∞ + ‖ũ1 − u1‖L∞

)
1− 2‖u1‖L∞‖ũ1 − u1‖L1

‖u1 − ũ1‖L1

≤ 1 + δε1 + |Ω|1/24δ

1− 2δε1
ε1 ≤

(
1 + 12δ|Ω|1/2

)
ε1,

(2.4)
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where the last inequality holds for ε1 ≤ inf
{
δ, (4δ)−1, |Ω|1/2

}
. On the other hand, for the infinity norm

we have

‖v1‖L∞ =
‖ũ1‖L∞
‖ũ1‖L2

=
‖ũ1‖L∞

‖u1 + (ũ1 − u1)‖L2

≤ ‖ũ1‖L∞(
1− 2

∫
u1|ũ1 − u1| dx

)1/2
≤ ‖ũ1‖L∞

1− 2
∫
u1|ũ1 − u1| dx

≤ ‖ũ1‖L∞
1− 2‖u1‖L∞‖ũ1 − u1‖L1

≤ δ

1− 2δε1
≤ 2δ,

(2.5)

for ε1 as above. Suppose now that the claim holds for 1, . . . , k − 1. In order to prove the estimate for vk
we first estimate the L1 distance from uk to the orthogonalized function

wk :=

{
ũ1, if k = 1,

ũk −
∑k−1
i=1

( ∫
ũkvi dx

)
vi, if k > 1.

We first estimate ‖uk − wk‖L1 , that gives:

‖uk − wk‖L1 ≤ ‖uk − ũk‖L1 +

k−1∑
i=1

∣∣∣∣∫ ũkvi dx

∣∣∣∣ (‖ui‖L1 + ‖vi − ui‖L1)

≤ εk +

k−1∑
i=1

∣∣∣∣∫ ũkvi dx

∣∣∣∣ (|Ω|1/2 + εk−1

)
≤ εk +

k−1∑
i=1

∣∣∣∣∫ (ũk − uk)ui + (vi − ui)uk + (ũk − uk)(vi − ui) dx
∣∣∣∣ (|Ω|1/2 + εk−1

)
≤ εk +

k−1∑
i=1

(‖ũk − uk‖L1‖ui‖L∞ + ‖vi − ui‖L1‖uk‖L∞ + ‖ũk − uk‖L1‖vi − ui‖L∞)
(
|Ω|1/2 + εk−1

)
≤ εk +

(
(k − 1)εkδ + Ck−1εk−1δ + (k − 1)εkCk−1

)(
|Ω|1/2 + εk−1

)
≤
[
1 +

(
|Ω|1/2 + εk−1

)(
(k − 1)δ + Ck−1δ + (k − 1)Ck−1δ

)]
εk.

(2.6)

Then we deal with ‖wk‖L∞ :

‖wk‖L∞ ≤ ‖ũk‖L∞ +

k−1∑
i=1

∣∣∣∣∫ ũkvi dx

∣∣∣∣ ‖vi‖L∞
≤ δ + Ck−1

k−1∑
i=1

∣∣∣∣∫ (ũk − uk)ui + (vi − ui)uk + (ũk − uk)(vi − ui) dx
∣∣∣∣

≤ δ + Ck−1

(
(k − 1)δ + Ck−1δ + (k − 1)Ck−1δ

)
εk

≤ δ
(

1 + Ck−1

(
(k − 1) + Ck−1 + (k − 1)Ck−1

))
.

(2.7)

We set for simplicity C̃k to be the largest of the constants appearing on the right hand side of (2.6) and
(2.7). Thus we have

‖uk − wk‖L1 ≤ C̃kεk and ‖wk‖L∞ ≤ C̃k.

Recalling that vk = ‖wk‖−1
L2wk we have∣∣ ‖wk‖L2 − 1

∣∣ ≤ ∣∣ ‖wk‖2L2 − 1
∣∣ =

∣∣ ‖uk + (wk − uk)‖2L2 − 1
∣∣

=

∣∣∣∣2 ∫
Rd
uk(uk − wk) dx+

∫
Rd

(uk − wk)2 dx

∣∣∣∣
≤ 2‖uk‖L∞‖uk − wk‖L1 + ‖uk − wk‖L∞‖uk − wk‖L1

≤ 2δC̃kεk + (δ + C̃k)C̃kεk.

(2.8)
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We ask then that εk ≤ εk := 1
2

(
2δC̃k + (δ + C̃k)C̃k

)−1

. Thus, 1/2 ≤ ‖wk‖L2 ≤ 3/2 and we have the

estimate

‖vk‖L∞ = ‖wk‖−1
L2 ‖wk‖L∞ ≤ 2C̃k.

On the other hand, repeating precisely the same procedure as in (2.4) we obtain

‖uk − vk‖L1 ≤ ‖uk − wk‖L1 + ‖wk − vk‖L1 ≤ C̃kεk +

∣∣ ‖wk‖2L2 − 1
∣∣

‖wk‖2L2

‖wk‖L1

= C̃kεk +

∣∣ ‖uk + (wk − uk)‖2L2 − 1
∣∣

‖uk + (wk − uk)‖2L2

‖uk + (wk − uk)‖L1

≤
(
1 + 12C̃k|Ω|1/2

)
C̃kεk,

for εk ≤ εk , where εk > 0 is small enough and depends on C̃k, δ and |Ω|. We conclude the recursive step
and the proof of the claim by defining

Ck := 2
(
1 + 12C̃k|Ω|1/2

)
C̃k.

We are now in position to prove (2.3) by induction. For k = 1 we repeat the estimate from (2.5) and
we get

‖∇v1‖L2 =
‖∇ũ1‖L2

‖ũ1‖L2

≤ ‖∇ũ1‖L2

1− 2‖u1‖L∞‖u1 − ũ1‖L1

≤ (1 + 4δε1)‖∇ũ1‖L2 ,

For k > 1, by (2.8) we obtain

‖∇vk‖L2 =
‖∇wk‖L2

‖wk‖L2

≤ 1

1−
∣∣‖wk‖L2 − 1

∣∣
∥∥∥∥∥∇ũk −

k−1∑
i=1

(∫
ũkvi dx

)
∇vi

)∥∥∥∥∥
L2

=
(

1 + 2
(
2δC̃k + (δ + C̃k)C̃k

)
εk

)(
‖∇ũk‖L2 +

k−1∑
i=1

∣∣∣ ∫ ũkvi dx
∣∣∣‖∇vi‖L2

)
,

Using one more time the estimate

k−1∑
i=1

∣∣∣ ∫ ũkvi dx
∣∣∣ ≤ ((k − 1)δ + Ck−1δ + (k − 1)Ck−1δ

)
εk,

from (2.6), and the inductive hypothesis we obtain the claim. �

Proof of Proposition 2.1. Let Ũ ∈ H1(Rd;Rk) be a vector-valued function satisfying the assumptions
of Proposition 2.1 and let V = (v1, . . . , vk) ∈ H1(Rd;Rk) be the function obtained through the orthonor-

malization procedure in Lemma 2.5 starting from Ũ . By Lemma 2.4 we have that U is a solution of (2.2)
and since we

∫
vivj dx = δij we can use V as a test function in (2.2) obtaining∫

Rd
|∇U |2 dx+ Λ|{|U | > 0}| ≤

∫
Rd
|∇V |2 dx+ Λ|{|V | > 0}|

≤
(

1 + Ck‖U − Ũ‖L1

)∫
Rd
|∇Ũ |2 dx+ Λ|{|Ũ | > 0}|,

where the last inequality follows by Lemma 2.5 and the fact that by the construction of V we have that

{|V | > 0} ⊂ {|Ũ | > 0}. �

2.2. Non-degeneracy of the eigenfunctions. The following Lemma will be applied to the case when
U is the vector of eigenfunctions on an optimal set, but it holds for functions U = (u1, . . . , uk) satisfying
the quasi-optimality condition (2.1) or, more generally, to functions satisfying the following condition (2.9)
which are roughly speaking subsolutions of (2.1) since they are minimal only with respect to perturbations

Ũ such that |Ũ | ≤ |U |.
There are constants K > 0 and ε > 0 such that∫

Rd
|∇U |2 dx+ Λ

∣∣{|U | > 0}
∣∣ ≤ (1 +K‖U − Ũ‖L1

)∫
Rd
|∇Ũ |2 dx+ Λ

∣∣{|Ũ | > 0}
∣∣,

for every Ũ ∈ H1(Rd;Rk) such that |Ũ | ≤ |U | and ‖U − Ũ‖L1 ≤ ε.

(2.9)
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Lemma 2.6 (Non-degeneracy of U). Let U = (u1, . . . , uk) ∈ H1(Rd;Rk) be a function satisfying the
quasi-optimality condition (2.9). There are contants c0 > 0 and r0 > 0, depending on d, K, Λ, ε and
‖∇U‖L2(Rd;Rk), such that for every x0 ∈ Rd and r ∈ (0, r0] the following implication holds(

‖U‖L∞(B2r) < c0r
)
⇒
(
U ≡ 0 in Br(x0)

)
.

Proof. Suppose for simplicity x0 = 0. Let r > 0 be such that r ≤ r0 and ‖U‖L∞(B2r) ≤ c0r with c0 and
r0 that will be chosen later in (2.10) and (2.13).

Consider the radial functions

ψ : B2 \B1 → R and φ : B2 \B1 → R,

solutions of the PDEs

∆ψ = 0 in B2 \B1, ψ = 0 on ∂B1, ψ = 1 on ∂B2,

−∆φ = 1 in B2 \B1, φ = 0 on ∂B1, φ = 0 on ∂B2.

We set α = c0r > 0, while β > 0 will be chosen in (2.11) and will also depend on r > 0. We consider the
function

η(x) = αψ(x/r) + βr2φ(x/r),

solution of the boundary value problem

−∆η = β in B2r \Br, η = 0 on ∂Br, η = α on ∂B2r,

and we notice that we have the estimate

|∇η| ≤ Cd
(
βr +

α

r

)
≤ Cd (βr0 + c0) on ∂Br.

Consider the test function

Ũ = (ũ1, . . . , ũk) : Rd → Rk,
defined by

ũi =

{
u+
i ∧ η − (u−i ∧ η) in B2r,

ui in Rd \B2r.

We first choose r0 and c0 such that

ωd 2d rd+1
0 c0 ≤ ε, (2.10)

in such a way that ‖U‖L1(B2r0
) ≤ ε and we define ε(2r) as

ε(2r) =

k∑
i=1

∫
Rd
|ui − ũi| dx =

k∑
i=1

∫
B2r

(
(u+
i − η)+ + (u−i − η)+

)
dx.

By (2.10) we have ε(2r) ≤ ε(2r0) ≤ ε and so the optimality of U gives∫
Rd
|∇U |2 dx+ Λ|{|U | > 0}| ≤ (1 +Kε(2r))

∫
Rd
|∇Ũ |2 dx+ Λ|{|Ũ | > 0}|.

Since U = Ũ on Rd \B2r we have∫
Br

|∇U |2 dx+ Λ|{|U | > 0} ∩Br| ≤
∫
B2r\Br

(
|∇Ũ |2 − |∇U |2

)
dx+Kε(2r)

∫
Rd
|∇Ũ |2 dx

= (1 +Kε(2r))

∫
B2r\Br

(
|∇Ũ |2 − |∇U |2) dx+Kε(2r)

∫
Rd
|∇U |2 dx

= (1 +Kε(2r))

∫
B2r\Br

(
− |∇(Ũ − U)|2 + 2∇Ũ · ∇(Ũ − U)

)
dx

+Kε(2r)

∫
Rd
|∇U |2 dx

≤ 2(1 +Kε(2r))

∫
B2r\Br

∇Ũ · ∇(Ũ − U) dx+Kε(2r)

∫
Rd
|∇U |2 dx.
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We now estimate the first term in the right-hand side∫
B2r\Br

∇Ũ · ∇(Ũ − U) dx =

k∑
i=1

(∫
B2r\Br

∇ũ+
i · ∇(ũ+

i − u
+
i ) dx+

∫
B2r\Br

∇ũ−i · ∇(ũ−i − u
−
i ) dx

)
= −

k∑
i=1

(∫
B2r\Br

∇η · ∇(u+
i − η)+ dx+

∫
B2r\Br

∇η · ∇(u−i − η)+ dx
)

= −
k∑
i=1

(∫
B2r\Br

β(u+
i − η)+ dx+

∫
B2r\Br

β(u−i − η)+ dx
)

+ Cd

(
βr +

α

r

) k∑
i=1

∫
∂Br

|ui| dHd−1.

We now choose

β =
K

2(1 +Kε(2r))

∫
Rd
|∇U |2 dx, (2.11)

and we set

E(U,Br) =

∫
Br

|∇U |2 dx+ Λ|{U 6= 0} ∩Br|.

Thus, we obtain the inequality

E(U,Br) ≤ −2(1 +Kε(2r))

k∑
i=1

(∫
B2r\Br

β(u+
i − η)+ dx+

∫
B2r\Br

β(u−i − η)+ dx
)

+ Cd

(
βr +

α

r

) k∑
i=1

∫
∂Br

|ui| dHd−1 +Kε(2r)

∫
Rd
|∇U |2 dx

≤ Cd
(
βr +

α

r

) k∑
i=1

∫
∂Br

|ui| dHd−1 +K‖∇U‖2L2(Rd;Rk)

k∑
i=1

∫
Br

|ui| dx,

(2.12)

since, thanks to the choice of β > 0 and the fact that η = 0 in Br, we have

ε(2r)−
∑
i

(∫
B2r\Br

(u+
i − η)+ dx+

∫
B2r\Br

(u−i − η)+ dx
)

=

k∑
i=1

∫
Br

|ui| dx.

We now aim to estimate the term in the right hand side of (2.12) by E(U,Br). By the W 1,1 trace
inequality in Br we have∫

∂Br

|ui| dHd−1 ≤ Cd
(∫

Br

|∇ui| dx+
1

r

∫
Br

|ui| dx
)

≤ Cd
(1

2

∫
Br

|∇ui|2 dx+
1

2
|{|ui| > 0} ∩Br|

)
+
Cd
r
c0r|{|ui| > 0} ∩Br|

≤ Cd (1 + c0) max {1, 1/Λ}E(U,Br).

Summing the above inequality for i = 1, . . . , k we get

k∑
i=1

∫
∂Br

|ui| dHd−1 ≤ k Cd (1 + c0) max {1, 1/Λ}E(U,Br) =: Ck,d,Λ,c0 E(U,Br).

Since the above inequality holds also for every s ∈ (0, r] we get

k∑
i=1

∫
Br

|ui| dx =

k∑
i=1

∫ r

0

ds

∫
∂Bs

|ui| dHd−1 ≤ Ck,d,Λ,c0
∫ r

0

dsE(U,Bs) ≤ r Ck,d,Λ,c0 E(U,Br).

We can finally estimate the right hand side of (2.12) obtaining

E(U,Br) ≤ Ck,d,Λ,c0
(
βr +

α

r
+ rK‖∇U‖2L2(Rd;Rk)

)
E(U,Br)

≤ Ck,d,Λ,c0
(

2K‖∇U‖2L2(Rd;Rk)r0 + c0

)
E(U,Br).
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Choosing r0 and c0 such that

k Cd (1 + c0) max {1, 1/Λ}
(

2K‖∇U‖2L2(Rd;Rk)r0 + c0

)
< 1, (2.13)

for a dimensional constant Cd > 0, we get that E(U,Br) = 0 and so we obtain the claim. �

Remark 2.7 (Subharmonicity of |U |). Let Ω ⊂ Rd be an open set of finite measure and u1, . . . , uk be
the first k normalized eigenfunctions on Ω. Then the function |U | = |(u1, . . . , uk)| satisfies, weakly in
H1(Rd), the inequality

∆|U |+ λk(Ω)|U | ≥ 0 in Rd, |U | ∈ H1
0 (Ω).

In fact, on the set ω := {|U | > 0}, |U | satisfies the inequality

∆|U | =
∑
j

[
uj∆uj
|U |

+
|∇uj |2

|U |
− uj∇uj · ∇|U |

|U |2

]
= − 1

|U |
∑
j

λj(Ω)u2
j +

1

|U |3
∑
i,j

(
u2
i |∇uj |2 − uiuj∇ui · ∇uj

)
≥ −λk(Ω)|U |,

while the result on the entire space follows from the fact that |U | is positive.

Remark 2.8 (Equivalent definitions of non-degeneracy). Suppose that u ∈ H1(BR) is such that:

(1) u ≥ 0 and ∆u+ 1 ≥ 0 weakly in H1
0 (BR).

(2) There are constants c0 and r0 such that for all r ≤ r0,(
‖u‖L∞(B2r) ≤ c0r

)
⇒
(
u ≡ 0 in Br

)
.

Then there are constants r1 and c1, depending only on the dimension d and the constants c0 and r0, such
that the following implication hold for every r ≤ r1:(

−
∫
Br

u dx ≤ c1r
)
⇒
(
u ≡ 0 in Br/4

)
,(

−
∫
∂Br

u dHd−1 ≤ c1r
)
⇒
(
u ≡ 0 in Br/4

)
.

2.3. Density estimate and non-degeneracy of the first eigenfunction. First of all we prove a
non-degeneracy result for the gradient, which will lead to a non-degeneracy for u1.

Lemma 2.9 (Non-degeneracy of |∇U |). Let Ω be an optimal set for problem (1.1) and let U = (u1, . . . , uk)
be the vector of the first k normalized eigenfunctions. Then there are constants c > 0 and r > 0 such that∣∣∇U ∣∣2 =

k∑
j=1

|∇uj |2 ≥ c on the set Sr :=
{
x ∈ Ω : dist(x, ∂Ω) ≤ r

}
. (2.14)

Proof. The key point of our proof is that there are constants c > 0 and r > 0 such that

c ≤ −
∫
Bρ(x0)

∣∣∇U ∣∣2 dx, where ρ = dist(x0, ∂Ω) ≤ r. (2.15)

We prove this starting from the non-degeneracy of U , which implies (applying an Hölder inequality) that
for all r ≤ r0 and for some constant c, ∫

Br∩Ω

|U |2 ≥ crd+2.

For all j = 1, . . . , k we consider u±j and we call h±j their harmonic extension of u±j in Br. For all
j = 1, . . . , k, we can deduce, using also the Poincaré inequality,

c

r2

∫
Br∩Ω

(u±j )2 dx ≤ c

r2

∫
Br

(u±j − h
±
j )2 dx ≤

∫
Br

|∇(u±j − h
±
j )|2 dx

=

∫
Br

|∇u±j |
2 − |∇h±j |

2 dx ≤
∫
Br

|∇u±j |
2 dx,

for some constant c. Then summing up over j and using the non-degeneracy of U , we obtain∫
Br

|∇U |2 =

k∑
j=1

∫
Br

|∇u+
j |

2 + |∇u−j |
2 ≥ c1

r2

∫
Br∩Ω

|U |2 ≥ c2rd,
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for some constants c1, c2. This easily implies the claim (2.15).

Then, for every x0 ∈ Sr there is j ∈ {1, . . . , k} and e ∈ {e1, . . . , ed} such that c0 ≤ −
∫
Bρ(x0)

∇euj dx.

On the other hand, on the ball Bρ(x0) ⊂ Ω, the function v = ∇euj satisfies the equation −∆v = λj(Ω)v
and so we have

|∆v| ≤ λk(Ω)L,

where L denotes the Lipschitz constant of U . Thus, by the subharmonicity of v(x) + |x− x0|2λk(Ω)L we
have

|∇uj | ≥ ∇euj ≥ −
∫
Bρ(x0)

∇euj dx− ρ2λk(Ω)L ≥ c0 − r2
0λk(Ω)L,

which concludes the proof. �

It is important to highlight that, until now, we needed as hypothesis on U only a quasi-minimality
condition (2.1) and no sign assumption on the ui was involved. On the other hand, in the next lemmas,
it will become essential that the first component u1 of the vector U is positive.

Lemma 2.10 (Non-degeneracy of u1). Suppose that Ω is a connected optimal set for problem (1.1). Then
there is a constant C > 0 such that Cu1 ≥ |U | on Ω.

Proof. Let r and c be as in (2.14). Consider the function v = |U |+ |U |2/2. On the strip Sr we have

∆v = ∆|U |+
k∑
j=1

(|∇uj |2 + uj∆uj) ≥ c0 − λk(Ω)(|U |+ |U |2).

Since |U | is continuous and 0 on ∂Ω we have that there is r > 0 such that v is subharmonic on the strip
Sr.

Let Ωr = {x ∈ Ω : dist(x, ∂Ω) ≥ r}. Since Ω is connected we have that infx∈Ωr u1 > 0 and so there
is M > 0 such that Mu1 ≥ v on Ωr. On the other hand u1 is superharmonic on Sr which gives that
Mu1 ≥ v ≥ |U | on the entire domain Ω. �

The last lemma of this Section provides a density estimate for the optimal set ΩU . We remark that,
in order to obtain the upper bound on the density, it is fundamental to know that u1 is non-negative
and non-degenerate: without this assumption we are not able to prove such a claim. Here is the main
difficulty if one wants to prove an extension of the Alt-Caffarelli result to the vectorial case in the general
setting.

Lemma 2.11 (Density estimate for ΩU ). Suppose that U ∈ C(BR;Rk) is a Lipschitz continuous function
satisfying the quasi-minimality condition (2.1). Then there are constant r0 > 0 and ε0 > 0 such that

ε0|Br| ≤
∣∣{|U | > 0} ∩Br(x0)

∣∣ ≤ (1− ε0)|Br|, for every x0 ∈ ∂{|U | > 0} and r ≤ r0. (2.16)

Proof. The proof follows by the same argument as in [2]. We assume that x0 = 0. By Lemma 2.6 we

have that for r small enough ‖U‖L∞(Br/2) ≥
c0r

4
. Thus there is some xr ∈ Br/2 such that |U |(xr) ≥

c0r

4
.

On the other hand |U | is Lipschitz continuous, and so, setting θ = inf
{1

2
,

c0
4‖∇|U |‖L∞

}
we have that

|U | > 0 on Bθr(xr) and this proves the lower bound in (2.16).

For the upper bound, we notice that since 0 ∈ ∂{|U | > 0} we can apply Lemma 2.10 obtaining that
there are constants c1 and r0 such that

−
∫
∂Br

u1 dHd−1 ≥ c1r for every r ≤ r0.

Let Ũ = (ũ1, . . . , uk), where ũ1 is the harmonic extension of u1 on the ball Br. By the quasi-optimality
of U we have

Λ
∣∣{|U | = 0} ∩Br

∣∣ ≥ ∫
BR

|∇U |2 dx−
(

1 +K‖U − Ũ‖L1

)∫
BR

|∇Ũ |2 dx

≥
∫
Br

|∇(U − Ũ)|2 dx−K‖U − Ũ‖L1

∫
BR

|∇U |2 dx

=

∫
Br

|∇(u1 − ũ1)|2 dx−K‖u1 − ũ1‖L1

∫
BR

|∇U |2 dx.

(2.17)
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Let L = ‖∇u1‖L∞ . Then ‖u1‖L∞(Br) ≤ Lr and by the maximum principle ‖ũ1‖L∞(Br) ≤ Lr. Thus we
have the estimate

K‖u1 − ũ1‖L1

∫
BR

|∇U |2 dx ≤ ωdKL‖∇U‖L2(BR)r
d+1 =: Crd+1. (2.18)

In order to estimate

∫
Br

|∇(u1 − ũ1)|2 dx we first notice that by the Poincaré inequality in Br we have∫
Br

|∇(u1 − ũ1)|2 dx ≥ λ1(B1)

r2

∫
Br

|u1 − ũ1|2 dx ≥
Cd
|Br|

(1

r

∫
Br

|u1 − ũ1| dx
)2

. (2.19)

Let κ ∈ (0, 1/3). Since ũ1 is non-negative and harmonic in Br the Harnack inequality for ũ1 together
with the non-degeneracy of u1 gives that

c1r ≤ −
∫
∂Br

u1 dHd−1 = −
∫
∂Br

ũ1 dHd−1 = ũ1(0) ≤ max
Bκr

ũ1 ≤
(

1− κ
1− 3κ

)d
min
Bκr

ũ1,

while the Lipschitz continuity of u1 gives that max
Bκr

u1 ≤ Lκr. Thus for κ small enough (depending on d,

c1 and L) we have

ũ1 ≥ |u1|+
c1
3
r in Bκr.

Together with (2.17), (2.18) and (2.19) this gives

Λ
∣∣{|U | = 0} ∩Br

∣∣ ≥ Cd
|Br|

(1

r

∫
Bκr

|u1 − ũ1| dx
)2

− Crd+1 ≥ Cdc21κ2drd − Crd+1 ≥ Cdc
2
1κ

2d

2
rd,

for r small enough. �

3. Weiss monotonicity formula

In this section we establish a monotonicity formula in the spirit of [39]. Following the original notation
from [39], for a function U ∈ H1(Rd;Rk) we define

φ(U, x0, r) :=
1

rd

(∫
Br(x0)

|∇U |2 dx+ Λ
∣∣{|U | > 0} ∩Br(x0)

∣∣)− 1

rd+1

∫
∂Br(x0)

|U |2 dHd−1. (3.1)

The monotonicity of φ(U, x0, ·) is related to the classification of the blow-up limits and is an essential
tool for proving the regularity of the free boundary. The following proposition concerns the case when U
is the vector of the first k eigenfunctions on an optimal set.

Proposition 3.1 (Monotonicity formula for the optimal eigenfunctions). Let Ω be optimal for (1.1) and
let U = (u1, . . . , uk) ∈ H1

0 (Ω;Rk) be the vector of the first k normalized eigenfunctions on Ω. Suppose
that x0 ∈ ∂Ω. Then there are constants r0 and C1 such that the function r 7→ φ(U, x0, r) satisfies the
following inequality for every r ≤ r0 :

d

dr
φ(U, x0, r) ≥

1

rd+2

k∑
i=1

∫
∂Br(x0)

|(x− x0) · ∇ui − ui|2 dx− C1.

Moreover, the limit lim
r→0+

φ(U, x0, r) exists and is a real number.

The last result of the section concerns the vector-valued functions U = (u1, . . . , uk) ∈ H1
loc(Rd;Rk)

that are local minimizers of the functional F0(U) =
∫
|∇U |2 dx+ |{|U | > 0}| in the sense of the following

definition.

Definition 3.2. We say that a function U ∈ H1
loc(Rd;Rk) is a local minimizer (we note that this is

sometimes called absolute or global minimizer) of the functional

F0(U) =

∫
|∇U |2 dx+ Λ|{|U | > 0}|,

if for every BR ⊂ Rd and for every function Ũ ∈ H1
loc(Rd;Rk) such that Ũ − U ∈ H1

0 (BR;Rk) we have∫
BR

|∇U |2 dx+ Λ
∣∣{|U | > 0} ∩BR

∣∣ ≤ ∫
BR

|∇Ũ |2 dx+ Λ
∣∣{|Ũ | > 0} ∩BR

∣∣.
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Proposition 3.3 (Monotonicity formula for local minimizers of F0). Suppose that U = (u1, . . . , uk) ∈
H1
loc(Rd;Rk) is a local minimizer of the functional F0 in sense of Definition 3.2. Then the function

φ(r) := φ(U, 0, r) from (3.1) satisfies the inequality

φ′(r) ≥ 1

rd+2

k∑
i=1

∫
∂Br

|x · ∇ui − ui|2 dx.

If moreover, φ is constant in (0,+∞), then the function U is one-homogeneous.

For the sake of simplicity in the rest of the section we will fix x0 = 0 and φ(r) := φ(U, 0, r).
In order to prove Proposition 3.1 and Proposition 3.3 we need the following lemma, in which, following
the ideas from [39, Theorem 1.2], we compare the function U with its one-homogeneous extension in the
ball Br.

Lemma 3.4. Let U ∈ H1(Rd;Rk)∩W 1,∞(Rd;Rk) be a Lipschitz continuous function such that U(0) = 0.
Suppose that U is a quasi-minimizer of FK in sense of (2.1). Then, there are constants r0 > 0 and C0 > 0
such that, for every r ∈ (0, r0), we have the estimate∫

Br

|∇U |2 dx+ Λ
∣∣Br ∩ {|U | > 0}

∣∣ ≤ r

d

∫
∂Br

(
|∇τU |2 +

|U |2

r2

)
dHd−1

+ Λ
r

d
Hd−1

(
∂Br ∩ {|U | > 0}

)
+ C0r

d+1.

(3.2)

Proof. Let U = (u1, . . . , uk) be a quasi-minimizer in the sense of (2.1) with constants K, ε and we can

clearly assume that ‖U‖L∞ ≤ ε−1. We consider the one homogeneous function Ũ = (ũ1, . . . , ũk) : Br →

Rk defined by Ũ(x) :=
|x|
r
U

(
x
r

|x|

)
. For its components ũi we have ũi(x) :=

|x|
r
ui

(
x
r

|x|

)
and

|∇ũi|2(x) = |∇τui|2
(
x
r

|x|

)
+ r−2u2

i

(
x
r

|x|

)
.

Integrating over Br and summing for i = 1, . . . , k we obtain∫
Br

|∇Ũ |2 dx =

k∑
i=1

r

d

∫
∂Br

(
|∇τui|2 +

u2
i

r2

)
dHd−1 =

r

d

∫
∂Br

(
|∇τU |2 +

|U |2

r2

)
dHd−1,

while for the measure term we have that∣∣Br ∩ {|Ũ | > 0}
∣∣ =

r

d
Hd−1

(
∂Br ∩ {|U | > 0}

)
.

Since U ≡ Ũ on ∂Br, the minimality of U in Br gives∫
Br

|∇U |2 dx+ Λ
∣∣Br ∩ {|U | > 0}

∣∣ ≤ ∫
Br

|∇Ũ |2 dx+ Λ
∣∣Br ∩ {|Ũ | > 0}

∣∣+K‖U − Ũ‖L1

∫
Rd
|∇Ũ |2 dx

≤ r

d

∫
∂Br

(
|∇τU |2 +

|U |2

r2

)
dHd−1 + Λ

r

d
Hd−1

(
∂Br ∩ {|U | > 0}

)
+K2r|Br|‖∇U‖L∞

(∫
Rd
|∇U |2 dx+ 2|Br|‖∇U‖2L∞

)
.

It is now sufficient to choose C0 and r0 such that

2rd+1
0 |B1|‖∇U‖L∞ ≤ ε and C0 ≥ 2K|B1|‖∇U‖L∞

(∫
Rd
|∇U |2 dx+ 2|Br0 |‖∇U‖2L∞

)
,

where K and ε are the constants from (2.1). �

We are now in position to prove the desired monotonicity formula for the function φ.
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Proof of Proposition 3.1. Let r0 and C0 be the constants from Lemma 3.4 and let C1 = dC0. Calcu-
lating the derivative φ′(r) and using (3.2) from Lemma 3.4, we have

φ′(r) =
1

rd

(∫
∂Br

|∇U |2 dHd−1 + ΛHd−1({|U | > 0} ∩ ∂Br)
)
− d

rd+1

(∫
Br

|∇U |2 dx+ Λ|{|U | > 0} ∩Br|
)

+
2

rd+2

∫
∂Br

|U |2 dHd−1 − 1

rd+1

k∑
i=1

∫
∂Br

2ui
∂ui
∂ν

dHd−1

≥ 1

rd

(∫
∂Br

|∇U |2 dHd−1 + ΛHd−1({|U | > 0} ∩ ∂Br)
)

− d

rd+1

(
r

d

∫
∂Br

(
|∇τU |2 +

|U |2

r2

)
dHd−1 +

r

d
ΛHd−1({|U | > 0} ∩ ∂Br) + C0r

d+1

)
+

2

rd+2

∫
∂Br

|U |2 dHd−1 − 1

rd+1

k∑
i=1

∫
∂Br

2ui
∂ui
∂ν

dHd−1

=
1

rd

k∑
i=1

∫
∂Br

∣∣∣∣∂ui∂ν

∣∣∣∣2 dHd−1 +
1

rd+2

∫
∂Br

|U |2 dHd−1 − 1

rd+1

k∑
i=1

∫
∂Br

2ui
∂ui
∂ν

dHd−1 − C1

=
1

rd+2

k∑
i=1

∫
∂Br

(
r2

∣∣∣∣∂ui∂ν

∣∣∣∣2 + u2
i − 2rui

∂ui
∂ν

)
dHd−1 − C1 =

1

rd+2

∫
∂Br

|x · ∇U − U |2dHd−1 − C1,

which concludes the proof of the first part of Proposition 3.1. In particular, we obtain that the function
r 7→ φ(r) + C1r is non-decreasing. Thus the limit lim

r→0+
(φ(r) + C1r) = lim

r→0+
φ(r) does exist and is

necessarily a real number or −∞. In order to exclude this last possibility, we notice that due to the
Lipschitz continuity of U and the fact that U(0) = 0, we have that

φ(r) ≥ − 1

rd+1

∫
∂Br

|U |2 dHd−1 ≥ −dωd‖∇U‖2L∞ , for every r > 0,

which finally proves that lim
r→0+

φ(r) is finite. �

Proof of Proposition 3.3. We notice that if U is a local minimizer of the functional F0, then both the
constants C0 and C1 defined above can be taken equal to zero. The last claim of the proposition follows
by the fact that if φ′ ≡ 0, then x · U ≡ U in Rd, which proves that U is 1-homogeneous. �

4. Blow-up sequences and blow-up limits

Let U : Rd → Rk be a given Lipschitz function. For r > 0 and x ∈ Rd such that U(x) = 0, we define

Ur,x(y) :=
1

r
U(x+ ry).

When x = 0 we will use the notation Ur := Ur,0.
Suppose now that (rn)n≥0 ⊂ R+ and (xn)n≥0 ⊂ Rd are two sequences such that

lim
n→∞

rn = 0, lim
n→∞

xn = x0, xn ∈ ∂{|U | > 0} for every n ≥ 0. (4.1)

Then the sequence {Urn,xn}n∈N is uniformly Lipschitz and locally uniformly bounded in Rd. Thus, up to
a subsequence, Urn,xn converges locally uniformly in Rd as n→∞.

Definition 4.1. Let U : Rn → Rk be a Lipschitz function, rn and xn be two sequences satisfying (4.1).

• We say that the sequence Urn,xn is a blow-up sequence with variable center (this is sometimes
called pseudo-blow-up).
• If the sequence xn is constant, i.e. xn = x0 for every n ≥ 0, we say that the sequence Urn,x0 is a

blow-up sequence with fixed center.
• We denote by BUU (x0) the space of all the limits of blow-up sequences with fixed center x0.

The main result of this section is the following :

Proposition 4.2 (Structure of the blow-up limits). Let Ω be optimal for (1.1) and let U = (u1, . . . , uk)
be the vector of the first k normalized eigenfunctions on Ω. For every x0 ∈ ∂Ω and U0 ∈ BUU (x0) there
is a unit vector ξ ∈ ∂B1 ⊂ Rk such that U0 = ξ|U0|. Moreover the (real-valued) function |U0| is not
identically zero and satisfies the following properties:
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(1) |U0| is 1-homogeneous ;
(2) |U0| is a local minimizer (in the sense of Definition 3.2) of the Alt-Caffarelli functional

H1
loc(Rd;R) 3 u 7→

∫
|∇u|2 dx+ Λ|{u > 0}|.

The rest of the section is dedicated to the proof of Proposition 4.2. In Proposition 4.5 we prove that
the blow-up sequences (of fixed or variable center) converge strongly in H1

loc and the corresponding free
boundaries converge in the Hausdorff distance. In Lemma 4.6 we prove that the vector-valued function
U0 is a local minimizer (in the sense of Definition 3.2) of the functional

H1
loc(Rd;Rk) 3 U 7→

∫
|∇U |2 dx+ Λ|{|U | > 0}|.

We apply then the Weiss monotonicity formula (Proposition 3.1 and Proposition 3.3) to obtain the 1-
homogeneity of U0, that we use to prove the existence of the vector ξ in Lemma 4.9. This result together
with the optimality of U0 gives the optimality of |U0|, which is finally proved in Lemma 4.10.

As a consequence of Proposition 4.2 we get the following result.

Corollary 4.3. Every optimal set for (1.1) is connected.

Proof. Let Ω be an optimal set for the problem (1.1). Suppose that Ω is a union of two disjoint open sets
Ω1 and Ω2. Then the spectrum of Ω is given by σ(Ω) = σ(Ω1) ∪ σ(Ω2) and in particular there is some
l ∈ 1, . . . , k − 1 such that

{λ1(Ω), . . . , λk(Ω)} = {λ1(Ω1), . . . , λl(Ω1)} ∪ {λ1(Ω2), . . . , λk−l(Ω2)}.

Now since Ω is optimal for the sum λ1 + · · · + λk, we have that Ω1 has to be optimal for λ1 + · · · + λl
and Ω2 for λ1 + · · ·+λk−l. Let Ω̃1 and Ω̃2 be translations of Ω1 and Ω2 such that Ω̃1 and Ω̃2 are disjoint

and tangent in 0 ∈ ∂Ω̃1 ∩ ∂Ω̃2. Setting Ω̃ = Ω̃1 ∪ Ω̃2 we have that Ω̃ and the original set Ω have the same

spectrum and the same measure. Thus Ω̃ is a solution of (1.1). Let (u1, . . . , ul) and (v1, . . . , vk−l) be the

vectors of the first eigenfunctions on Ω̃1 and Ω̃2. Let U0 and V0 be two limits of the blow-up sequences of
these two vectors in zero. By the optimality and the homogeneity of |U0| and |V0|, together with the fact
that they are non-zero (see Proposition 4.2) we have that necessarily {|U0| > 0} and {|V0| > 0} are two
complementary half-spaces. On the other hand there is a blow-up limit W0 ∈ BUU (0) whose components
are precisely the ones of U0 and V0. Now, by the optimality of |W0|, it has to be a non-negative non-
zero harmonic function on B1 vanishing in zero, in contradiction with the maximum principle, so Ω is
disconnected. �

The proof of Proposition 4.2 is based on the fact that if U is the vector eigenfunctions on the optimal
set for λ1 + · · ·+ λk, then Ur,x0

satisfies a quasi-minimality condition of the form (2.1). This is a direct
consequence from the scaling properties of the functional FK defined in Section 2.1. Since it is essential
for the proof of Proposition 4.2, we show it in the following Lemma.

Lemma 4.4. Suppose that U ∈ H1(Rd;Rk)∩L∞(Rd;Rk) and that there are constants K > 0 and ε > 0
such that U satisfies the quasi-minimality condition 2.1. Then, for every x0 ∈ Rd, Ur,x0

satisfies∫
Rd
|∇Ur,x0

|2 dx+ Λ
∣∣{|Ur,x0

| > 0}
∣∣ ≤ (1 +Krd+1‖Ur,x0

− Ũ‖L1

)∫
Rd
|∇Ũ |2 dx+ Λ

∣∣{|Ũ | > 0}
∣∣,

for every Ũ ∈ H1(Rd;Rk) such that ‖Ũ‖L∞ ≤
1

εr
and ‖U − Ũ‖L1 ≤ ε

rd+1
.

Proof. Assume for simplicity that x0 = 0. Let Ũ ∈ H1(Rd;Rk) ∩ L∞(Rd;Rk) be such that

‖Ur − Ũ‖L1 ≤ ε

rd+1
and ‖Ũ‖L∞ ≤

1

εr
,

and consider the functions Φ = Ur − Ũ , Φr(x) := rΦ
(
x
r

)
and Ũr(x) := rŨ

(
x
r

)
. We notice that

‖Φr‖L1 = rd+1‖Φ‖L1 ≤ ε and ‖Ũr‖L∞ = r‖Ũ‖L∞ ≤
1

ε
,
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and so we may use Ũr = U + Φr to test the optimality of U :∫
Rd
|∇Ur|2 dx+ Λ

∣∣{|Ur| > 0}
∣∣ =

1

rd

∫
Rd
|∇U |2 dx+

Λ

rd
∣∣{|U | > 0}

∣∣
≤
(
1 +K‖Φr‖L1

) 1

rd

∫
Rd
|∇Ũr|2 dx+

Λ

rd
∣∣{|Ũr| > 0}

∣∣
=
(

1 +Krd+1‖Φ‖L1

)∫
Rd
|∇Ũ |2 dx+ Λ

∣∣{|Ũ | > 0}
∣∣,

which gives the claim. �

Proposition 4.5 (Convergence of the blow-up sequences). Let U be a Lipschitz continuous local mini-
mizer of FK in the open set D ⊂ Rd. Suppose that (rn)n∈N and (xn)n∈N ⊂ ∂{|U | > 0} are two sequences
such that, for some x0 ∈ ∂{|U | > 0} and U0 : Rd → Rk Lipschitz continuous, we have

lim
n→∞

rn = 0 , lim
n→∞

xn = x0 and lim
n→∞

Urn,xn = U0,

where the convergence of Urn,xn is to be intended locally uniform in Rd. Then, for every R > 0, the
following properties hold:

(a) The sequence Urn,xn(x) :=
1

rn
U(xn + rnx) converges to U0 strongly in H1(BR;Rk).

(b) The sequence of characteristic functions 1Ωn converges in L1(BR) to 1Ω0
, where

Ωn := {|Urn | > 0} and Ω0 := {|U0| > 0}.

(c) The sequences of closed sets Ωn and Ωcn converge Hausdorff in BR respectively to Ω0 and Ωc0.
(d) U0 is non-degenerate at zero, that is, there is a dimensional constant cd > 0 such that

‖U0‖L∞(Br) ≥ cd r for every r > 0.

Proof. We set for simplicity Un = Urn,xn and we divide the proof in some steps, for sake of clarity.
Step 1. Since Un is bounded in H1

loc(Rd;Rk) (being uniformly Lipschitz) we have that Un converges
weakly in H1

loc to U0 ∈ H1
loc(Rd;Rk). By the definition of Ωn and the fact that |Un| converges locally

uniformly to |U0| we have that

1Ω0 ≤ lim inf
n→∞

1Ωn .

Step 2. Let us now prove that Un converges strongly in H1
loc(Rd;Rk) to U0 and that 1Ωn converges to

1Ω0 pointwise on Rd. Fixed a ball BR ⊂ Rd it is sufficient to prove that

lim
n→∞

(∫
BR

|∇Un|2 dx+ Λ|BR ∩ Ωn|
)

=

∫
BR

|∇U0|2 dx+ Λ|BR ∩ Ω0|. (4.2)

We notice that the function Un is a local minimizer of

Fn(V ) =
(
1 + rd+1

n K‖Un − V ‖L1

) ∫
Rd
|∇V |2 dx+ Λ

∣∣{|V | > 0}
∣∣.

Consider a function ϕ ∈ C∞c (Rd) such that 0 ≤ ϕ ≤ 1 and BR = {ϕ = 1}. We introduce the test function

Ũn = ϕU0 + (1− ϕ)Un.

The optimality of Un now gives∫
{ϕ>0}

|∇Un|2 dx+ Λ
∣∣{|Un| > 0} ∩ {ϕ > 0}

∣∣
≤
(

1 + rd+1
n K‖Un − Ũn‖L1

)∫
{ϕ>0}

|∇Ũn|2 dx+ Λ
∣∣{|Ũn| > 0} ∩ {ϕ > 0}

∣∣
≤
(
1 + rd+1

n K‖ϕ(U0 − Un)‖L1

) ∫
{ϕ>0}

|∇Ũn|2 dx+ Λ
∣∣{|Ũn| > 0} ∩ {ϕ > 0}

∣∣
≤
(
1 + rd+1

n K‖ϕ(U0 − Un)‖L1

) ∫
{ϕ>0}

|∇Ũn|2 dx

+ Λ
(∣∣{ϕ = 1} ∩ {|U0| > 0}

∣∣+
∣∣{0 < ϕ < 1}

∣∣)
(4.3)
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Since Un converges strongly L2(BR;Rk) and weakly H1
loc(Rd;Rk) to U0, we can estimate∫

{ϕ>0}
|∇Un|2 −

∫
{ϕ>0}

|∇Ũn|2 dx

=

∫
{ϕ>0}

|∇Un|2 −
∫
{ϕ>0}

|∇(ϕU0 + (1− ϕ)Un)|2 dx

=

∫
{ϕ>0}

(∇Un −∇(ϕU0 + (1− ϕ)Un)) · (∇Un +∇(ϕU0 + (1− ϕ)Un)) dx

=

∫
{ϕ>0}

(ϕ∇(Un − U0) + (Un − U0)∇ϕ) · (ϕ∇(Un + U0) + (Un + U0)∇ϕ+ 2∇((1− ϕ)Un)) dx

=

∫
{ϕ>0}

ϕ2(|∇Un|2 − |∇U0|2) dx+ 2

∫
{ϕ>0}

ϕ∇(Un − U0) · (1− ϕ)∇Un dx+ o(1/n)

=

∫
{ϕ>0}

(1− (1− ϕ)2)(|∇Un|2 − |∇U0|2) dx+ o(1/n).

Now since |∇Un| converges weakly in L2({0 < ϕ < 1};R) to |∇U0|, we have that

lim sup
n→∞

∫
{ϕ>0}

(
|∇Un|2 − |∇Ũn|2

)
dx ≥ lim sup

n→∞

∫
{ϕ=1}

(
|∇Un|2 − |∇U0|2

)
dx.

Substituting in the inequality (4.3) above we obtain

lim sup
n→∞

(∫
{ϕ=1}

(
|∇Un|2 − |∇U0|2

)
dx+ Λ(|{ϕ = 1} ∩ Ωn| − |{ϕ = 1} ∩ Ω0|)

)

≤ lim sup
n→∞

(∫
{ϕ>0}

(
|∇Un|2 − |∇Ũn|2

)
dx+ Λ(|{ϕ = 1} ∩ Ωn| − |{ϕ = 1} ∩ Ω0|)

)
≤ Λ|{0 < ϕ < 1}|.

Now, since ϕ is arbitrary outside BR, we get (4.2). So we have proved part (a) and (b) of the Proposition.
Step 3. It is well-known that the convergence L1 of the sequence of characteristic functions 1Ωn

together with the fact that each Ωn satisfies the density estimate

ε0|Br| ≤ |Ωn ∩Br| ≤ (1− ε0)|Br|, ∀r < r0/rn,

gives that both Ωn and Ωcn converge Hausdorff respectively to Ω0 and Ωc0 locally in Rd, hence also part
(c) of the statement is concluded.
Step 4. It remains only to prove the non-degeneracy of U0. We first note that every function Urn is
non-degenerate in the following sense:

y ∈ Ωn ⇒ ‖Un‖L∞(Br(y)) ≥ c0r, ∀r ≤ r0/rn. (4.4)

In fact if y ∈ Ωn, then rny ∈ Ω = {|U | > 0}. By the non-degeneracy of U we obtain

rn‖Un‖L∞(Br(y)) = ‖U‖L∞(Brrn (xn+rny)) ≥ c0rrn, ∀r ≤ r0/rn,

which is precisely (4.4). Our claim that the function U0 is non-degenerate means

y ∈ Ω0 ⇒ ‖U0‖L∞(Br(y)) ≥
c0
4
r, ∀r > 0. (4.5)

Suppose that y ∈ Ω0 and r > 0. Then there is y′ ∈ Br2(y) such that |U0|(y′) > 0. Then for n large

enough y′ ∈ Ωn. By the non-degeneracy of Un we have that there is a point yn ∈ Br/2(y′) such that

2|Un|(yn) ≥ ‖Un‖L∞(Br/2(y′)) ≥ c0r/2.

We can assume that yn converges to some y∞ ∈ Br/2(y′), for which the uniform convergence of Un gives
|U0|(y∞) ≥ c0r/4, and so we have (4.5). �

Lemma 4.6 (Optimality of the blow-up limits). Let U ∈ H1(Rd;Rk) be a Lipschitz continuous function
satisfying the quasi-minimality condition (2.1). Let x0 ∈ ∂{|U | > 0} and U0 ∈ BUU (x0). Then U0 is a
local minimizer of the functional F0.
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Proof. Let x0 = 0 and BR ⊂ Rd be a fixed ball. We first notice that if U satisfies (2.1) and r > 0, then
Ur(x) = 1

rU(rx) satisfies the following quasi-minimality condition in the ball BR (see Lemma 4.4)(
1 +Krd+1‖Ur − Ũ‖L1

) ∫
BR

|∇Ur|2 dx+ Λ
∣∣{|Ur| > 0} ∩BR

∣∣
≤
(
1 +Krd+1‖Ur − Ũ‖L1

) ∫
BR

|∇Ũ |2 dx+ Λ
∣∣{|Ũ | > 0} ∩BR

∣∣
+Kr‖Ur − Ũ‖L1

∫
Rd
|∇U |2 dx,

(4.6)

for every Ũ ∈ H1(Rd;Rk) ∩ L∞(Rd;Rk) such that Ur − Ũ ∈ H1
0 (BR,Rk) and

‖Ur − Ũ‖L1 ≤ ε

rd+1
and ‖Ũ‖L∞ ≤

1

εr
.

Let now Ũ ∈ H1
loc(Rd;Rk) ∩ L∞loc(Rd;Rk) be such that U0 − Ũ ∈ H1

0 (BR,Rk) and let η ∈ C∞c (BR)
be such that 0 ≤ η ≤ 1. We consider a sequence Urn converging to U0 is sense of Proposition 4.5.
We recall that Urn → U0 both uniformly in BR and strongly in H1(BR). Consider the test function

Wn = Ũ + (1− η)(Urn − U0). Since Ũ = U0 outside BR we have that Wn = Urn outside BR. Moreover,

since Wn − Urn = Ũ − U0 − η(Urn − U0) and Urn → U0 in L1(BR) we have that, for n ≥ n0 (where n0

does not depend on η but only on the sequence rn),

‖Wn − Urn‖L1 ≤ 2‖Ũ − U0‖L1 and ‖Wn − Urn‖L∞ ≤ 2‖Ũ − U0‖L∞ ,
and so Wn can be used as a test function in (4.6), thus obtaining(

1 +Krd+1
n ‖Urn −Wn‖L1

) ∫
BR

(
|∇Urn |2 − |∇Wn|2

)
dx+ Λ

∣∣{|Urn | > 0} ∩BR
∣∣

≤ Λ
(∣∣{|Ũ | > 0} ∩ {η = 1}

∣∣+
∣∣{0 < η < 1}

∣∣)
+2Krn‖Ũ − U0‖L1

∫
Rd
|∇U |2 dx.

Now since Urn → U0 in H1(BR;Rk) and Wn → Ũ in H1(BR;Rk) we have∫
BR

|∇U0|2 dx+ Λ
∣∣{|U0| > 0} ∩BR

∣∣
≤
∫
BR

|∇Ũ |2 dx+ Λ
(∣∣{|Ũ | > 0} ∩ {η = 1}

∣∣+
∣∣{0 < η < 1}

∣∣).
Since we can choose η such that |{η = 1}| is arbitrarily close to |BR| we obtain∫

BR

|∇U0|2 dx+ Λ
∣∣{|U0| > 0} ∩BR

∣∣ ≤ ∫
BR

|∇Ũ |2 dx+ Λ
∣∣{|Ũ | > 0} ∩BR

∣∣.
�

Lemma 4.7 (Homogeneity of the blow-up limits). Let U ∈ H1(Rd;Rk) be a Lipschitz continuous function
satisfying the quasi-minimality condition (2.1). Let x0 ∈ ∂{|U | > 0} and U0 ∈ BUU (x0). Then U0 is a
one-homogeneous function.

Proof. Let the sequence rn → 0 be such that the sequence Un(x) := 1
rn
U(x0 + rnx) converges to U0 both

uniformly and (see Proposition 4.5) strongly in H1(BR;Rk), for every ball BR ⊂ Rd. Let φn be the Weiss
functional corresponding to Un

φn(r) := φ(Un, 0, r) =
1

rd

∫
Br

|∇Un|2 dx−
1

rd+1

∫
∂Br

|Un|2 dHd−1 +
Λ

rd
∣∣{|Un| > 0} ∩Br

∣∣. (4.7)

We notice that
φn(r) = φ(U, x0, rnr) for every r > 0, (4.8)

where φ(U, x0, r) is the Weiss functional corresponding to U from (3.1). By (4.8) and the fact that the
limit lim

r→0
φ(U, x0, r) exists (see Proposition 3.1) we have that for every fixed r > 0

lim
n→∞

φn(r) = lim
n→∞

φ(U, x0, rnr) = lim
ρ→0

φ(U, x0, ρ). (4.9)

On the other hand Proposition 4.5 gives that

lim
n→∞

φn(r) = φ0(U0, 0, r),
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Now since φ0(U0, 0, r) is constant in r (due to (4.9)) and U0 is optimal (due to Proposition 4.6) we can
apply Proposition 3.3 and finally obtain that U0 is one-homogeneous function on Rd. �

Remark 4.8. In the following Lemma and in Section 5 we will use some rather well known facts about
eigenvalues of the spherical Laplacian ∆S on regions of the sphere. For more details we refer to [37, 21],
but we summarize here the main facts that we need in the following.

• Let S ⊂ ∂B1 be an open subset of the sphere ∂B1 ⊂ Rd, for d ≥ 2, and let CS = {rθ : θ ∈
S, r > 0} be the cone generated by S. Then, given an α-homogeneous function u : CS → R for
some α > 0, we have that u is a solution of the problem

∆u = 0 in CS , u = 0 on ∂CS ,

if and only if the trace ϕ = u|∂B1
is a solution of the problem

−∆Sϕ = λϕ in S, ϕ = 0 on ∂S,

where λ = α(α + d − 2) and ∆S denotes the Laplace-Beltrami operator on the sphere ∂B1. We
denote by {λj(S)}j≥1 the non-decreasing sequence of eigenvalues on set S ⊂ ∂B1 counted with
the due multiplicity.
• For the spherical sets S we have the inequality

λ1(S) ≥ d− 1 for every S ⊂ ∂B1 such that Hd−1(S) ≤ dωd
2
, (4.10)

and the equality is achieved if and only if, up to a rotation, S is the half-sphere

∂B+
1 = {x = (x1, . . . , xd) ∈ ∂B1 : xd > 0} .

• As a consequence of (4.10) we get that

λ2(S) ≥ d− 1 for every S ⊂ ∂B1, (4.11)

where the equality is achieved if and only if, up to a rotation, ∂B1 ∩ {xd 6= 0} ⊂ S. Indeed, if the
second eigenfunction ϕ2 ∈ H1

0 (S) changes sign, then we can apply (4.10) to the sets {ϕ2 > 0}
and {ϕ2 < 0}. If ϕ2 ≥ 0 on S, then the sets {ϕ1 > 0} (ϕ1 ≥ 0 being the first eigenfunction on
S) and {ϕ2 > 0} are disjoint and again the claim follows by (4.10).
• As a consequence of (4.10) and (4.11) we obtain that if S ⊂ ∂B1 is such that λ1(S) ≤ d − 1

and Hd−1(S) < dωd, then the first eigenvalue λ1(S) is simple, that is there exists a unique
(non-negative) function ϕ1 ∈ H1

0 (S) such that

−∆Sϕ1 = λ1(S)ϕ1 in S, ϕ1 = 0 on ∂S,

∫
S

ϕ2
1 = 1.

Lemma 4.9. Let U ∈ H1(Rd;Rk) be a Lipschitz continuous function satisfying the quasi-minimality
condition (2.1). Let x0 ∈ ∂{|U | > 0} and U0 ∈ BUU (x0). Then, there is a unit vector ξ ∈ ∂B1 ⊂ Rk
such that U0 = ξ|U0|.

Proof. By Lemma 4.7 U0 = (u1, . . . , uk) is a one-homogeneous function and so is |U0|. Let S := ∂B1 ∩
{|U0| > 0}. We first notice that all the components u1, . . . , uk of U0 are harmonic functions on the cone
{|U0| > 0} = {rξ : ξ ∈ S, r > 0}. Thus in polar coordinates we have that ui(r, θ) = rϕi(θ), where ϕi
satisfies

−∆Sϕi = (d− 1)ϕi in S, ϕi = 0 on ∂S,

that is, d − 1 is an eigenvalue of the spherical Laplacian ∆S on S and the non-zero components of U0

are (non-normalized) eigenfunctions. Now since |S| < |∂B1| ( due to the optimality of U0 ) the last
point of Remark 4.8 implies that the first eigenvalue λ1(S) is simple. Then, denoting by ϕ the first
normalized eigenfunction on S, we get that there are constants a1, . . . , ak such that ϕi = aiϕ, for every
i = 1, . . . , k. Setting A = (a1, . . . , ak) we have that |U0| = |A|ϕ. Since U0 is not constantly zero on ∂B1

(see Proposition 4.5), we have that |A| 6= 0 and thus, taking ξ = |A|−1A we have the claim. �

Lemma 4.10. Let U ∈ H1(Rd;Rk) be a Lipschitz continuous function satisfying the quasi-minimality
condition (2.1). Let x0 ∈ ∂{|U | > 0} and U0 ∈ BUU (x0). Then, the scalar function |U0| is a local
minimizer of the Alt-Caffarelli functional.
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Proof. We set for simplicity u = |U0|. Let ξ be the unit vector from Lemma 4.9. Let ũ ∈ H1
loc(Rd) be

such that the difference u− ũ is supported in the ball BR. Then the same holds for the function U0− ξũ.
By the optimality of U0 we have∫

BR

|∇u|2 dx+ Λ|{u > 0} ∩BR| =
∫
BR

|∇U0|2 dx+ Λ|{|U0| > 0} ∩BR|

≤
∫
BR

|∇(ξũ)|2 dx+ Λ|{|ξũ| > 0} ∩BR|

=

∫
BR

|∇ũ|2 dx+ Λ|{|ũ| > 0} ∩BR|,

which proves the claim. �

5. Regularity of the free boundary

In this section we conclude the proof of Theorem 1.3.

5.1. The optimality condition on the free boundary. It is well-known (see for example [2]) that if
u is a local minimizer of the Alt-Caffarelli functional

H1
loc(Rd) 3 u 7→ E0(u) :=

∫
|∇u|2 dx+ Λ|{u > 0}|,

and the boundary ∂{u > 0} is smooth, then the following boundary optimality condition holds :

|∇u| =
√

Λ on ∂{u > 0}.
There are various ways to state this optimality for free boundaries that are not a priori smooth (see for
example [2] and [18]). In the case of vector-valued functionals the most appropriate one seems to be the
approach exploiting the notion of a viscosity solution.

Definition 5.1. Let Ω ⊂ Rd be an open set and λ = (λ1, . . . , λk) ∈ Rk a vector with positive coordinates.
We say that the continuous function U = (u1, . . . , uk) : Ω→ Rk is a viscosity solution of the problem

−∆U = λU in Ω, U = 0 on ∂Ω, |∇|U || =
√

Λ on ∂Ω,

if for every i = 1, . . . , k the component ui is a solution of the PDE

−∆ui = λiui in Ω, ui = 0 on ∂Ω,

and the boundary condition

|∇|U || =
√

Λ on ∂Ω,

holds in viscosity sense, that is

• for every continuous function ϕ : Rd → R differentiable in x0 ∈ ∂Ω and such that “ϕ touches |U |
from below in x0” (that is |U | − ϕ : Ω → R has a local minimum equal to zero in x0), we have

|∇ϕ|(x0) ≤
√

Λ.
• for every continuous function ϕ : Rd → R differentiable in x0 ∈ ∂Ω and such that “ϕ touches |U |

from above in x0” (that is |U | − ϕ : Ω → R has a local maximum equal to zero in x0), we have

|∇ϕ|(x0) ≥
√

Λ.

Lemma 5.2. Let Ω be a solution of the problem (1.1), U = (u1, . . . , uk) be the vector of the first k

eigenfunctions on Ω, λ = (λ1(Ω), . . . , λk(Ω)) and Λ =
2

d

(
λ1(Ω) + · · · + λk(Ω)

)
. Then U is a viscosity

solution to the problem

−∆U = λU in Ω, U = 0 on ∂Ω, |∇|U || =
√

Λ on ∂Ω. (5.1)

Proof. From Theorem 1.1 it follows that |U | : Rd → Rk is Lipschitz continuous. We only have to prove

that the identity |∇|U || =
√

Λ holds in viscosity sense on the boundary ∂Ω.
Step 1. Suppose first that ϕ touches |U | from below in x0 ∈ ∂Ω and assume x0 = 0. Consider the

blow-up sequences

Un(x) =
1

rn
U(rnx) and ϕn(x) =

1

rn
ϕ(rnx),

for a sequence of radii rn → 0. Up to a subsequence we have that the blow-up limits

U0 = lim
n→∞

Un(x) and ϕ0 = lim
n→∞

ϕn(x), (5.2)
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exist where the convergence is locally uniform in Rd. We first notice that, as ϕ is smooth, we have
ϕ0(x) = ξ · x for a vector ξ ∈ Rd. Without loss of generality we may assume that ξ = aed for some
constant a > 0, thus

|∇ϕ(0)| = |∇ϕ0(0)| = a and ϕ0(x) = axd. (5.3)

Now, since |U0| ≥ ϕ0, we obtain that |U0| > 0 on {xd > 0}. By Proposition 4.7 we have that U0 is a
1-homogeneous harmonic function on the cone {|U0| > 0} ⊃ {xd > 0}. Thus, necessarily U0 = 0 on the
hyperplane {x ∈ Rd : xd = 0} and by the second point of Remark 4.8 we have only two possibilities:

{|U0| > 0} = {xd > 0} or {|U0| > 0} = {xd 6= 0}.
The second case is ruled out since, due to Proposition 4.2, |U0| is a local minimizer of the Alt-Caffarelli
functional and so it has to satisfy an exterior density estimate, which is not the case of the set {xd 6= 0}.
Thus the only possibility is {|U0| > 0} = {xd > 0}. In particular the boundary ∂{|U0| > 0} is smooth
as well as the function U0 whose components are linear functions. Since |U0| is a minimizer of the
Alt-Caffarelli functional, it satisfies the optimality condition

|∇|U0|| =
√

Λ on {xd = 0}. (5.4)

Thus we obtain that |U0| =
√

Λx+
d . Now, by the inequality |U0| ≥ ϕ0, we get that a ≤

√
Λ, which

concludes the proof of Step 1.
Step 2. Suppose now that ϕ touches |U | from above at x0 = 0 and once again we consider the blow-up

limits U0 and ϕ0 defined in (5.2) and we assume that ϕ0 is as in (5.3). Due to the non-degeneracy of U0

(see Proposition 4.5) we get that U0 6≡ 0 and a > 0. Since U0 ≤ ϕ0 we have that the cone {|U0| > 0}
is contained in the half-space {xd > 0}. By the 1-homogeneity of U0 and Remark 4.8 we obtain that
necessarily {|U0| > 0} = {xd > 0}. In particular, ∂{|U0| > 0} is smooth and |U0| is linear. In conclusion,

applying as above Proposition 4.2, we get that |U0| satisfies (5.4), which gives that |U0| =
√

Λx+
d and

a ≥
√

Λ. �

5.2. Regular and singular parts of the free boundary. Let Ω be a solution of (1.1). We define the
regular part of the free boundary (or the regular set) Reg(∂Ω) to be the set of points of density 1/2 of
Ω, that is, Reg(∂Ω) := Ω(1/2). On the other hand, the singular part of the free boundary (or the singular
set) Sing(∂Ω) is defined as the complementary of Reg(∂Ω)

Sing(∂Ω) := ∂Ω \Reg(∂Ω).

In this subsection we prove that Reg(∂Ω) is relatively open in ∂Ω (i.e. Sing(∂Ω) is a closed set).

Lemma 5.3 (Density gap). There exists a constant δ > 0 such that for every non-trivial 1-homogeneous
local minimizer u of the Alt-Caffarelli functional

H1
loc(Rd) 3 u 7→ E0(u) =

∫
|∇u|2 dx+ Λ|{u > 0}|,

we have that
0 /∈ Ω(γ)

u , for every γ ∈ (1/2, 1/2 + δ),

where Ωu = {u > 0}.

Proof. Suppose by contradiction that there are an infinitesimal sequence of positive real numbers δn and
a sequence un of 1-homogeneous non-zero local minimizers of E0 such that

|Br ∩ Ωn|
|Br|

=
1

2
+ δn, for every r > 0,

where Ωn = {un > 0}. By [2, Section 3] the sequence un is uniformly Lipschitz and non-degenerate
and so, up to a subsequence it converges to a 1-homogeneous non-zero function u0. Reasoning as in [2,
Lemma 5.4] it is straightforward to check that u0 is a local minimizer of E0 and, in particular, harmonic
on the cone Ω0 = {u0 > 0}. Moreover, using the density assumption on Ωn and passing to the limit as
n→∞ we deduce

|Br ∩ Ω0|
|Br|

≤ 1

2
, for every r > 0.

Thus, by the second point of Remark 4.8, up to a change of coordinates we may assume, that Ω0 = {xd >
0} and u0(x) = ax+

d , for some a > 0. By the uniform convergence of un, for every ε > 0 we can find n0

such that
a(xd − ε)+ ≤ un(x) ≤ a(xd + ε)+ for every x ∈ B1, n ≥ n0.
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Applying Theorem 1.1 from [18] we obtain that for n large enough ∂Ωn is C1,α and so 0 ∈ Ω
(1/2)
n . In

particular δn = 0 in contradiction with the initial assumption. �

Lemma 5.4. Let Ω be a solution of (1.1) and U = (u1, . . . , uk) be the vector of the first k eigenfunctions
on Ω. Then the following facts do hold:

(i) For every boundary point x0 ∈ ∂Ω we have that

lim inf
r→0

|Br(x0) ∩ Ω|
|Br|

≥ 1

2
.

(ii) For every γ ≥ 1/2 we have

Ω(γ) =
{
x0 ∈ ∂Ω : lim

r→0
φ(U, x0, r) = Λωdγ

}
,

where we recall that ωd = |B1| and φ(U, x0, r) is the Weiss functional defined in (3.1).
(iii) There is a constant δ > 0 such that

∂Ω =
⋃

γ∈{ 1
2}∪[ 1

2 +δ,1[

Ω(γ).

Proof. (i) Suppose that this is not the case. Then, there is a point x0 = 0 and a sequence rn → 0 such
that

lim
n→∞

|Brn ∩ Ω|
|Brn |

<
1

2
.

Setting Un(x) = 1
rn
U(rnx) and Ωn = {|Un| > 0} we can suppose that Un converges in H1

loc(Rd;Rk)

to a non-zero 1-homogeneous function U0, such that |U0| is a one-homogeneous local minimizer of
the Alt-Caffarelli functional E0. Moreover, we can suppose that the sequence of conic level sets Ωn
converges in L1

loc to the cone Ω0 = {|U0| > 0}. In particular we have

|B1 ∩ Ω0|
|B1|

= lim
n→∞

|B1 ∩ Ωn|
|B1|

= lim
n→∞

|Brn ∩ Ω|
|Brn |

<
1

2
,

which is a contradiction since there cannot be a non-trivial 1-homogeneous harmonic function on a
cone of density less that 1/2.

(ii) Let x0 ∈ ∂Ω. We suppose that x0 = 0 and set φ(r) := φ(U, x0, r). By Proposition 3.1, the limit
lim
r→0

φ(r) does exist. We set γ to be the limit

γ :=
1

Λωd
lim
r→0

φ(r).

On the other hand, consider an arbitrary sequence rn → 0. There is a subsequence, that we still
denote by rn, such that the corresponding blow-up sequence Un(x) := 1

rn
U(rnx) converges locally

uniformly in Rd. Defining φn(r) := φ(Un, 0, r) as in (4.7) we have φn(r) = φ(rrn) and thus, as in
Proposition 4.7,

γ =
1

Λωd
lim
n→∞

φ(rrn) =
1

Λωd
lim
n→∞

φn(r)

=
1

Λωd

[
1

rd

(∫
Br

|∇U0|2 dx+ Λ|{|U0| > 0} ∩Br|
)
− 1

rd+1

∫
∂Br

|U0|2 dHd−1

]
,

(5.5)

where U0 is the blow-up limit of Un. By the 1-homogeneity of U0 and the fact that it is harmonic
on {|U0| > 0} we obtain that

1

rd

∫
Br

|∇U0|2 dx−
1

rd+1

∫
∂Br

|U0|2 dHd−1 = 0.

Thus, by(5.5), Proposition 4.5 (2) and the fact that {|Un| > 0} = rnΩ, we get that

γ =
|{|U0| > 0} ∩Br|

|Br|
= lim
n→∞

|Ωn ∩Br|
|Br|

= lim
n→∞

|Ω ∩Brrn |
|Brrn |

.

Since the sequence rn is arbitrary we have that x0 ∈ Ω(γ), which gives the claim.
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(iii) By the previous point, for every x0 ∈ ∂Ω the limit

1

Λωd
lim
r→0

φ(U, x0, r),

exists and coincides with the density of Ω in x0. By point (i) we have that γ ≥ 1/2. On the other
hand, by Lemma 5.3 we have that γ > 1/2 + δ, which gives the claim.

�

Remark 5.5. We highlight that the claim of Lemma 5.4 (ii) can be restated as follows:

lim
r→0

|Ω ∩Br(x0)|
|Br|

=
1

Λωd
lim
r→0

φ(U, x0, r), for every x0 ∈ ∂Ω. (5.6)

In the next Proposition we show that the regular part of the free boundary is relatively open in the
topological boundary of an optimal set. This is due to a general principle which can be stated as follows:
Suppose that Y ⊂ X is a set for which there exists a function fY : X × [0,+∞)→ [0,+∞) such that:

• the function fY (·, r) : X → [0,+∞) is continuous for every fixed r > 0;
• the function fY (x, ·) : [0,+∞)→ [0,+∞) is continuous and non-decreasing for every fixed x ∈ X;
• Y = {x : fY (x, 0) = 0} and there is δ > 0 such that {x : 0 < fY (x, 0) < δ} = ∅.

Then Y is relatively open in X.
In fact the first two points imply that the function fY (·, 0) : X → [0,+∞) is upper semi-continuous and
this, combined with the last point, gives the conclusion. In our case the situation is slightly different but
follows by the same principle. For sake of completeness we give here an elementary proof in our situation.

Proposition 5.6. Let Ω be a solution of (1.1). Then the regular set Reg(∂Ω) is an open subset of ∂Ω.

Proof. Let x0 ∈ Reg(∂Ω) = Ω(1/2). Suppose that there is a sequence xn ∈ Sing(∂Ω) = ∂Ω \ Ω(1/2) such
that xn → x0. Let U be the vector of the first k eigenfunction on Ω. We set γn to be the limit

γn :=
1

Λωd
lim
r→0

φ(U, xn, r).

Thus by Lemma 5.4 (ii), xn ∈ Ω(γn). Since γn 6= 1/2, by Lemma 5.4 (iii) we have that γn ≥ 1/2 + δ. By
the monotonicity of the function ψn(r) := φ(U, xn, r) + C1r (see Proposition 3.1), we have that

ψn(r)

Λωd
≥ γn ≥

1

2
+ δ , for every r > 0.

On the other hand, fixing r > 0, the function x 7→ φ(U0, x, r) is continuous and so

1

Λωd

(
φ(U, x0, r) + C1r

)
=

1

Λωd
lim
n→∞

{
φ(U, xn, r) + C1r

}
≥ 1

2
+ δ.

Passing to the limit as r → 0 we obtain

lim
r→0

φ(U, x0, r)

Λωd
≥ 1

2
+ δ,

which is in contradiction with the assumption x0 ∈ Ω(1/2). �

5.3. The regular part of the free boundary is Reifenberg flat. In this section we prove the
Reifenberg flatness of the regular set Reg(∂ΩU ) defined in the previous subsection. We recall the definition
of Reifenberg flatness below. For more details on the properties and the structure of the Reifenberg flat
domains we refer to [28] and [34].

Definition 5.7 (Reifenberg flat domains). Let Ω ⊂ Rd be an open set and let 0 < δ < 1/2, R > 0. We
say that Ω is a (δ,R)-Reifenberg flat domain if:

(1) For every x ∈ ∂Ω and every 0 < r ≤ R there is a hyperplane H = Hx,r containing x such that

distH(Br(x) ∩H,Br(x) ∩ ∂Ω) < rδ.

(2) For every x ∈ ∂Ω, one of the connected components of the open set BR(x)∩{x : dist(x,Hx,R) >

2δR} is contained in Ω, while the other one is contained in Rd \ Ω.
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Remark 5.8. We want to highlight here a difference between our approach and the one of Caffarelli,
Shahgholian and Yeressian [15]. In [15, Theorem 5] it was proved that the entire positivity set {|U | > 0}
is an NTA domain (see Definition 5.10), which is a stronger result that can be obtained by applying
the approach of [1] to the first eigenfunction which in our case is strictly positive, Lipschitz continuous
and non-degenerate. On the other hand this result is actually used only at the regular part of the free
boundary, where it is a consequence of the Reifenberg flatness (see Theorem 5.11).

Proposition 5.9. Suppose that Ω is a solution of (1.1) and let x0 ∈ Reg(∂Ω) = Ω(1/2). Then Ω is
Reifenberg flat in a neighborhood of x0.

Proof. Fix δ > 0 to be chosen later. Suppose that Ω is not (δ,R)-Reifenberg flat for any R > 0. Then
there are sequences xn → x0 and rn → 0 such that Ω is not (δ, rn) flat in Brn(xn). Consider the blow-up
sequence

Un(x) := Uxn,rn(x) =
1

rn
U(xn + xrn).

By Proposition 4.5 and Lemma 4.6 we may assume that Un converges uniformly in B1 to a function
U0 : Rd → Rk which is a non-trivial local minimizer for F0. Let φn(r) := φ(Un, 0, r) be the Weiss
functional relative to Un defined in (4.7). Then we have :

• φn(r) = φ(U, xn, rrn) and φ′n(r) ≥ −C1rn, where C1 is the constant from Proposition 3.1 ;
• the limit lim

r→0
φn(r) exists (see Proposition 3.1) and by Lemma 5.4 (ii) we have that

1

Λωd
lim
r→0

φn(r) = lim
r→0

|Ω ∩Brrn(xn)|
|Brrn |

=
1

2
;

• the limit lim
n→∞

φn(r) exists and is given by the function φ0(r) := φ(U0, 0, r) which, for every

r2 > r1 > 0, satisfies (see Proposition 3.3)

φ0(r2)− φ0(r1) =

∫ r2

r1

1

rd+2

∫
∂Br

|x · ∇U0 − U0|2 dHd−1(x) dr. (5.7)

Step 1. We claim that

φ0(r) =
Λωd

2
for every r > 0.

We define ψn(r) = φn(r)+C1rnr = φ(U, xn, rrn)+C1rnr. In particular ψn(r) is a non-decreasing function

in r such that lim
r→0

ψn(r) =
Λωd

2
. We fix ε > 0 and let R > 0 be such that φ(U, x0, R) + C1R ≤

Λωd
2

+ ε

(such an R exists since lim
r→0

φ(U, x0, r) =
Λωd

2
). Since

lim
n→∞

φ(U, xn, R) = φ(U, x0, R),

and the function r 7→ φ(U, xn, r) + C1r is non-decreasing, we have that for n large enough

Λωd
2
≤ φ(U, xn, R) + C1R ≤

Λωd
2

+ ε.

Let n be large enough such that rrn ≤ R. Then we have that

ψn(r) = φ(U, xn, rrn) + C1rrn ≤ φ(U, xn, R) + C1R ≤
Λωd

2
+ ε,

which proves that

lim
n→∞

ψn(r) =
Λωd

2
,

and, in particular, for every r > 0 we have

φ0(r) = lim
n→∞

φn(r) = lim
n→∞

ψn(r) =
Λωd

2
,

which concludes the proof of Step 1.
Step 2. We now prove that, up to a rotation, {|U0| > 0} = {xd > 0}. We first notice that, by (5.7),

U0 is one-homogeneous. On the other hand U0 is harmonic on Ω0 which gives that

1

2
=

1

Λωd
lim
r→0

φ0(r) = lim
r→0

|Ω0 ∩Br|
|Br|

.

Thus after a rotation of the coordinate axes necessarily U0(x) = ξx+
d , for some vector ξ ∈ Rk, which is

non-zero due to Proposition 4.5. In particular, we get that {|U0| > 0} = {xd > 0}.
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We now get the conclusion since, by Proposition 4.5, ∂Ωn converges Hausdorff to {xd = 0} and thus,
for n large enough, Ωn is (δ, 1) flat in the ball B1, which is a contradiction with the initial assumption. �

5.4. The regular part of the free boundary is C∞. In this last section we are finally in a position
to prove our main result, Theorem 1.3. For sake of simplicity we present the results in several steps,
highlighting all the key points of our strategy. First of all, in order to prove C1,α regularity for the
regular part of the boundary, we need first to introduce the notion of NTA, i.e. non-tangentially accessible,
domains. NTA domains were first introduced by Jerison and Kenig in the seminal paper [25] in order to
extend the boundary Harnack principle under minimal geometrical conditions, while Kenig and Toro [28]
proved that a (δ,R)-Reifenberg flat set (with δ sufficiently small) is also NTA. Roughly speaking, an NTA
domain is such that every boundary point is accessible from inside and outside the domain by means of
non-tangential balls. For sake of completeness, though we will just refer to the papers [25, 28] for the
proofs and the details, we give the formal definition of NTA domain and the statements of the main
Theorems.

Definition 5.10. A bounded domain Ω ⊂ Rd is called NTA if there exist constants M > 0 and r0 > 0,
called NTA constants, such that

(1) Ω satisfies the corkscrew condition, that is, given x ∈ ∂Ω and r ∈ (0, r0), there exists x0 ∈ Ω
such that

M−1r < dist(x0, ∂Ω) < |x− x0| < r,

(2) Rd \ Ω satisfies the corkscrew condition,
(3) If w ∈ ∂Ω and w1, w2 ∈ B(w, r0)∩Ω, then there is a rectifiable curve γ : [0, 1]→ Ω with γ(0) = w1

and γ(1) = w2 such that
(i) H1(γ([0, 1])) ≤M |w1 − w2|,

(ii) min {H1(γ([0, t])),H1(γ([t, 1]))} 5Mdist(γ(t), ∂Ω), for every t ∈ [0, 1].

Theorem 5.11 (Reifenberg flat implies NTA, [28, Theorem 3.1]). There exists a δ0 > 0 such that if
Ω ⊂ Rd is a (δ,R)-Reifenberg flat domain for δ < δ0, then it is NTA.

It was proved in [25] that in any NTA domain Ω ⊂ Rd the Boundary Harnack Principle does hold,
that is, if u and v are positive harmonic functions in Ω, vanishing on the boundary ∂Ω ∩Br, then

v

u
is Hölder continuous on Ω ∩Br.

In our setting, there are two main differences. First of all our functions ui, i = 1, . . . , k are not harmonic,
but they solve an eigenvalue problem

−∆ui = λiui in Ω, ui = 0 on ∂Ω,

for some λi > 0. On the other hand, we do not know whether in a neighborhood of a boundary point all
the ui are positive or not; this is an information that we have only on u1, thanks to the non-degeneracy
properties (see Lemma 2.10). The case of eigenfunctions was treated in [34, Appendix A]. Precisely, we
have the following result.

Lemma 5.12 (Boundary Harnack principle for the eigenfunctions on optimal sets). Let Ω be a solution
of (1.1), U = (u1, . . . , uk) be the vector of the first k eigenfunctions on Ω and 0 ∈ Ω(1/2). Then Ω is an
NTA domain in a neighborhood of 0 and there exists β > 0, depending only on the NTA constants, such
that for all i = 2, . . . , k

ui
u1

is Hölder continuous of order β on Ω ∩Br.

In particular, for every x0 ∈ Ω(1/2) ∩Br, the limit

gi(x0) := lim
Ω3x→x0

ui(x)

u1(x)
,

exists and gi : Br ∩ ∂Ω→ R is an β-Hölder continuous function.

Proof. By Proposition 5.6 and Proposition 5.9 we have that ∂Ω = Ω(1/2) and Ω is Reifenberg flat in a
sufficiently small ball Br. The claim follows by [34, Lemma A.2] and [34, Lemma A.3]. �

In the following lemma we show that the first eigenfunction on an optimal set Ω is a solution of a
one-phase free boundary problem.
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Lemma 5.13. Let Ω be an optimal set for (1.1) and let u1 be the first eigenfunction on Ω. Then, for
every x0 ∈ Reg(∂Ω) there is a radius r > 0, a constant 0 < c0 ≤ 1 and a Hölder continuous function
g : Br(x0) ∩ ∂Ω→ [c0, 1] such that u1 is a viscosity solution to the problem

−∆u1 = λ1(Ω)u1 in Ω , u1 = 0 on ∂Ω , |∇u1| = g
√

Λ on Br(x0) ∩ ∂Ω.

Proof. Let x0 = 0 and U = (u1, . . . , uk) be the vector of the first k eigenfunctions on Ω. Let r > 0 be
the radius and gi : Br ∩ ∂Ω→ R, for i = 2, . . . , k be the Hölder continuous functions from Lemma 5.12.
Then we have

ui = giu1 on Br ∩ Ω and u1 = g|U | on Br ∩ Ω,

where we have set

g :=
1√

1 + g2
2 + · · ·+ g2

k

.

We notice that g is a β-Hölder continuous function on Ω∩Br for some β > 0 and is such that c0 ≤ g ≤ 1,
where c0 = 1/C and C is the constant from Lemma 2.10. Suppose now that the function ϕ ∈ C1(Rd)
is touching u1 from below (see Definition 5.1) in a point x0 ∈ ∂Ω ∩ Br. For ρ small enough, there is a
constant C > 0 such that

1

g(x)
≥ 1

g(x0)
− C|x− x0|γ ≥ 0 for every x ∈ Ω ∩Bρ(x0),

and so, setting ψ(x) = ϕ(x)
(

1
g(x0) − C|x− x0|γ

)
, we get that ψ(x0) = |U |(x0) and

ψ(x) ≤ u1(x)

(
1

g(x0)
− C|x− x0|γ

)
≤ |U |(x) for every x ∈ Ω ∩Bρ(x0),

that is in the ball Bρ(x0) we have that ψ touches |U | from below in x0. On the other hand, ψ is
differentiable in x0 and |∇ψ(x0)| = 1

g(x0) |∇ϕ(x0)|. Since U is a viscosity solution of (5.1) we get that

√
Λ ≥ |∇ψ(x0)| = 1

g(x0)
|∇ϕ(x0)|,

which gives the claim, the case when ϕ touches u1 from below being analogous. �

Now the regularity of Reg(∂Ω) follows by the already known results on the regularity of the one-phase
free boundaries (see [18] and the references therein).

Proposition 5.14. Let Ω be a solution of (1.1). Then Reg(∂Ω) = Ω(1/2) is locally a graph of a C1,α

function.

Proof. In view of Lemma 5.13 the claim follows by [18, Theorem 1.1]. �

In order to pass from C1,α to C∞ we need an improved boundary Harnack principle, as it was proved
by De Silva and Savin [20] for harmonic functions. The extension to eigenfunctions can be done as in [34,
Appendix A].

Lemma 5.15 (Improved boundary Harnack principle). Let Ω be a solution of (1.1), U = (u1, . . . , uk)
be the vector of the first k eigenfunctions on Ω and 0 ∈ Reg(∂Ω). There exists R0 < 1/2 such that, if for
r < R0, Reg(∂Ω) ∩Br is of class Ck,α for k ≥ 1, then for all i = 2, . . . , k we have

ui
u1

is of class Ck,α on Ω ∩Br.

In particular, for every x0 ∈ Reg(∂Ω) ∩Br, the limit

gi(x0) := lim
Ω3x→x0

ui(x)

u1(x)
,

exists and gi : Br ∩ ∂Ω→ R is a Ck,α function.

Proof. In order to get the claim, it is enough to apply [20, Theorem 2.4] for the case k = 1 and [20,
Theorem 3.1] for the case k ≥ 2 to the functions u = u1/ϕ0 and v = ui/ϕ0, for all i = 2, . . . , k, for a
suitable ϕ0 chosen following the ideas of [34, Lemma A.2]. More precisely, we take R0 > 0 such that
there exists ϕ0 ≥ 0 a nontrivial function satisfying

−∆ϕ0 = λ1(Ω)ϕ0, in B3R0 , ϕ0 = 0 on ∂B3R0 .
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Then ϕ0 > 0 in B2R0
and we have that u1/ϕ0 and ui/ϕ0 solve the equation

div

(
ϕ2

0∇(
u1

ϕ0
)

)
= 0, div

(
ϕ2

0∇(
ui
ϕ0

)

)
= (λi(Ω)− λ1(Ω))uiϕ0 in B2R0 ∩Reg(∂Ω).

�

At this point we are in position to prove the full regularity of Reg(∂Ω).

Proposition 5.16. Let Ω be a solution of (1.1). Then Reg(∂Ω) = Ω(1/2) is locally a graph of a C∞

function.

Proof. The smoothness of the free boundary follows by a bootstrap argument as in [29]. Let us assume
that Reg(∂Ω) is locally Ck,α regular for some k ≥ 1, the case k = 1 being true thanks to Proposition 5.14.
We will prove that Reg(∂Ω) is locally Ck+1,α. By Lemma 5.13 the first eigenfunction u1 is a solution to
the problem

−∆u1 = λ1(Ω)u1 in Ω , u1 = 0 on Reg(∂Ω) , |∇u1| = g
√

Λ on Reg(∂Ω).

Now thanks to Lemma 5.15 and the definition of g we have that g is a Ck,α function. Now by [29, Theorem
2] we have that Reg(∂Ω) is locally a graph of a Ck+1,α function, and this concludes the proof. �

5.5. Dimension of the singular set. In this last subsection we discuss the dimension of the singular
set Sing(∂Ω) = ∂Ω \Reg(∂Ω). We first notice that Hd−1(Sing(∂Ω)) = 0.

Remark 5.17 (The singular set has Hd−1-measure zero). We recall that, if Ω is a solution of (1.1),
then the De Giorgi perimeter of Ω is finite, P (Ω) < +∞. In particular, by the Federer’s Theorem (see,
for example, [3, Theorem 3.61]) we obtain

Hd−1
(
Rd \ (Ω(1) ∪ Ω(0) ∪ Ω(1/2))

)
= 0. (5.8)

On the other hand, by the density estimate Lemma 2.11, we have that

∂Ω = Rd \ (Ω(1) ∪ Ω(0)),

which together with (5.8) gives

Hd−1
(
Sing(∂Ω)

)
= Hd−1

(
∂Ω \Reg(∂Ω)

)
= Hd−1

(
∂Ω \ Ω(1/2)

)
= 0.

The above result concerning the “smallness” of the singular set can be improved in the following form.

Proposition 5.18. Let Ω be a solution of (1.1). There exists a critical dimension d∗ ∈ [5, 7] such that
Ω has the following property:

(a) If d < d∗, then Sing(∂Ω) is empty,
(b) If d = d∗, then the singular set Sing(∂Ω) contains at most a finite number of isolated points,
(c) If d > d∗, then the Hausdorff dimension of Sing(∂Ω) is less than d− d∗, that is, for every s > 0 we

have that Hd−d∗+s(Sing(∂Ω)) = 0.

We recall that d∗ is the lowest dimension at which the free boundaries ∂{u > 0} of the (one-
homogeneous) local minimizers u of the functional

H1
loc(Rd) 3 u 7→ E0(u) =

∫
|∇u|2 dx+ |{u > 0}|,

admit singularities. This is related but slightly different from the case of minimal surfaces, since in our
situation we have more information than the minimality with respect to the area. Moreover, while in the
theory of minimal surfaces it is well-known that the critical dimension is precisely 8 (thanks to the works
of Simons [36] and Bombieri, De Giorgi, Giusti [4]), up to our knowledge (see, for example, [19] and the
recent [26]) it is only known that d∗ ∈ [5, 7]. A reasonable conjecture, suggested by the techniques used
in [13], is that d∗ = 7.

The kind of stratification result above is nowadays rather standard in the theory of minimal surfaces
and it can be proved in many ways, for example by applying the well-known Federer’s reduction principle
(see, for example [35, Appendix A]). On the other hand, we will follow the approach of Weiss [39, Section
4], which comes directly from the book of Giusti [22]. The rest of the section is dedicated to the proof of
Proposition 5.18.
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Proof of Proposition 5.18 (a). Let U = (u1, . . . , uk) be the vector of the first k eigenfunctions on Ω.
Let x0 ∈ ∂Ω and U0 ∈ BUU (x0). By Proposition 4.2 we have that |U0| is a local minimizer of the scalar
Alt-Caffarelli functional. Since d < d∗, we have that 0 is a regular point for ∂{|U0| > 0}, and in particular
it has density 1/2. Thus Ω also has density 1/2 in x0, that is

lim
r→0

|Ω ∩Br(x0)|
|Br|

= lim
r→0

|{|U0| > 0} ∩Br(x0)|
|Br|

=
1

2
,

which finally gives that x0 ∈ Reg(∂Ω). Since x0 is an arbitrary point of the free boundary, we obtain
that ∂Ω = Reg(∂Ω) and Sing(∂Ω) = ∅. �

For the proof of (b) and (c) we will need some preliminary results.

Lemma 5.19. Suppose that U ∈ H1(Rd;Rk) is a Lipschitz continuous function, satisfying the quasi-
minimality condition (2.1). There are constants δ0 and r0 such that :

If x0 ∈ ∂ΩU and r ≤ r0 are such that φ(U, x0, r) ≤
1

2
+ δ0 , then x0 ∈ Reg(∂ΩU ),

where ΩU = {|U | > 0}, Reg(∂ΩU ) = Ω
(1/2)
U and φ(U, x0, r) is the Weiss functional from (3.1).

Proof. Suppose that x0 ∈ ∂ΩU is such that φ(U, x0, r) ≤
1

2
+ δ0 and let C1 be the constant from

Proposition 3.1. Then the function r 7→ φ(U, x0, r) + C1r is non-decreasing and so, taking into account
the fact that the density is the limit of the Weiss functional (5.6), we obtain

lim
r→0

|Ω ∩Br(x0)|
|Br|

= lim
r→0

φ(U, x0, r) ≤
1

2
+ δ0 + C1r0.

Choosing, δ0 and r0 such that δ0 + C1r0 ≤ γ where γ is the constant from Lemma 5.3, we get the claim
by Lemma 5.4. �

Proof of Proposition 5.18 (b). We argue as in [39, Theorem 4.1]. Suppose that there are infinite
points in Sing(∂Ω). Then there is a sequence xn ∈ Sing(∂Ω) such that:

xn → x0 ∈ Sing(∂Ω) , rn := |xn − x0| → 0 , Un(x) :=
U(xn + rnx)

rn
→ U0(x) ∈ BUU (x0).

We set Ω0 = {|U0| > 0} and we consider two cases:

Case 1 : Sing(Ω0) \ {0} 6= ∅. Then there is a point ξ0 ∈ Sing(Ω0) \ 0 and by the one-homogeneity of
u0 := |U0| we have that every point of the form tξ0, for t > 0, is a singular point for Ω0. We can now
apply directly [39, Theorem 4.1] to obtain a contradiction.

Case 2 : Sing(Ω0) \ {0} = ∅. Let ξn =
xn − x0

rn
∈ ∂B1. Up to a subsequence we may suppose that

ξn converges to a point ξ0 ∈ ∂B1. Now since ξ0 is a regular point for Ω0, we can find some r > 0 small
enough such that

φ(U0, ξ0, r) ≤
1

2
+
δ0
3
,

where δ0 is the constant from Lemma 5.19. Since U0 is the limit of the blow-up sequence Un, by
Proposition 4.5 we have that φ(Un, ξ0, r)→ φ(U0, ξ0, r). Thus for n large enough we have that

φ(Un, ξ0, r) ≤
1

2
+
δ0
2
.
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Let us set for simplicity L = ‖∇U‖L∞ , in particular, we have also that L = ‖∇Un‖L∞ , for every n ∈ N.
We now notice that by the definition of φ we have the inequality

φ(Un, ξn, r) =
1

rd

∫
Br(ξn)

[
|∇Un|2 + Λ1Ωn

]
dx− 1

rd+1

∫
∂Br(ξn)

|Un|2 dHd−1

≤ 1

rd

∫
Br(ξ0)

[
|∇Un|2 + Λ1Ωn

]
dx+ ωd(L

2 + Λ)
(r + |ξn − ξ0|)d − (r − |ξn − ξ0|)d

rd

− 1

rd+1

∫
∂Br(ξ0)

|Un|2 dHd−1 +
dωd
r

2L2|ξn − ξ0| (5.9)

≤ φ(Un, ξ0, r) + ωd(L
2 + Λ)d2d

|ξn − ξ0|
r

+
dωd
r

2L2|ξn − ξ0|

= φ(Un, ξ0, r) + dωd(2
d+1L2 + Λ)

|ξn − ξ0|
r

,

where in the last inequality we used that, for n large, |ξn−ξ|r < 1/2. Now choosing, n large enough we
get that

φ(Un, ξn, r) ≤
1

2
+ δ0,

which is impossible since Un satisfies the conditions of Lemma 5.19, but ξn is a singular point for Un by
hypothesis. �

In order to prove Proposition 5.18 (c), we need another preliminary result analogous to [39, Lemma
4.2]. The main difference is that, instead of applying the epsilon regularity result [2, Theorem 8.2], we
have at our disposal Lemma 5.19 which, in fact, is an epsilon regularity result expressed in terms of the
Weiss functional φ.

Lemma 5.20. Let U ∈ H1(Rd;Rk) be a Lipschitz continuous function, ‖∇U‖L∞ = L < +∞, satisfying
the quasi-minimality condition (2.1). Let ΩU = {|U | > 0}, x0 ∈ ∂ΩU and U0 ∈ BUU (x0). Let rn be an

infinitesimal sequence and Un(x) :=
1

rn
U(xn + rnx) the corresponding blow-up sequence with center x0

converging to U0. Let Ωn := {|Un| > 0} and Ω0 := {|U0| > 0}. Then, for every compact set K ⊂ Rd and
every open set D such that Sing(∂Ω0)∩K ⊂ D, there is some n0 > 0 such that Sing(∂Ωn)∩K ⊂ D, for
every n ≥ n0.

Proof. Suppose for the sake of contradiction that this is not the case. Then, there is a sequence xn ∈
Sing(∂Ωn) ∩ K \ D converging to some x0 ∈ Sing(∂Ω0) ∩ K ⊂ D. We notice that by the Hausdorff
convergence of the free boundaries (see Proposition 4.5), we have necessarily x0 ∈ ∂Ω0 and so x0 ∈
Reg(Ω0). Thus, we can fix some 0 < r < r0 such that

φ(U0, x0, r) ≤
1

2
+
δ0
3
,

where φ is the Weiss functional and r0, δ0 are the constants from Lemma 5.19. By the convergence of Un
to U0 we have that for n large enough

φ(Un, x0, r) ≤
1

2
+
δ0
2
.

Now, using the estimate (5.9) for xn and x0 instead of ξn and ξ0 we have that for n large enough

φ(Un, xn, r) ≤ φ(Un, x0, r) + dωd(2
d+1L2 + Λ)

|ξn − ξ0|
r

≤ 1

2
+ δ0.

Now, by Lemma 5.19 we have that xn ∈ Reg(∂Ωn) in contradiction with the initial assumption. �

Proof of Proposition 5.18 (c). Suppose that for some s > 0 we have Hd−d∗+s(Sing(∂Ω)) > 0. By
Lemma 5.20, [39, Lemma 4.3] and [39, Lemma 4.4] we have that there is some point x0 ∈ ∂Ω and a
blow-up limit U0 ∈ BUU (x0) such that the set Ω0 = {|U0| > 0} satisfies Hd−d∗+s(Sing(∂Ω0)) > 0. Since
|U0| is a minimizer of the scalar Alt-Caffarelli function E0, this is in contradiction with the dimension of
the singular set of ∂Ω0 (see [39, Theorem 4.5]). �

6. A free-boundary problem for vector-valued functions. Proof of Theorem 1.4

In this final Section we prove Theorem 1.4 following step by step the proof of Theorem 1.3.
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6.1. Existence. The existence of a solution of (1.6) follows by a standard argument in the calculus of
variations; the proof is precisely the same as in the scalar case (see [2, Theorem 1.3]). From now on we
suppose that the vector-valued function U = (u1, . . . , uk) ∈ H1(D;Rk) is a solution of (1.6) and we set
Ω = {|U | > 0}. As in the scalar case, each component of U is harmonic on Ω.

6.2. Lipschitz continuity of the minimizers. Let i ∈ {1, . . . , k} and let Br ⊂ D for some r > 0.
Then the optimality of U implies that for every function ũi such that ũi − ui ∈ H1

0 (Br) we have∫
|∇ui|2 dx+ Λ|{u2

1 + · · ·+ u2
i + · · ·+ u2

k > 0}| ≤
∫
|∇ũi|2 dx+ Λ|{u2

1 + · · ·+ ũ2
i + · · ·+ u2

k > 0}|,

which gives that∫
|∇ui|2 dx ≤

∫
|∇ũi|2 dx+ Λ|Br| for every ũi such that ũi − ui ∈ H1

0 (Br),

that is each component ui is a quasi-minimizer of the Dirichlet energy. Applying [9, Theorem 3.3] we get
that ui, and so U , is Lipschitz continuous in D. In particular, Ω is open and u1 > 0 in Ω.

6.3. Non-degeneracy of U . We first notice that U satisfies the condition (2.9) in D with K = 0

and there is no restriction on the perturbations Ũ , formally ε = +∞. Thus, we can apply Lemma 2.6
obtaining that there are contants c0 > 0 and r0 > 0, depending on d and Λ such that for every x0 ∈ D
and 0 < r ≤ inf{r0,dist(x0, ∂D)} the following implication holds:(

‖U‖L∞(B2r) < c0r
)
⇒
(
U ≡ 0 in Br(x0)

)
.

As in Section 2 it is straightforward to deduce that

• |U | is subharmonic, that is ∆|U | ≥ 0 on D (see Remark 2.7);
• |U | ≤ Cu1 on Ω, for some constant C > 0 (see Lemma 2.10; notice that the fact that ∆U = 0 in

Ω significantly simplifies the proof since this time we can take v = |U | and avoid the questions
involving the non-degeneracy of |∇U |);
• there are constants r0 > 0 and ε0 > 0 such that Ω satisfies the density estimate (see Lemma 2.11)

ε0|Br| ≤
∣∣Ω ∩Br(x0)

∣∣ ≤ (1− ε0)|Br|, for every x0 ∈ ∂Ω ∩D and r ≤ r0.

6.4. Weiss monotonicity formula. The functional φ(U, x, r) defined in (3.1) is monotone with respect
to r and satisfies the inequality

d

dr
φ(U, x, r) ≥ 1

rd+2

k∑
i=1

∫
∂Br(x)

|x · ∇ui − ui|2 dx,

for every r > 0 such that Br(x) ⊂ D and x ∈ ∂Ω. For the proof we refer to Proposition 3.3.

6.5. Structure of the blow-up limits. Setting Ur,x0(x) = 1
rU(x0 + rx) we have that, up to a subse-

quence rn → 0, Urn,x0 converges to a function U0 : Rd → Rk (see Proposition 4.5). The structure of the
blow-up limits is precisely the one described in Proposition 4.2, that is the blow-up limit U0 is of the
form U0 = ξ0|U0| with ξ ∈ ∂B1 ⊂ Rk and u = |U0| being a one-homogeneous non-trivial global minimizer
of the scalar Alt-Caffarelli functional F0 in the sense of Definition 3.2. The proof is precisely the same
as in the case of the spectral functional (we notice that Section 4 concerns only functions satisfying the
more general quasi-minimality condition (2.1)) and is based on the Weiss’ monotonicity formula and on
the Lipschitz continuity and the non-degeneracy of the minimizer U .

6.6. Regularity of the free boundary. The regularity of the free boundary is based on the fact that
U is a viscosity solution (in sense of Definition 5.1 with λ1 = · · · = λk = 0) to the problem

∆U = 0 in Ω, U = 0 on ∂Ω ∩D, |∇|U || =
√

Λ on ∂Ω ∩D.

The proof is precisely the one of Lemma 5.2 and is based on the structure of the blow-up limits described
above. All the results in the rest of Section 5 hold true in this setting.

• Lemma 5.4 holds for the solutions of (1.6) and the density of the set Ω = {|U | > 0} is determined
by the monotone function φ, that is

lim
r→0

|Ω ∩Br(x0)|
|Br|

=
1

Λωd
lim
r→0

φ(U, x0, r), for every x0 ∈ ∂Ω ∩D.
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• The regular part of the free boundary, defined as Reg(∂Ω) = Ω(1/2), is an open subset of ∂Ω∩D.
The proof of this fact is given in Proposition 5.6 with the additional simplification due to the fact
that C1 = 0 and φn = ψn.
• The set Ω is Reifenberg flat in a neighborhood of any point x0 ∈ Reg(∂Ω). The proof is given in

Proposition 5.9 where again we have C1 = 0 and φn = ψn.
• The Reifenberg flatness of Reg(∂Ω) together with [28, Theorem 3.1] and [25] imply that the set

Ω satisfies a Boundary Harnack Principle at the flat free boundary points. Now the positivity of
u1 and the optimality condition |∇|U || =

√
Λ give that u1 is a viscosity solution of the problem

∆u1 = 0 in Ω , u1 = 0 on ∂Ω ∩D, |∇u1| = g
√

Λ on Reg(∂Ω),

where g : Ω→ R is a smooth function with a C0,α extension to Reg(∂Ω). For the proof we refer
to Lemma 5.13. We notice that the optimality condition in viscosity sense can be alternatively
stated as

∆u1 = 0 in Ω , u1 = 0 on ∂Ω ∩D, |∇u1| = g
√

Λ on ∂Ω ∩D.

In fact, if a smooth test function touches u1 in a boundary point, then this point is necessarily
part of the regular free boundary Reg(∂Ω).
• Applying [18, Theorem 1.1] we get that Reg(∂Ω) is locally a graph of a C1,α function. By the

improved boundary Harnack principle of De Silva and Savin [20] for harmonic functions (see
Lemma 5.15), we get that Reg(∂Ω) is C∞. The estimate of the dimension of the singular set
Sing(∂Ω) = ∂Ω \Reg(∂Ω) is classical and we refer to Subsection 5.5 for more details.
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