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REGULARITY OF THE OPTIMAL SETS FOR SOME SPECTRAL FUNCTIONALS

DARIO MAZZOLENI, SUSANNA TERRACINI, BOZHIDAR VELICHKOV

ABSTRACT. In this paper we study the regularity of the optimal sets for the shape optimization problem
min {)\1(9) + -+ A () - QC R open , Q] = 1},

where Aq1(-),...,Akx(-) denote the eigenvalues of the Dirichlet Laplacian and | - | the d-dimensional
Lebesgue measure. We prove that the topological boundary of a minimizer 2} is composed of a relatively
open regular part which is locally a graph of a C°° function and a closed singular part, which is empty
if d < d*, contains at most a finite number of isolated points if d = d* and has Hausdorff dimension
smaller than (d — d*) if d > d*, where the natural number d* € [5,7] is the smallest dimension at which
minimizing one-phase free boundaries admit singularities.

To achieve our goal, as an auxiliary result, we shall extend for the first time the known regularity
theory for the one-phase free boundary problem to the vector-valued case.

CONTENTS

(L.__Introductionl 2
[2." Properties of the eigentunctions on the optimal sets| 6
[2.1.  Quasi-minimality of the eigenfunctions| 7
[2.2. Non-degeneracy of the eigenfunctions| 10
[2.3. Deunsity estimate and non-degeneracy of the first eigenfunction] 13
[3. Weiss monotonicity formula 15
[4. Blow-up sequences and blow-up limits| 17
[5.  Regularity of the tree boundary] 23
[5.1.  The optimality condition on the free boundary] 23

2. i 24
5.3. e regular part of the free boundary is Reitenberg flat 26
[5.4.  'T'he regular part of the free boundary is C'*°| 28
[5.5.  Dimension of the singular set| 30
[6. A free-boundary problem for vector-valued functions. Proof of Theorem |1.4] 32
6.1.  Existencel 33
[6.2.  Lipschitz continuity of the minimizers| 33
[6.3.  Non-degeneracy of U] 33
[6.4. Weiss monotonicity formula 33
[6.5.  Structure of the blow-up limits| 33
[6.6.  Regularity of the free boundary| 33
[References| 34

Date: April 20, 2018.

1991 Mathematics Subject Classification. 49Q10 (35R35, 47A75, 49R05).

Key words and phrases. Shape optimization, Dirichlet eigenvalues, optimality conditions, regularity of free boundaries,
viscosity solutions.

Acknowledgments. D. Mazzoleni and S. Terracini are partially supported ERC Advanced Grant 2013 n. 339958
Complex Patterns for Strongly Interacting Dynamical Systems - COMPAT, by the PRIN-2012-74FYK?7 Grant Variational
and perturbative aspects of nonlinear differential problems. B. Velichkov was partially supported by the project AGIR 2015
Méthodes variationnelles en optimisation de formes-VARIFORM
We thank Dorin Bucur and Guido De Philippis for some useful discussions on the topic of this paper. In particular, Dorin
Bucur showed us the importance of the Weiss monotonicity formula and the radial extension from Lemma [3.4] Guido De
Philippis pointed the paper [20] out to us.



2 DARIO MAZZOLENI, SUSANNA TERRACINI, BOZHIDAR VELICHKOV

1. INTRODUCTION

Functionals involving the eigenvalues of the Laplacian are the object of a growing interest in the analysis
of PDEs from Mathematical Physics. Particularly challenging are the links between the spectrum of the
Laplace operator and the geometry of the domain, a typical example being the Weyl asymptotic law. In
this paper we study the regularity properties of the sets  that minimize the sum A1 (Q) 4 - - - 4+ A (Q) of
the first k eigenvalues of the Dirichlet Laplacian among all sets of fixed volume. That is, we are interested
in the solutions of the shape optimization problem

min{)\l(Q)+~--+)\k(Q) . Q c R? open , |Q|:1}, (1.1)

where A1(Q) < - < XN(Q) < - < A(Q), for @ = 1,...,k, denote the eigenvalues of the Dirichlet
Laplacian on the set 2 counted with the due multiplicityﬂ

From the point of view of the shape optimization theory, problem is a special model case of the
more general spectral optimization problem

min{F(Al(Q),...,Ak(Q)) L QCRY Q| = 1}, (1.2)

where the cost function is defined through a function F : R* — R. The optimization problems of the
form naturally arise in the study of physical phenomena as, for example, heat diffusion or wave
propagation inside a domain Q C R¢, for a detailed introduction to the topic we refer to the books
[7, 24, 23]. The solution of is known explicitly only in the special cases F(\1,...,A\x) = A; and
F(A1,..., k) = Ag. For more general functionals the existence of a solution in the class of quasi-open
seteﬁ was first proved by Buttazzo and Dal Maso in [I0] for F' increasing in each variable and lower
semi-continuous, under the assumption that the candidate sets 2 are all contained in a bounded open
set D C RY. This last assumption was later removed by Bucur in [6] and Mazzoleni and Pratelli in [33].

The regularity of the optimal sets and of the corresponding eigenfunctions turns out to be a rather
difficult issue, due to the min-max nature of the spectral cost functionals, and was an open problem since
the general Buttazzo-Dal Maso existence theorem. The only known result prior to the present paper
concerning the regularity of the free boundary of the optimal sets is due to Briangon and Lamboley [5]
who prove that the optimal sets for the problem

min {A;(2) : © C D open, [ =1}, (1.3)

in a bounded open set D C R have smooth boundary up to a set of finite (d — 1)-dimensional Hausdorff
measure. Based on the techniques introduced in the seminal paper of Alt and Caffarelli [2], this result
depends strongly on the fact that the first eigenvalue is the minimum of the variational problem

Al(Q):min{/ Vul?dz ueHg(Q),/ u2dx:1}
Rd Rd

and so the shape optimization problem (|1.3)) can be written as a one-phase free boundary problem

min{/ |Vu|? de + Al{u > 0}| : u € HY(D), / uzd:vzl},
D D

where the level set {u > 0} corresponds to Q and A is a Lagrange multiplier. The extension of this result
to the general case of functionals involving higher eigenvalues presents some major difficulties since the
higher eigenvalues are variationally characterized through a min-max procedure and thus it is not possible
to reduce the shape optimization problem to a one-phase free boundary problem. Nevertheless, some
properties of the optimal sets were deduced in [6], [33], [8] and [9], as for example the fact that they are
bounded, have finite perimeter and Lipschitz continuous eigenfunctions. We summarize the known results
for the functional F()\l(Q), el )\k(Q)) =X (Q) + -+ A (Q) in the following theorem.

Theorem 1.1. (i) (Buttazzo-Dal Maso [10]) Given a bounded open set D C R%, there is a solution to
the shape optimization problem

min{)\l(Q) +- 4+ M(Q) : QC D quasi-open, || = 1}.
IWe recall that on an open set of finite volume the Dirichlet Laplacian has compact resolvent and its spectrum is real

and discrete.
2A quasi-open set is a level set {u > 0} of a Sobolev function u € H! (]Rd). In particular, every open set is also quasi-open.
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(i1) (Bucur [0]; Mazzoleni-Pratelli [33]) There is a solution to the shape optimization problem
min {/\1(9) + o+ X(Q) 2 Q CRY quasi-open, Q] = 1}. (1.4)

Moreover every solution Q* of (1.4]) is bounded.
(iti) (Bucur [6]) Every solution Q* of (L.4) has finite perimeter.

(v) (Bucur-Mazzoleni-Pratelli-Velichkov [9]) Let Q* be a solution of (1.4). Then the first k normalized
eigenfunctions uy, . .., u, on ¥, extended by zero over R? \ Q*, are Lipschitz continuous on RY and
|Vuil| e < Cap, for every i = 1,...,k, where Cyqy, is a constant depending only on k and d. In
particular, every solution of is an open set and is also a solution of .

The aim of this paper is to prove that the boundary of the optimal sets, solutions of (|L.1f), is regular
up to a set of lower dimension, precisely we prove that (2* is d*-regular in the sense of the following
definition.

Definition 1.2. We call a set Q C R? d*-regular if ) is the disjoint union of a regular part Reg(9Q)
and a (possibly empty), singular part Sing(0Y) such that:

o Reg(09) is an open subset of O and locally a C>° hypersurface of codimension one;

o Sing(0) is a closed subset of 0 and has the following properties:
— Ifd < d*, then Sing(0R) is empty,
— Ifd = d*, then the singular set Sing(0Y) contains at most a finite number of isolated points,
— If d > d*, then the Hausdorff dimension of Sing(0Q) is less than d — d*.

In our work, d* is the smallest dimension at which the free boundaries of the local minima of scalar
the one-phase functional

w /|Vu\2dac+ {u> 0},

admit singularities. Up to our knowledge d* € [5,7], see [I9] and the recent work [26]. The main result
of the paper is the following.

Theorem 1.3. Let the open set QF C R? be an optimal set for problem (L.1)). Then Qf is connected and

d*-regular. Moreover the vector U = (uq,...,ux) of the normalized eigenfunctions is such that |U| has a
C' extension on the reqular part of the free boundary and satisfies the optimality condition
|VIU|| = VA on  Reg(Q}), (1.5)
9 F
where the constant A is given by A = P Z ().
i=1

Proof of Theorem [I.3] The fact that Q} is connected will be proved in Corollary The regular part
of the free boundary will be the object of Proposition and of Proposition while for the singular
part we refer to Proposition The extremality condition is a consequence of the optimality
condition in viscosity sense (see Lemma and the fact that V|U]| is well defined on the regular part of
the free boundary. O

In order to prove Theorem we first show that the vector of eigenfunctions U = (uq,...,ux) is a
local quasi-minimizer of the vector-valued functional

H'RERF) 5V / IVV|?dz + A|{|V]| > 0},
Rd
that is, U is a local minimizer of the functional
H'RGRY) 5V e (1 + K|V - U||L1) / IVV[2 da + A[{[V] > 0}
Rd

Our proofs mostly rely on the free boundary approach for this shape optimization problem, suitably
modifying many seminal ideas from [34] 2 39], that we are extending for the first time to the vectorial
case. The intrinsic differences are mainly related with the vectorial nature of the variable U. This causes
a number of new difficulties, starting from the non-degeneracy at the boundary, the classification of conic
blow-ups, the validity and consequences of the extremality condition in a proper sense. We first use
a Weiss-like monotonicity formula to classify the boundary points through a blow-up analysis. Then,
a key point of our argument is to prove an optimality condition for |U| on the boundary, which
is fulfilled in a proper viscosity sense. In the scalar case this is a well-established approach, for which
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classical references are [I1], 2], which however cannot be easily reproduced in the vectorial case. Next,
in order to reduce our problem to a scalar one, we need to compare the boundary derivatives of the
different components involved in the optimality condition. We first prove that the regular part of the free
boundary is Reifenberg flat, which implies that it is an NTA domain, following the works by Kenig and
Toro [27, 28]. For NTA domains, Jerison and Kenig [25] proved a boundary Harnack inequality, which is
enough for our aims. Then we are able to obtain an optimality condition which involves only u; on the
regular part of the free boundary and then apply the classical results to obtain C™® regularity. In order
to get C*° regularity with a bootstrap argument, we need an improved boundary Harnack principle [20],
which allows us to use the general result by Kinderlehrer and Nirenberg [29] on the one-phase problem
for uy, which otherwise would not work directly in the vectorial setting. Finally, the analysis of the
dimension for the singular set follows as in [39, Section 4] by an adaptation of the classical arguments
from the theory of minimal surfaces.

Further remarks and comments. As a consequence of the regularity theory developed for vector-
valued functions, we obtain an auxiliary regularity result, which better highlights the analogy with the
free boundary problem studied by Alt and Caffarelli [2] and Weiss [39]. We note that the extension to the
vectorial case that we are able to prove still requires one function to have a positive trace (and so to be
positive in the interior). A major open problem, up to our knowledge, is to prove Theorem with all
the ¢; changing sign on dD. How to deduce Theorem [I.4] from our arguments is explained in Section [6]

Theorem 1.4. Let D C R? be an open set with smooth boundary, A > 0, and let ¢1, ..., ¢, € C°(OD)
be given functions, with ¢1 > 0 on OD. Then, there is a solution U = (uy,...,ux) € H'(D;RF) to the
problem

min{/D|VU|2da:+A|{|U| >0}, U e HY(D;R¥), u; = ¢; on 9D, Vi = 1k} (1.6)

Moreover, for every solution U = (u1,...,uy) the set {|{U]| > 0} is d*-regular and the optimality condi-
tion (1.5)) holds on the regular part of the free boundary.

Remark 1.5. We highlight that in Theorem above, the hypothesis ¢1 > 0 is not the optimal one. In
fact it is sufficient to suppose that, in each connected component of the open set {|U| > 0}, there is at
least one component u; of the vector U which is positive. This holds for example if all ¢; are non-negative
(as it is required in [15] ).

Our results can be extended to the case of smooth functionals F(Aq,..., ;) which are invariant
under permutations of the variables and non-decreasing in each variable. The sum of powers of the first k&
eigenvalues for example is of great interest also from the point of view of applications to the Lieb—Thirring
theory, as it is explained by Lieb and Loss in [32] Chapter 12], and it can be considered a more natural
functional to study than the lone g, when one has in mind, for example, the Lieb—Thirring inequalities.
An extension of Theorem to more general functionals of eigenvalues of the form (still involving
A1) can be proved starting from the techniques of this work with some careful approximation procedures
and will be the object of a forthcoming paper.

An alternative approach to the regularity of its solutions would be to see (|1.1)) as a two-partition prob-
lem of R? with the Lebesgue measure being the cost functional for one of the two competing populations
and the sum of the eigenvalues the cost functional for the other one. Indeed, functionals involving higher
eigenvalues were successfully treated in the framework of the optimal partition problems, for example in
the recent work [34] (see also [38]), where it is proved the existence of an optimal regular partition, i.e.
with free boundary that is C'® regular, up to a set of Hausdorff dimension less than d —2. Unfortunately,
some key techniques used for partitions fail when dealing with . For example, we are not able to
establish an Almgren monotonicity formula, which is one of the principal tools used in [34]. This is due,
mainly, to the measure term, which does not seem to behave well with the quantities involved in the
Almgren quotient.

As it was proved in [6] an optimal set QF for has finite perimeter P(€2}) < co. This means that
there is a constant P > 0 such that 2} is also a solution to the problem

min{)\l(Q)+~-~+>\k(Q) L QCRY, QI =1, P(Q):P}.

Unfortunately, up to our knowledge, there is no way to directly replace the condition P(2) = P by
a (non-zero) Lagrange multiplier or to reasonably approximate Q) by optimal sets for the functional
A(Q) 4+ - 4+ A () + AP(Q), for which a regularity theory was developed in [I7] (see also []]).
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Remark 1.6. The study of the optimal sets for the problem might suggest a new approach to some
inequalities involving the spectrum of the Dirichlet Laplacian, as the well-known Li-Yau inequality [31],
or to more refined lower bounds on A\1(Q) 4+ -+ 4+ Ap(Q) in terms of the geometry of Q, as for example
the ones suggested by the Weyl’s asymptotic expansion.

Plan of the paper. In Section [2] we deal with the quasi-minimality of the eigenfunctions for a more gen-
eral free boundary problem and then we provide some non-degeneracy and density estimates. In Section [3]
we prove a monotonicity formula in the spirit of Weiss [39]. In Section |4| we perform the analysis of the
blow-up limits and prove their optimality and 1-homogeneity. Finally, in Section [5| we are ready to prove
the regularity of the free boundary. We study the optimality condition in the viscosity sense, we identify
the regular and singular part of the topological boundary and then we reduce ourselves to a problem with
only one non-negative function and apply the regularity result for the classical Alt-Caffarelli free bound-
ary problem. At the end we provide the estimates on the Hausdorff dimension for the singular part of
the boundary. Section[f]is devoted to highlight how with a similar scheme also Theorem|[I.4]can be proved.

Note. After the submission and the upload on arXiv of this paper, we discovered the preprint [I5] by
Caffarelli-Shahgholian-Yeressian, which appeared few days before ours. Our Theorem is very similar
to their main result, which requires the additional hypothesis that all ¢; are non-negative. We stress that
the two teams agreed that they worked in a completely independent way.

A recent preprint [30] by Kriventsov-Lin appeared on arXiv few days later than ours. It contains a
result similar to our Theorem for a slightly more general class of functionals. We point out that our
result is stronger: whereas we prove C'*° regularity of the free boundary, up to a d — 5 dimensional set,
they prove only C''® regularity up to a d — 3 dimensional set, with completely different techniques.

Preliminaries and notations. We will denote by d the dimension of the space and by C; a generic
constant depending only on the dimension. For z = (z1,...,24) € R? and r > 0 we will denote by B, (z)
the ball centered in x of radius r with respect to the Euclidean distance |y| = (y? + --- + y2)'/2. We
will use the notation B,., when the ball is centered in zero. For a generic measurable set Q C R9, by |Q)]
we denote the Lebesgue measure of €, while for the measure of the unit ball B; C R? we will use the
notation wy. For a point zo € R? we recall that the density of the measurable set € in ¢ is given by

. QN By(x0)]
B
whenever the above limit exists. We recall the classical notation
. |QN By (x)]
() . { d . i 120 Brlzo)| _ }

Q. ro € R® }11}1}) B Y,
for the set of point of density v € [0,1]. For a > 0 we will denote by H* the a-dimensional Hausdorff
measure, for example the surface area of the unit sphere is H?~1(0B;) = dwq. By dy (A, B) we denote
the Hausdorff distance between the sets A, B C R,

dy (A, B) := max {sup {dist(a, B)};sup {dist(b, A)}},
a€A beB

where for € R? and A C R? we set dist(x, A) = inf,ca |z — y|.
For an open set Q € R? we denote with H}(2) the Sobolev space obtained as a closure of the
smooth real-valued functions with compact support C°(€2) with respect to the Sobolev norm ||ul/g1 =

1/2
(/ |Vul|? de —l—/ u? dx) . For a vector valued function U = (uy,...,ux) : Q@ — R* we will say that
Q Q

U € H}(Q;R¥) if all of its components are Sobolev, u; € HE(Q) for every i = 1,...,k,. Thus we have
1/2
UP =wi+-+ui, |[VUP=|Vul?+ -+ |Vul* and U]z = (/ |VU|2dx+/ |U|2dx> :
Q Q

If O = R?, then the index zero will be omitted and we will use the usual notations H'(R9) and H*(R%; RF),
for the vector-valued functions. Moreover, we will suppose that all the Sobolev functions u € H} () and
U € H}(Q;R¥) are extended by zero outside Q. Thus H}(Q;R¥) c HY(RY; RF).

Let Q C R? be an open set of finite Lebesgue measure |Q| < co. The spectrum o() of the Dirichlet
Laplacian on  is given by an increasing sequence A1(2) < Ap(2) < --- < A(Q) < ..., of strictly
positive, non-necessarily distinct real numbers. We call the elements of o(f2) eigenvalues and we count
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them with the due multiplicity. A real number A is an eigenvalue if there exists a non-trivial function
u € HY(Q) (an eigenfunction) solution of the equation

—Au=XMu in Q, u€ HY Q) , /uzdzzl.
Q

We will denote by uy, the eigenfunction corresponding to the eigenvalue A (€2). The family of eigenfunc-
tions {ug }ren form a (complete) orthonormal system in L?(Q2), that is,

1. ifi=
/’U,i'LLj dx:(SU = ’ 1 Z J_)
Q 0, if i # 5.

The supremum of an eigenfunction on a set €2 can be estimated by a power of the corresponding eigenvalue
independently on the regularity and the geometry of 2. The following estimate was proved in [16, Example
2.1.8]

lurl oo ety < 5T AR(Q)Y2,
First of all we use capital letters for denoting vectors of functions like U = (uq, ..., ux) and we denote by
Qu:={zeR? : |U(z)| > 0}.
The eigenvalues of the Dirichlet Laplacian on €2 can be variationally characterized by the following
min-max principle
Vul? dx
Ap(Q2) = inf sup f9|72|
SkCHE(Q) 5,\{0} fQ u?dz
where the infimum is over all k-dimensional linear subspaces Sy of H}(2). Thus, for A\;(Q2) we have
Vul? dx
)\1(9) = mf 7‘&) | 2|
weHH(Q\{0} [ u?dx
A similar variational formulation, involving vector-valued functions, holds for the sum of the first k
eigenvalues (see for example [32] or [34])

)\i(Q):min{/ VURds © U= (u,... ) € HL(QRY), /uiujdxzaij}, (1.7)
N O Q

i=1
the minimum being attained for the vector U whose components are the first £ normalized eigenfunctions
on ().

Viewed as a a functional over the family of open sets, Ag() is decreasing with respect to the set
inclusion and is homogeneous of order —2, i.e. we have that for any ¢t > 0

k k
(1) = %Ak(Q) and Z/\i(tQ) = %ZMQ), (1.8)

where, as usual, we denote by t£2 the set tQ2 := {z € R? - % € Q}.

2. PROPERTIES OF THE EIGENFUNCTIONS ON THE OPTIMAL SETS
In this section we study the normalized eigenfunctions on an optimal set for problem (1.1f). We will
denote by  a solution of (1.1)) and by U the corresponding vector of normalized eigenfunctions on §2,
k
2
U= (u1,...,u). We also set A := p Zl)\Z(Q)

1=
In subsection we will show that U is a local quasi-minimizer of a variational problem in the sense
of the following proposition.

Proposition 2.1 (Minimality of U). Suppose that the set Q C R is a solution to the shape optimization
problem (L.1)). Then the vector U = (uy,...,ux) € Hi(Q;R*) of normalized eigenfunctions on Q satisfies
the following quasi-minimality condition:

There are constants K > 0 and € > 0 such that

/|VU|2dx+A|{\U|>0};g(1+K||U_(7||L1)/ VT de + A{|T] > 0}
Rd R4

: (2.1)

for every U e H'RLRY)  such that |U|p~ <e ' and ||[U—-U|: <e.
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In subsection we will use Proposition to show that the vector of the eigenfunctions on the
optimal set does not degenerate at the free boundary. The following proposition describes the behavior
of the eigenfunctions close to the boundary. We notice that the first claim is simply a restatement of

Theorem (iv).

Proposition 2.2 (Boundary behavior of the eigenfunctions). Let Q be optimal for (L.1)) and let U =
(u1,...,ux) € HE(Q;RF) be the vector of the first k normalized eigenfunctions on 2.

(1) The vector-valued function U : R? — R¥ is Lipschitz continuous on RY.
(2) The real-valued function |U| is non-degenerate, i.e. there are constants co > 0 and ro > 0 such
that for every xo € R and r € (0,7¢] the following implication holds

(]{3 . )|U\dw < cor) = (UEO in BT/2(x0)).

(3) The first eigenfunction uy is non-degenerate, i.e. there are constants cg > 0 and ro > 0 such that
for every o € R? and r € (0,7¢] the following implication holds

(][B( )uldac<cor) = (ulzo in BT/Q((EO)).
e

As a corollary of Proposition we obtain that the optimal sets for ([1.1]) satisfy a density estimate.

Corollary 2.3 (Density estimate). Let Q be optimal for (1.1). Then Q = {|U| > 0} and there are
constants g, ro and d such that:

(1) The following density estimate holds:
eo|Br| < ’Q ﬁBT(m0)| < (1—¢0)|By|, forevery xo€9Q and r <ryg.
(2) For every xg € 0Q and r < rq there is a point x1 € OB, j5(xo) such that Bs,(x1) C Q.

2.1. Quasi-minimality of the eigenfunctions. In this subsection we prove that the vector of eigen-
functions U € H}(Q;R*) on the optimal set  for (I.1]) is a local minimum of a functional of the form

Fie: HRER) SR, FelV) = (14 KU = Vi) [ WV do+A[V] > 0},
R4
that can alternatively be interpreted as a local quasi-minimum of the functional
Fo(V) = / |VV |2 dx + A|{\V\ > O}|
Rd

We first prove the following Lemma which assures the existence of the Lagrange multiplier for ((1.1)).

Lemma 2.4. Suppose that ) is a solution of (1.1). Then Q is a solution of the shape optimization
problem

min {Al(ﬁ) o M)+ A - QCRY open},

where A =

ISHE

k
in(m.

Proof. Let QCcRYbea generic open subset of R? of finite Lebesgue measure. By the optimality of Q
and the homogeneity of the eigenvalues ([L.8)) we have that

k _ k 1 k
;)\1(9) > ;)\i(tQ) = tjgl)\z(ﬂ)a

where ¢ is such that |£€| = 7| = |€2|. Thus, we have

w"—‘

k k k
i(Q) + A|Q > () 4+ t4A1Q > S TN (Q) + AQ,
;()Ilt;() Q] > > Xi(Q) + AR

i=1
where the last inequality is due to the fact that the function

k
1
e > X(Q) + A0,
=1

achieves its maximum at ¢t = 1. O
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In view of the variational characterization (|1.7)) of the sum of the first k& eigenvalues and Lemma
we have that U is a solution of the problem

min{Ad|VV|2dx+A|{|V|>0}| V= (01, 00) € H' (R RF), /Rdwjdz:aij}. (2.2)

In the following lemma we remove the orthogonality constraint / vv; dx = 0.
Rd

Lemma 2.5 (Orthonormalization of small perturbations). Let U~ = (u1,...,ug), where uy,...,u are
eigenfunctions on an open domain 2. Let 6 > 0 be fized, and let U = (1iy,. .., ux) € H' (R R¥) be such
that

sup il o)+ 13l= s, | <6

i=1,...,

k
Ek ::Z/ [@; — u;|de < 1 and
i=1"Br

Let V = (v1,...,ux) € HYQU B,) be the vector obtained orthonormalizing U by the Gram-Schmidt
procedure, i.e.
v = |l e, X
= H’az — (fﬂgvl dJC)’U1HL2 (ﬂg — (f’&g’l]l dx)m),
~ ~ ~ 71 ~ ~ ~
vy = HU3 - (fu;;vz dx)vg - (fugvl dm)leL2 (Ug - (fu;),vg dm)vg - (fuzvl dm)vl),

v

[\V]

;21 (a’C -2 (fﬂkvi dm) Ui).

There exist constants 1 > &, > 0 and C}, > 0, depending on the dimension d, the constant k, the bound
0 and the measure |Q)|, such that the following estimate holds for every U as above with ey, < E.

v = Hﬁk — Zf;ll (fﬁkvi dm)vi

/ IVV[2de < (1 +6ksk) / VU2 da. (2.3)
Rd R4
Proof. We first prove that there is €, and C} such that the following estimates hold whenever ¢, < gg.
k
> llui = villpr < Cey,
i=1

i:Hllfi«“)ik”UiHL“ < Cy,

where Cj and gj are constants depending on the dimension d, the constant k, the bound ¢ and the
measure |2|. We proceed by induction. In fact for ¥ = 1 we have

a2 —

1| R
T Ml

lur —villpr < lur = aal[pr + |81 = vil[zr = Jlug — Gl +

a7 — 1]
a7
ur 4+ (41 —u1)]|7. — 1

L

ur + (@1 —u1)|3.

< lur — || + 1] 1

= |lur — U2 + lur + (@1 — )L

2 [uilty — ui| de + [|ar — w7
1—2fu1|111 —u1|daz

2 [ gty — uy| doe + ||Gy — uy]|7o
172f’ll,1l”t~l,1 7U1|d$

= ljuy = a2 + (It las + i = a0 (2.4)

1+ ||'L~Ll _U1||%2 -
N 172fu1|1117u1|d:c“u1 U1||Ll+

|l s

L i = wllpsllin = wa e+ lellzs (2l + i = wa )

1 — 2y || oo ([ — ]| 1 lur — i || 21

o 1+de |Q1/245
- 1—26e;1

1 < (1+120|QY%)ey,
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where the last inequality holds for ; < inf {(5, (46)~1, |Q|1/2}. On the other hand, for the infinity norm

we have

P 1 S L P o~
gy - & - - 1/2
a1 2 ] Jur + (41 — ua)|[z2 (} — 2 [ug|iy — wi| da) (25)
il o~ i o~ s
—1- 2fu1|ﬂ1 — U1|d(E —1- 2||ul||Loo||’EL1 - u1HL1 —1—20e1 — ’
for €1 as above. Suppose now that the claim holds for 1,...,k — 1. In order to prove the estimate for vy,
we first estimate the L! distance from uy, to the orthogonalized function
iy, if k=1,
T - S (i da v, i k> 1.
We first estimate ||up — wgl| L1, that gives:
k—1
s, = wll o <l — ll o+ /ﬁkvz‘ da| ([Juill Ly + [lvi — wall£1)
i=1
Upv; dx |Q|1/2 + Ep_ 1)
k—1
< e+ Z /(ﬁk — )i + (v — wi)ug + (T — wg) (v — ug) da| (|2 + ex_1)
i=1
k—1
<er+ ) (lan = ull uillze + lloi = will g lullzoe + 1 = urllzsflos = willze) (122 + ex1)
i=1
<ep+ ((k — 1)€k5 + Cr_16k_10 + (k — 1)5ka_1) (‘Q|1/2 + Ek—l)
< [1+ (92 + 2 1) (b = )6 + Co18 + (k = 1)Ch16) |2
(2.6)
Then we deal with ||wy||e:
k—1
Jnlle < Nanle + 3 | [ wwede oo~
i=1
k—1
<6+Cha )y /(ftk —up)ui + (v — ug)up + (U — ug) (v — ug) de (2.7)
i=1

<4+ Ck_l((k — 1)5 + Cr-10 + (kj — 1)Ck—15)5k
< 5(1 + Cra (k= 1)+ Cry + (k — 1)ck,1)).

We set for simplicity Cy, to be the largest of the constants appearing on the right hand side of (2.6) and
(2.7). Thus we have

llug — willpr < Crer and lwg||pe < o/
Recalling that v, = ||w;€||221w;€ we have
2 2
| lwell e = 1] < [llwkllze = 1 = [ lluk + (we = w72 =1

= ‘2/ ug(up — wi) do +/ (up, — wy)? da
R Rd

< 2fjug || Lo Jur — wrllzr + luk — will Lo luk — w22

< 25ék6k +(0+ ék)ék5k~

(2.8)
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- SN |
We ask then that ¢, < g, = %(%C'k. + (6 + Ck)C’k) . Thus, 1/2 < ||wkl||r2 < 3/2 and we have the
estimate
ok llpoe = llwrllzz l[wkll oo < 2Cs.
On the other hand, repeating precisely the same procedure as in (2.4)) we obtain
2
| ||wk||L2 - 1|

l[wk [l s
|72

lug — vkl < Jluk — wglzr 4 lwk — villzr < Crer +

|k + (wr = ug) |32 — 1|
uk + (Wi — ur)]3.
< (14 12C|9Q)?) Cren,

= Crep + lluk + (Wi — ug)| L2

for e, <&, where € > 0 is small enough and depends on Cp, 6 and |2]. We conclude the recursive step
and the proof of the claim by defining

Cr = 2(1 + 12C5|Q[*/?) Cy..
We are now in position to prove (2.3)) by induction. For & = 1 we repeat the estimate from (2.5) and
we get

[Viallr2 _ | Vi || 2
lt1llzz = 1 —=2llur| Lo |lur — tsf[ze

||Vv1||L2 = < (1—|—4(5€1)HV’I~11||[‘27

For k > 1, by (2.8) we obtain

vakn , = vak”L2 < 1
2 =

Vi -3 (/ﬁkvi dz) Vv )

=1

| k—1

Forlle = T [lhoellze — 1] ,

- (1 +2(20C + (5 + C’k)é’k)ek> ( Vit 2 + ki \ /am dx] ||sz-||L2),
=1

Using one more time the estimate
k—1
> /ﬂkvi de| < (=15 + Coord + (k= 1)Cird)er,
i=1

from (2.6, and the inductive hypothesis we obtain the claim. O

Proof of Proposition Let U € H 1(R?; R*) be a vector-valued function satisfying the assumptions
of Proposition [2.1)and let V' = (vy,...,vx) € H'(R% RF) be the function obtained through the orthonor-

malization procedure in Lemma starting from U. By Lemma we have that U is a solution of (2.2)
and since we [ v;v; dz = §;; we can use V as a test function in (2.2)) obtaining

/|VU|2dx+A|{|U\>0}|§/ |VV > dz + A|{|V] > 0}
Rd Rd

< (14 Cull - Tl / VT2 de + AT > 0},

where the last inequality follows by Lemma [2.5 and the fact that by the construction of V' we have that
{|lV] >0} c {|]U] > 0}. O

2.2. Non-degeneracy of the eigenfunctions. The following Lemma will be applied to the case when
U is the vector of eigenfunctions on an optimal set, but it holds for functions U = (uq, ..., u) satisfying
the quasi-optimality condition or, more generally, to functions satisfying the following condition
which are roughly speaking subsolutions of since they are minimal only with respect to perturbations
U such that |U| < |U].

There are constants K > 0 and ¢ > 0 such that

/|VU|2dx+A|{\U|>O}|§<1+K||U—(7||L1)/ VT de + A{|T] > 0}
R4 R4

: (2.9)

for every U € H'(R:RF) such that |U| <|U| and ||U = Ul <e.
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Lemma 2.6 (Non-degeneracy of U). Let U = (uq,...,u;x) € HY(R%RF) be a function satisfying the
quasi-optimality condition (2.9). There are contants ¢o > 0 and rg > 0, depending on d, K, A, £ and
VU 2 (rasrr), such that for every xo € R? and r € (0,7¢] the following implication holds

(HUHLOO(BQT) < 607’) = (U =0 in BT(IO)).

Proof. Suppose for simplicity 2o = 0. Let 7 > 0 be such that » < r¢ and ||U||~(p,,) < cor with ¢o and

ro that will be chosen later in (2.10) and (2.13).

Consider the radial functions
¥ :Bs\ By = R and ¢:Bs\ By = R,
solutions of the PDEs
AY =0 in By\ By, =0 on 0B, =1 on 0Bs,

—Ap=1 in By\ By, =0 on 0B, ¢=0 on OBs.
We set @ = ¢or > 0, while 8 > 0 will be chosen in (2.11]) and will also depend on r > 0. We consider the

function
n(z) = ay(z/r) + prie(a/r),
solution of the boundary value problem
—An=p in By \ By, n=0 on 0B, n=a on 0B,
and we notice that we have the estimate

[Vl < Cq (/37” + %) < Cy(Bro+cy) on IB,.

Consider the test function

U= (iy,...,a) : RT —» R*,
defined by

_ JufAn—(ui An) in By,
Uy =
! (7 in Rd\BQT.

We first choose g and c¢g such that
wa 2473t ey <, (2.10)
in such a way that [|Ul[11(B,,,) < € and we define £(2r) as
k k
e(2r) = Z/Rd lu; — ;| do = Z . ((u =)y + (uy —n)y) da.
i=1 i=1 Y Bar

By (2.10) we have £(2r) < &(2r¢) < ¢ and so the optimality of U gives
/ VU2 dz + A|{|U] > 0}] < (1 + K&(Qr))/ VO dx + A{|T] > 0}].
R R
Since U = U on R4 \ Ba, we have

/ VU dz + A[{|U] >0}ﬂBT|§/ (|VU|2—|VU|2) dx+K5(2r)/ VU2 dz
B, Rd

=1+ K5(2r))/B . (|VT7|2 — |VU|?)dx + Ke(2r) /Rd |VU|? da
= (1+K€(2r))/ (f |V(U'7U)|2+2VU~V(07U)> dx
Bo,\ B,

+ Ke(2r) / |VU|? dx
R

<201+ K5(2r))/

VU -V(U -U)dzx+ Ks(2r)/ |VU|? d.
B, \B; R



12 DARIO MAZZOLENI, SUSANNA TERRACINI, BOZHIDAR VELICHKOV

We now estimate the first term in the right-hand side

|

/ VU -V(U -U)dzx (/ Vﬂj~V(ﬂj—u?)dw+/ Vﬂ;~V(ﬁ;—u;)d:c>
By, \B, By, \B,

By, \B;

=1

M- 1

([ vVt —nedos [ 99V ) do)
Bzr\Br B?r\Br

: (/Bzr\B,r Blu —n)+do+ /Bw\& Blu; —n)4 dx)

k
)y, w

1

‘We now choose
K

B = ST K@) /Rd |VU|? dz, (2.11)

and we set
E(U,B,) = / VU2 d + A|{U £ 0} 1 By,
B,

Thus, we obtain the inequality
k

E(U,B,) < —2(1+ Ke(2r) Y (/ Bluf — )4 do +/B . Blu; —n)+ dx)

= \Ba2\B,

k
«
+Ca (Br+—= §/ uid’;’-ld_l—i—Ks%/ VU|* dx 2.12
d(ﬁ r)i—l OBTI | ( )Rd\ | (2.12)

k k
e
<Cu(pr+2) 3 [l a4 KIVU gy 3 [l da,
"oz /oBy v B,
since, thanks to the choice of 5 > 0 and the fact that n = 0 in B,., we have
k
e(2r) — Z (/ (uj — )+ dx) = Z/ |u;| de.
i i=1" Br

B2, \B,
We now aim to estimate the term in the right hand side of (2.12) by E(U, B,). By the W' trace
inequality in B, we have

1
/ | dHA < Cd</ |Vui\dx—|—f/ \ui|dx>
OB, B, r B,

1 1 C
< Cd(§/}3 |V, | dx + §|{|ul\ > 0} ﬂB,«|> + Tdcor|{|ui| >0} N B,

(uf = do+

Ba,\B,

< Cy(1+co)max{l,1/A} E(U, B,).

Summing the above inequality for i =1,..., k we get
k
Z/ lui| dH ™Y <k Cy (14 ¢o) max {1,1/A} E(U, B,) =: Ch.a.p.co E(U, By).
— JoB.

Since the above inequality holds also for every s € (0, 7] we get

k k r r
Z/ |ui|dx:Z/ ds/ Ju;| dHIT < Ck,d,Ayco/ ds E(U, B,) <1 Cr.an.c E(U,B,).
i—1 Y Br =1 /0 0B,

0

We can finally estimate the right hand side of (2.12)) obtaining
a
E(U,B,) < Craneo (Br+ = + rK|VU|Ra(gags, ) B, By)

< Cranco (2KIVU 3 gagyro + o) E(U, By).



REGULARITY OF THE OPTIMAL SETS FOR SOME SPECTRAL FUNCTIONALS 13

Choosing ry and ¢y such that

de (1 + CO) max {17 1/A} <2K||VU||%2(]Rd;Rk)TO + CO) < 1, (213)
for a dimensional constant Cyq > 0, we get that F(U, B,) = 0 and so we obtain the claim. O
Remark 2.7 (Subharmonicity of |U]). Let Q C R? be an open set of finite measure and uy, ..., uy be
the first k normalized eigenfunctions on Q. Then the function |U| = |(u1,...,ux)| satisfies, weakly in

HY(RY), the inequality
AU+ MU >0 in RY, |U| € H} ().
In fact, on the set w := {|U| > 0}, |U| satisfies the inequality

A Yu.|? Nu,; - VIU
A|U|—Z{uﬁ “J_|_| Uy u;Vu; - V| |]

— 1 U] U U?
1 1
=1 zj:xj(a)uﬁ + i > (u§|vuj\2 — iy Vg - vuj) swiolal
while the result on the entire space follows from the fact that |U| is positive.
Remark 2.8 (Equivalent definitions of non-degeneracy). Suppose that uw € H'(BR) is such that:
(1) w>0 and Au+ 1> 0 weakly in H}(Bg).
(2) There are constants co and ro such that for all v < rg,

<||U||Lec(327,) < 60?") = (u =0 1n BT).

Then there are constants r1 and c1, depending only on the dimension d and the constants co and rqg, such
that the following implication hold for every r < ri:

(][ udeCﬂ”) = (UEO in Br/4)a
B,

(][ wdHd ™t < clr) = (uzO n BT/4>.
OB,

2.3. Density estimate and non-degeneracy of the first eigenfunction. First of all we prove a
non-degeneracy result for the gradient, which will lead to a non-degeneracy for u;.

Lemma 2.9 (Non-degeneracy of [VU]). Let Q be an optimal set for problem (1.1) and let U = (uq, ..., ug)
be the vector of the first k normalized eigenfunctions. Then there are constants ¢ > 0 and r > 0 such that

k
’VU‘Z = Z [Vu;|* > ¢ on the set S, :={x€Q : dist(z,00) <r}. (2.14)
j=1

Proof. The key point of our proof is that there are constants ¢ > 0 and 7 > 0 such that
c< ][ |VU|2 dx, where p=dist(xg,0Q) <T. (2.15)
BP(IU)

We prove this starting from the non-degeneracy of U, which implies (applying an Holder inequality) that
for all 7 < rg and for some constant c,
/ U2 > erdt?,
B,.NQ

For all j = 1,...,k we consider uj[ and we call hj-[ their harmonic extension of u]i in B,. For all
j=1,... k, we can deduce, using also the Poincaré inequality,

c c

< ()2 d < 7/ (uE — hE)2 dg < / IV (ut — hE)2 da

B 72 g J B, J J

R R
B, B,

for some constant c¢. Then summing up over j and using the non-degeneracy of U, we obtain

k
U2 = +12 _72>071/
/Br|v | ;/BTW%HWJ_TQ

|Uv|2 2 CQTdv
B, N
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for some constants c1, co. This easily implies the claim (2.15)).

Then, for every xg € Sr there is j € {1,...,k} and e € {e1,...,eq} such that ¢y < ][ Veu; de.
B (zo)
On the other hand, on the ball B,(zq) C Q, the function v = V.u; satisfies the equation “Av'= A (Q)v

and so we have
|Av| < A(Q)L,
where L denotes the Lipschitz constant of U. Thus, by the subharmonicity of v(z) + |z — zo|?* At (Q) L we
have
|Vu;| > Veu; > ][ Veujdr — p* A\ (Q)L > o — 12 e (Q) L,
B,(xzo
which concludes the proof. . O

It is important to highlight that, until now, we needed as hypothesis on U only a quasi-minimality
condition ([2.1)) and no sign assumption on the u; was involved. On the other hand, in the next lemmas,
it will become essential that the first component u; of the vector U is positive.

Lemma 2.10 (Non-degeneracy of uy). Suppose that Q is a connected optimal set for problem (1.1). Then
there is a constant C > 0 such that Cuy > |U| on Q.

Proof. Let r and ¢ be as in (2.14). Consider the function v = |U| + |U|?/2. On the strip S, we have
k
Av = AU+ )" (1Vuy[? + wjAug) > o — Me(Q)([U] + [UP?).
j=1

Since |U] is continuous and 0 on 92 we have that there is r > 0 such that v is subharmonic on the strip
Sr.

Let Q. = {z € Q : dist(z,09) > r}. Since  is connected we have that inf,cq 1 > 0 and so there
is M > 0 such that Mu; > v on ,. On the other hand u; is superharmonic on S, which gives that
Muy > v > |U| on the entire domain . O

The last lemma of this Section provides a density estimate for the optimal set ;. We remark that,
in order to obtain the upper bound on the density, it is fundamental to know that w; is non-negative
and non-degenerate: without this assumption we are not able to prove such a claim. Here is the main
difficulty if one wants to prove an extension of the Alt-Caffarelli result to the vectorial case in the general
setting.

Lemma 2.11 (Density estimate for Q). Suppose that U € C(Bg;R¥) is a Lipschitz continuous function
satisfying the quasi-minimality condition (2.1)). Then there are constant ro > 0 and €9 > 0 such that

o Br| < |{|U| > 0} N By(x0)| < (1 —€0)|By|, for every zo € d{|U| >0} and r<ro. (2.16)

Proof. The proof follows by the same argument as in [2]. We assume that zyp = 0. By Lemma [2.6| we

have that for  small enough [|U|| (B, ,) > %. Thus there is some x, € B, /5 such that |U|(x,) > %.

r/2) =
€o

; J
—,————— % we have that
27 4[[VIU| L~

On the other hand |U| is Lipschitz continuous, and so, setting 6 = inf {
|U| > 0 on By, (z,) and this proves the lower bound in (2.16)).

For the upper bound, we notice that since 0 € 9{|U| > 0} we can apply Lemma obtaining that
there are constants ¢; and ry such that

][ w dHY > eir for every  r < 1.
OB,

Let U = (t1,...,ux), where @ is the harmonic extension of u; on the ball B,. By the quasi-optimality
of U we have

Al{|U| =0} N B, | 2/ |VU|2dx—<1+KHU—(7||L1)/ |VU|? da
BR BR

z/ \V(U—f])\Qdm—KHU—ﬁHLl/ |VU|? dzx (2.17)
B B

™ R

z/ \V(ul—ﬂl)\zdx—KHul—ﬂl||L1/ VU |? d.
Br

r
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Let L = |[Vui|po. Then [Juy|/ze(p,) < Lr and by the maximum principle ||@1||z~(p,) < Lr. Thus we
have the estimate

K||uy — @y || 11 / IVU|?dz < wgKL|VU || p2(ppyr*™ = Crett. (2.18)
Br

In order to estimate / |V (u1 — @1)|? dz we first notice that by the Poincaré inequality in B, we have

T

- A (Bh1) Cq - 2
— 2 > 17 — 2 — . .
/BT |V(u1 —up)|* da > 2 /B |ug — | =15, ( / |ug — uy | d:v) (2.19)

T

Let k € (0,1/3). Since u; is non-negative and harmonic in B, the Harnack inequality for u; together
with the non-degeneracy of u; gives that

d
- ~ ~ 1-— ~
cr < ][ u dH = ][ Uy dH = u1(0) < maxu; < R min 7y,
dB, o8, Bir 1-3k

Bh'/f‘
while the Lipschitz continuity of u; gives that maxwu; < Lkr. Thus for £ small enough (depending on d,

¢1 and L) we have

up > |ug| + %17“ in By.
Together with (2.17), (2.18) and (2.19) this gives
d

2 2
A{|U| =0} B,| > |gd| ( / |ur — Uy | dx) — Critl > CycdrPrd — Ordtl > Cd%rd,

for r small enough. O

3. WEISS MONOTONICITY FORMULA

In this section we establish a monotonicity formula in the spirit of [39]. Following the original notation
from [39], for a function U € H'(R% R¥) we define

1 1
(U, x0,7) 1= — (/ |VU|? dx + A|{|U| > 0} ﬂBr(xo)O — ﬁ/ |U2dH*t.  (3.1)
r Bi(z0) r 3B, (o)

The monotonicity of ¢(U,xg,-) is related to the classification of the blow-up limits and is an essential
tool for proving the regularity of the free boundary. The following proposition concerns the case when U
is the vector of the first k eigenfunctions on an optimal set.

Proposition 3.1 (Monotonicity formula for the optimal eigenfunctions). Let Q be optimal for and
let U = (u1,...,u) € HY;RF) be the vector of the first k normalized eigenfunctions on . Suppose
that xo € 0. Then there are constants ro and Cy such that the function r — ¢(U,xo,r) satisfies the
following inequality for every r < rg :

d 2
< 0(U,0,7) MZ/aBr . |(z — o) - Vuy — w;|? da — C.
Moreover, the limit lim ¢(U,xq,r) exists and is a real number.
r—0+
The last result of the section concerns the Vector—valued functions U = (uq,...,ux) € H} (RYGRF)
that are local minimizers of the functional Fo(U) = [ |VU|? dz+|{|U| > 0}| in the sense of the following

definition.

Definition 3.2. We say that a function U € H} _(R%R¥) is a local minimizer (we note that this is
sometimes called absolute or global minimizer) of the functional

FoU) = [ 19U dz+ A{U] > o)),
if for every Br C R and for every function U € H} (R%R*) such that U-Ue H}(Bg;R*) we have

/ |VU|2dJ;+A}{|U|>O}ﬂBR|§/ |VU|? dz + A|{|U| > 0} N Bg.
Br Br



16 DARIO MAZZOLENI, SUSANNA TERRACINI, BOZHIDAR VELICHKOV

Proposition 3.3 (Monotonicity formula for local minimizers of Fy). Suppose that U = (uq,...,u) €
H} (R%RF) is a local minimizer of the functional Fo in sense of Definition . Then the function

o(r) := ¢(U,0,r) from (3.1)) satisfies the inequality

k
1
(]5/(’/") > mz‘/aB |:rVuz—u2|2dm
i=1 "

If moreover, ¢ is constant in (0,+00), then the function U is one-homogeneous.

For the sake of simplicity in the rest of the section we will fix g = 0 and ¢(r) := ¢(U,0,r).
In order to prove Proposition [3.I] and Proposition [3.3] we need the following lemma, in which, following
the ideas from [39, Theorem 1.2], we compare the function U with its one-homogeneous extension in the
ball B,.

Lemma 3.4. Let U € HY(R%RF)NW (R4, R¥) be a Lipschitz continuous function such that U(0) = 0
Suppose that U is a quasi-minimizer of F in sense of (2.1)). Then, there are constants g > 0 and Cy > 0
such that, for every r € (0,79), we have the estimate

2
/ VU2 dz + A|B, n {|U]| > 0}] gi/ <|VTU|2 Y] )d%d 1
B, d OB,

+ ASHd‘l (aB, n{|U| > o}) + Coritt,

(3.2)

Proof. Let U = (uq,...,ux) be a quasi-minimizer in the sense of (2.1)) with constants K, ¢ and we can

clearly assume that ||U||p~ < e~!. We consider the one homogeneous function U = (@1, ..., u) : B, —
R* defined by U(z) := mU <x|rl> For its components u; we have u;(z) := uul <x| |) and
T x x
~ 12 2 -2,,2 r
[V |*(z) = |Vru) ( z |> +r (xx|> :
Integrating over B, and summing for ¢ = 1,...,k we obtain

/ |VU|2dfo / <|v w2 + >de 1 g/ (|VTU|2 U )d?-ld !
OB,

while for the measure term we have that

B, n{|U| > 0}| = gﬂd—l (8Br n{|U| > o}).
Since U = U on 0B, the minimality of U in B, gives
/B VU de+ A|B, A {|U] > 0}] < / VT2 de + A|B, N {|T] > 0}] + K||U U||L1/ VO do
,d/ (v U+ P B )t ALt (om0 () > 0})
+ 2B VUl ([ V0P do 2051901 ).
It is now sufficient to choose Cy and 7o such that
204t B [|[VU |1 <& and  Cp > 2K|By||VU || </Rd |VU|2dx+2|B,.O|||VU||2Lm) ,

where K and ¢ are the constants from . ]

We are now in position to prove the desired monotonicity formula for the function ¢.
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Proof of Proposition [3.1} Let 7o and Co be the constants from Lemma [3.:4 and let C; = dCy. Calcu-
lating the derivative ¢'(r) and using (3.2 from Lemma we have

1 d
¢'(r) = — </aB |VU|2 dH 1 +AHd_1({|U| > 0} ﬂaBT)> Ty (/B |VU|2 dx + A{|U| > O}QBT|)

2 2 gpyd—1 _ Oui o041
+m/33 U* dH d+1Z/ 2u; - dH

> Tid </ VU2 dH + AR ({U] > 0} ag,q)
OB,

_rdd+1<:z/ (|VTU2 IoF ' a4+ /md 1({|U|>o}maBr)+Cord+1)
oB

"

2 Ou;
“rm/ |U|2 dHIt — sy Z/ 2’U,z i de !
OB,
8uZ
rdz L 15

=), 5

which concludes the proof of the first part of Proposition In particular, we obtain that the function
r — ¢(r) + Cir is non-decreasing. Thus the limit li%1+(¢(r) + Cir) = lir51+ ¢(r) does exist and is
r— r—

rd+2

dH U dH"™ = Z/ 2uz‘9“1 dH - O
0B,

8u1 ou;

ov

1
pd+2

2
+up — 2ruy

) dH*r - Oy = / |- VU — U|PdH*™ — Cy,
0B,

necessarily a real number or —oo. In order to exclude this last possibility, we notice that due to the
Lipschitz continuity of U and the fact that U(0) = 0, we have that

1
6(r) > —m/ U MO > —duwg|[VU|Pw, for every >0,
r 9B,
which finally proves that lir(r)1+ @(r) is finite. a
r—

Proof of Proposition We notice that if U is a local minimizer of the functional Fy, then both the
constants Cy and C; defined above can be taken equal to zero. The last claim of the proposition follows
by the fact that if ¢’ = 0, then z - U = U in R%, which proves that U is 1-homogeneous. ]

4. BLOW-UP SEQUENCES AND BLOW-UP LIMITS

Let U : R? — R* be a given Lipschitz function. For r > 0 and = € R? such that U(z) = 0, we define

1
Ure(y) == ;U(x +ry).

When z = 0 we will use the notation U, := U, .
Suppose now that (r),>0 C RY and (z,)n>0 C RY are two sequences such that
lim r, =0, lim =z, = xo, x, € O{|U| >0} for every n >0. (4.1)

n—oo n— oo

Then the sequence {U,., ,, }nen is uniformly Lipschitz and locally uniformly bounded in R¢. Thus, up to
a subsequence, U, converges locally uniformly in R as n — oco.

ny,Tn

Definition 4.1. Let U : R — R¥ be a Lipschitz function, r,, and x, be two sequences satisfying (.1]).

o We say that the sequence U,,, ., is a blow-up sequence with variable center (this is sometimes
called pseudo-blow-up).

o [f the sequence x,, is constant, i.e. x, = o for every n > 0, we say that the sequence U, o, is a
blow-up sequence with fized center.

o We denote by BUy (o) the space of all the limits of blow-up sequences with fized center x.

The main result of this section is the following :

Proposition 4.2 (Structure of the blow-up limits). Let Q be optimal for and let U = (ug,...,ug)
be the vector of the first k normalized eigenfunctions on 2. For every xg € 99 and Uy € BUy (xo) there
is a unit vector & € OBy C RF such that Uy = £|Up|. Moreover the (real-valued) function |Up| is not
identically zero and satisfies the following properties:
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(1) |Up| is 1-homogeneous ;
(2) |Uo| is a local minimizer (in the sense of Definition of the Alt-Caffarelli functional

HL (RGR) S wes / |Vul|? dz + Al{u > 0}|.

The rest of the section is dedicated to the proof of Proposition In Proposition we prove that
the blow-up sequences (of fixed or variable center) converge strongly in H . and the corresponding free
boundaries converge in the Hausdorff distance. In Lemma [£.6] we prove that the vector-valued function
Uy is a local minimizer (in the sense of Definition of the functional

H} (RERF) 5 U — / |VU|? dx + A|{|U| > 0}].

We apply then the Weiss monotonicity formula (Proposition and Proposition [3.3] E to obtain the 1-
homogeneity of Uy, that we use to prove the existence of the vector ¢ in Lemma [£.9] This result together
with the optimality of Uy gives the optimality of |Up|, which is finally proved in Lemma

As a consequence of Proposition [£:2] we get the following result.
Corollary 4.3. Every optimal set for (|L.1) is connected.

Proof. Let Q be an optimal set for the problem (|1.1). Suppose that 2 is a union of two disjoint open sets
0y and Q3. Then the spectrum of Q is given by () = o(Q1) U o (Q2) and in particular there is some
lel,...,k—1such that

{)\1(9)7 Ceey )\k(Q)} = {)\1(91), Cey )\Z(Ql)} @] {/\1(92), ey /\k,l(ﬂz)}.

Now since 2 is optimal for the sum \; +o Ak, we have that € has to be optlmal for A\ +--- 4+ X
and Qo for Ay +---+ )\k ;. Let Ql and Qg be translations of €; and 25 such that Ql and Qg are d15301nt
and tangent in 0 € 391 N 892 Setting Q= Ql U QQ we have that Q and the original set ) have the same
spectrum and the same measure. Thus Q) is a solution of (1.1). Let (uq,...,u;) and (vy,...,v5—;) be the
vectors of the first eigenfunctions on Ql and Qg Let Uy and VO be two hmlts of the blow-up sequences of
these two vectors in zero. By the optimality and the homogeneity of |Uy| and |Vp|, together with the fact
that they are non-zero (see Proposition we have that necessarily {|Up| > 0} and {|V,| > 0} are two
complementary half-spaces. On the other hand there is a blow-up limit Wy € BUy(0) whose components
are precisely the ones of Uy and Vy. Now, by the optimality of |[Wy|, it has to be a non-negative non-
zero harmonic function on B; vanishing in zero, in contradiction with the maximum principle, so Q is
disconnected. O

The proof of Proposition [1.2]is based on the fact that if U is the vector eigenfunctions on the optimal
set for A; + -+ + Ag, then U, ,, satisfies a quasi-minimality condition of the form . This is a direct
consequence from the scaling properties of the functional Fg defined in Section Since it is essential
for the proof of Proposition we show it in the following Lemma.

Lemma 4.4. Suppose that U € H*(R%;R¥) N L (R%;R*) and that there are constants K >0 and & > 0
such that U satisfies the quasi-minimality condition . Then, for every xo € RY, U, ., satisfies

/d VU a2 d + A|{| Uy 0y | > 0}] < (1 KU, — ﬁuLl) / VU2 dz + A|{|0] > 0}|,
R R

- _ 1
for every U € H'(R:RF)  such that  ||Ul|p~ < — and ||U = Ul < AT
er

Proof. Assume for simplicity that g = 0. Let Ue HY(R%R*) N L>®(R%; RF) be such that

1

U, —Ul|;x < d Ullpee < —
I 21 d+1 an U]z <o

and consider the functions ® = U, — U, ®"(z) := r® (%) and Ur(z) :=rU (%). We notice that

T

1@l =r* @l <& and Uz = 7| U]z <

m\)—l
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and so we may use U™ =U + ®" to test the optimality of U:

1
rd

A
/ VU, |>dz + A|{|U,| > 0}] = / |VU|2dm+T—d}{|U| > 0}
]Rd Rd

IN

1 ~ A=
(1+K||¢>T||L1)r—d/Rd |VU"|? da + T—d|{|UT| > 0}

_ <1+Krd+1||<I>HL1>/ VT2 de + A{|T] > 0}
Rd

which gives the claim. ]

Proposition 4.5 (Convergence of the blow-up sequences). Let U be a Lipschitz continuous local mini-
mizer of Fic in the open set D C R, Suppose that (r,)nen and (x,)neny C 0{|U| > 0} are two sequences
such that, for some x¢ € 0{|U| > 0} and Uy : R? — R* Lipschitz continuous, we have

lim r,=0, lim z,=2¢0 and lim U, 5,6 = Uy,
n—o00 n—o00 n—o00 ’

where the convergence of U, .. is to be intended locally uniform in R?. Then, for every R > 0, the
following properties hold:

1

(a) The sequence Uy, ., () := —U(zy + mx) converges to Uy strongly in H'(Br;R¥).
T

(b) The sequence of characteristic functions lg, converges in L'(Bg) to lg,, where

Q, ={|U,| >0} and Qp:={|U| > 0}.

(c) The sequences of closed sets Q, and QF converge Hausdorff in Br respectively to Qo and Q.
(d) Uy is non-degenerate at zero, that is, there is a dimensional constant cq > 0 such that

1Uollo(B,) > car for every r > 0.

Proof. We set for simplicity U,, = U,,, », and we divide the proof in some steps, for sake of clarity.
Step 1. Since U, is bounded in H} (R? RF) (being uniformly Lipschitz) we have that U, converges

loc

weakly in H}  to Uy € H} (R%RF). By the definition of ,, and the fact that |U,| converges locally
uniformly to |Ug| we have that

]].Qo S lim inf ]].Qn.
n—oo

Step 2. Let us now prove that U, converges strongly in H, lloc(Rd;Rk) to Up and that 1g, converges to
lg, pointwise on R?. Fixed a ball B C R? it is sufficient to prove that

lim </ |VUn|2dx+A|BRﬂQn|> :/ |VUy|? dz + A|Br N Q). (4.2)
BR BR

n—oo

We notice that the function U, is a local minimizer of
FolV) = (14 KU, — Vi) / VV2de + A[{[V] > 0}]-
Rd

Consider a function ¢ € C2°(R%) such that 0 < ¢ < 1 and Bg = {¢ = 1}. We introduce the test function
U, = Uy + (1 — )Un.
The optimality of U, now gives

/ VU d + A|{|U] > 0} 1 {0 > 0}
{¢>0}
< (1+7«g+1K||Un_Un|\L1)/ VO dx + A|{|T] > 0} N {p > 0}
{¢>0}

< (L el Ul [
w>

< (1+ rd K| o(Uy — Un)llLr) /{ o \VU,|? dx
w>

+A(|{e = 11N {|tol > 0} + {0 < p < 1}])

VU, [ da + A|{|U,| > 0} N {p >0} (43)
0}



20 DARIO MAZZOLENI, SUSANNA TERRACINI, BOZHIDAR VELICHKOV

Since U,, converges strongly L?(Bg;R¥) and weakly H} (R% RF) to Uy, we can estimate

loc
/ VU, |? —/ VU, |? dz
{¢>0} {¢>0}

- / VU.[* — / IV (pUs + (1 — p)U,)|? d
{p>0} {p>0}
- /{ o (VO = Ve + (L= )Un) - (VUn + V@V + (1 = @)Un)) d
- /{ O}(@V(Un - U()) + (Un - UO)VSQ) . (¢V(Un + UO) + (Un + U())th i QV((l B %)Un)) o

:/ (VU |? - |VU0|2)d;z:+2/ OV (U, —Up) - (1 — ©)VU, dz + o(1/n)
{¢>0} {¢>0}

- / (1= (1= ))([VU 2 — [VU[2) det + o1/n).
{¢>0}

Now since |VU,,| converges weakly in L?({0 < ¢ < 1};R) to |VUy|, we have that

n—r oo n—oo

limsup/ <|VUn|2 - |vUn|2) dz > limsup/ (VU2 = VU ) da.
{¢>0} {p=1}

Substituting in the inequality (4.3)) above we obtain

lim sup (/{ (VO = [V00) da o Adl{ = 13 090 = e = 1)1 sm))

n— oo

< limsup (/ (IVUAI2 = [W00[?) do+ All{p = 110 Qul = I = 1}rmo|>>
{¢>0}

n—oo
<AH{0 < p <1}

Now, since ¢ is arbitrary outside Bg, we get (4.2]). So we have proved part (a) and (b) of the Proposition.

Step 3. It is well-known that the convergence L' of the sequence of characteristic functions 1g
together with the fact that each §2,, satisfies the density estimate
eo|Br| < |, N B,| < (1 —¢0)|B.], Vr < ro/Th,

gives that both €2, and Q¢ converge Hausdorff respectively to Qy and Qf locally in R?, hence also part
(¢) of the statement is concluded.

Step 4. It remains only to prove the non-degeneracy of Uy. We first note that every function U, is
non-degenerate in the following sense:

y € Qn = |Unll Lo (B, (y)) = ors Vr < 1o/7y. (4.4)
In fact if y € Q,,, then r,y € Q = {|U| > 0}. By the non-degeneracy of U we obtain

rnHUnHLm(Br(y)) = ||U||L°°(Brrn (Tn+7rny)) > CoTTn, Vr < TO/rna

which is precisely (4.4). Our claim that the function Uy is non-degenerate means
ol c
y € Qo = ||UollL=(B,(y) > ZOT, Yr > 0. (4.5)

Suppose that y € Qg and 7 > 0. Then there is ¢’ € B,,(y) such that |Up|(y’) > 0. Then for n large
enough v’ € ,,. By the non-degeneracy of U,, we have that there is a point y, € B, /2(y’) such that

2|Un|(yn) = UnllLe (B, )s(s)) = cor/2.

We can assume that y, converges to some yo, € B;/2(y’), for which the uniform convergence of U,, gives
|Uo|(yoo) > cor/4, and so we have (4.5)). O

Lemma 4.6 (Optimality of the blow-up limits). Let U € H'(R% R¥) be a Lipschitz continuous function
satisfying the quasi-minimality condition (2.1). Let xg € d{|U| > 0} and Uy € BUy(xo). Then Uy is a
local minimizer of the functional Fy.
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Proof. Let o = 0 and Br C R? be a fixed ball. We first notice that if U satisfies (2.1) and » > 0, then
U,(z) = +U(ra) satisfies the following quasi-minimality condition in the ball By (see Lemma

(1+Krd+1||UT—l7||L1)/ VU, 2 dz + A|{|U,| > 0} N Byl
Br
< (1+Krd+1||Ur7(~]||L1)/ \VU|? dz + A|{|U| > 0} N Bg| (4.6)
Br
+Kr||UT—[7||L1/ VU da,
Rd

for every U € H'(R%; RF) N L°°(R%; R¥) such that U, — U € H}(Bg, RF) and
g

10 = Tlles <

~ 1
and U|lpe < —.
er

Let now U € H} (R%RF) N Li2 (R% RF) be such that Uy — U € H(Bg, RF) and let n € C°(Bg)

loc

be such that 0 < n < 1. We consider a sequence U, converging to Uy is sense of Proposition
We recall that U,, — Uy both uniformly in Bg and strongly in H'(Bg). Consider the test function

W, =U + (1 =n)(U,, —Uyp). Since U = Uy outside Br we have that W,, = U,, outside Br. Moreover,
since W, — U,, = U — Uy — n(U,., — Up) and U,., — Uy in L*(Bg) we have that, for n > ng (where ng
does not depend on 5 but only on the sequence ),

W = Ur, I <200 = Uollps and Wy = Uy, |z < 20T = Upllze,
and so W,, can be used as a test function in (4.6[), thus obtaining
(1+ Krdt U, — Wyl|11) / (\VU,"
B

R
< A(HIT1 > 0} {n =13+ [{0 < n < 1}])
+2Krn||(7—UOHL1/ |VU|? da.
]Rd

2_ |VWn|2) dz + A{|U,,

> 0} N Bg|

Now since U,, — Uy in H'(Bg;R*) and W,, — U in H'(Bg;R*) we have
/ ‘VU0‘2d$+A’{|UQ|>O}ﬂBR|
Br

< / VU2 dz +A(\{|ﬁ| >0yn{n=1}+|{0<n< 1}]).
Br
Since we can choose 1 such that |{n = 1}| is arbitrarily close to |Br| we obtain
/ |VUo|? dz + A|{|Us| > 0} N Bg| < / IVU|?da + A[{|U] > 0} N Bg|.
Br Br
]

Lemma 4.7 (Homogeneity of the blow-up limits). Let U € H*(R%;R¥) be a Lipschitz continuous function
satisfying the quasi-minimality condition (2.1). Let o € O{|U| > 0} and Uy € BUy(xo). Then Uy is a
one-homogeneous function.

Proof. Let the sequence r,, — 0 be such that the sequence U, (z) := L+ U(xq +7,) converges to Uy both

uniformly and (see Proposition strongly in H'(Bg;RF), for every Tlloall Br C R%. Let ¢, be the Weiss
functional corresponding to U,

— _ 1 2 1 2 d—1 A
() = (;S(Un,o,r)—rd/Br|VUn| d:c—rdﬂ/aBJUn Ty SO > 0 0B @)

We notice that
¢n(r) = (U, x0,mpr) for every r >0, (4.8)
where ¢(U, g, 7) is the Weiss functional corresponding to U from (3.1). By (4.8]) and the fact that the
limit }gr%) o(U, xo, 1) exists (see Proposition we have that for every fixed r > 0
nll)n;o On(r) = nh—>H;o o(U, xg, 1) = ;13% o(U, xo, p). (4.9)
On the other hand Proposition [£.5 gives that
nh~>n;o ¢n(T) = d)O(UOa 07 T)v
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Now since ¢o(Up,0,7) is constant in 7 (due to (4.9)) and Uy is optimal (due to Proposition [4.6) we can
apply Proposition and finally obtain that Uy is one-homogeneous function on R?. O

Remark 4.8. In the following Lemma and in Section p| we will use some rather well known facts about
eigenvalues of the spherical Laplacian Ag on regions of the sphere. For more details we refer to [37, 21],
but we summarize here the main facts that we need in the following.

o Let S C OBy be an open subset of the sphere OBy C R?, for d > 2, and let Cg = {rf : 0 €
S, r > 0} be the cone generated by S. Then, given an a-homogeneous function u : Cg — R for
some a > 0, we have that u is a solution of the problem

Au=0 1in Cg, u=0 on 0Cg,
if and only if the trace ¢ = ulsp, is a solution of the problem
—Agp=Xp in S, p=0 on 95,

where A = a(a + d — 2) and Ag denotes the Laplace-Beltrami operator on the sphere 0B;. We
denote by {\;(S)}j>1 the non-decreasing sequence of eigenvalues on set S C OBy counted with
the due multiplicity.

e For the spherical sets S we have the inequality

M(S)>d—1 forevery SC OBy suchthat H¥(S) < %, (4.10)
and the equality is achieved if and only if, up to a rotation, S is the half-sphere
OB ={x = (v1,...,24) € OBy : 4 > 0}.
e As a consequence of we get that
X2(S)>d—1 for every S C 0By, (4.11)

where the equality is achieved if and only if, up to a rotation, 0B1 N{xzq # 0} C S. Indeed, if the
second eigenfunction po € HE(S) changes sign, then we can apply ([A.10) to the sets {¢2 > 0}
and {p2 < 0}. If o2 > 0 on S, then the sets {1 > 0} (p1 > 0 being the first eigenfunction on
S) and {p2 > 0} are disjoint and again the claim follows by (4.10)).

e As a consequence of and we obtain that if S C 0By is such that A\1(S) < d -1
and HYY(S) < dwq, then the first eigenvalue A\i(S) is simple, that is there exists a unique
(non-negative) function 1 € H}(S) such that

—Agpr =M (S)p1 in S, w1 =0 on 98, / @% =1.
s

Lemma 4.9. Let U € H' (R R¥) be a Lipschitz continuous function satisfying the quasi-minimality
condition (2.1). Let zo € 9{|U| > 0} and Uy € BUy(xg). Then, there is a unit vector £ € B; C R¥
such that Uy = &|Uy|.

Proof. By Lemma Up = (uq,...,ux) is a one-homogeneous function and so is |Up|. Let S := 0By N
{|Uo| > 0}. We first notice that all the components uy,...,u; of Uy are harmonic functions on the cone
{|Up] >0} ={r : £€ S, r>0}. Thus in polar coordinates we have that u;(r,0) = r¢;(0), where ¢;
satisfies

—Agsp; =(d—=1)p; in S, v;=0 on 95,

that is, d — 1 is an eigenvalue of the spherical Laplacian Ag on S and the non-zero components of Uy
are (non-normalized) eigenfunctions. Now since |S| < |0B1| ( due to the optimality of Uy ) the last
point of Remark implies that the first eigenvalue A;(S) is simple. Then, denoting by ¢ the first

normalized eigenfunction on S, we get that there are constants aq,...,ax such that ¢; = a;p, for every
i=1,...,k. Setting A = (a,...,ax) we have that |Uy| = |Alep. Since Uy is not constantly zero on 9B
(see Proposition [4.5)), we have that |A| # 0 and thus, taking £ = |A| 71 A we have the claim. O

Lemma 4.10. Let U € H'(R%R¥) be a Lipschitz continuous function satisfying the quasi-minimality
condition (2.1). Let xo € O{|U| > 0} and Uy € BUy(xo). Then, the scalar function |Uy| is a local
minimizer of the Alt-Caffarelli functional.
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Proof. We set for simplicity u = |Up|. Let & be the unit vector from Lemma Let @ € H} (R%) be

such that the difference v — @ is supported in the ball Bg. Then the same holds for the function Uy — £u.
By the optimality of Uy we have

/ |Vu|2d:c+A|{u>O}ﬂBR|:/ |VU |? dz + A|{|Us| > 0} N Bg|
Br Br
g/ IV (0)|2 dz + Al{[€] > 0} N Br)
Br

= / |Va|? dz + Al{|a| > 0} N Bgl,
Br
which proves the claim. O

5. REGULARITY OF THE FREE BOUNDARY
In this section we conclude the proof of Theorem [1.3

5.1. The optimality condition on the free boundary. It is well-known (see for example [2]) that if
u is a local minimizer of the Alt-Caffarelli functional

Hiyo(RY) 3 u s Eg(u) = / \Vau|? dz + Al{u > 0}],

and the boundary d{u > 0} is smooth, then the following boundary optimality condition holds :
Vu| = VA on d{u>0}.

There are various ways to state this optimality for free boundaries that are not a priori smooth (see for
example [2] and [I8]). In the case of vector-valued functionals the most appropriate one seems to be the
approach exploiting the notion of a viscosity solution.

Definition 5.1. Let Q C R? be an open set and A\ = O‘h‘ ., Ak) € R¥ @ vector with positive coordinates.
We say that the continuous function U = (uy,...,uy) : Q — RF is a viscosity solution of the problem
“AU=XU in Q  U=0 on 99,  |VIU|=VA on 09,
if for every i =1,...,k the component u; is a solution of the PDE
—Au; = Nu;  in 8, u; =0 on 09,
and the boundary condition
IVIU[|=VA on 9Q,
holds in viscosity sense, that is

e for every continuous function ¢ : R? — R differentiable in xo € 00 and such that “p touches |U|
from below in xo” (that is |U| — ¢ : @ — R has a local minimum equal to zero in xg), we have
Vel (z0) < VA.
e for every continuous function ¢ : R? — R differentiable in zo € 00 and such that “p touches |U|
from above in xo” (that is |[U| — ¢ : @ = R has a local mazimum equal to zero in xq), we have
Vel (z0) > VA.
Lemma 5.2. Let Q be a solution of the problem (L.1), U = (uq,...,ux) be the vector of the first k
2
eigenfunctions on Q, A = (A1(Q),..., () and A = E()\l(Q) + -+ M(Q)). Then U is a viscosity
solution to the problem
~AU=XU in Q,  U=0 on 09, IVIU|| = VA on Q. (5.1)
Proof. From Theorem it follows that |U| : RY — R* is Lipschitz continuous. We only have to prove
that the identity |V|U|| = v/A holds in viscosity sense on the boundary 9.

Step 1. Suppose first that ¢ touches |U| from below in zo € 9 and assume xy = 0. Consider the
blow-up sequences
1 1
Un(z) = T—U('rnx) and on(x) = r—gp(rn:c),

for a sequence of radii 7, — 0. Up to a subsequence we have that the blow-up limits

Up= lim Up(x)  and  @o= lim pn(2), (5.2)
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exist where the convergence is locally uniform in R?. We first notice that, as ¢ is smooth, we have
o(r) = € -2 for a vector ¢ € R? Without loss of generality we may assume that £ = aeq for some
constant a > 0, thus

IVe(0)] = [Veo(0)f =a  and  @o(x) = aza. (5.3)
Now, since |Uy| > o, we obtain that |Up| > 0 on {z4 > 0}. By Proposition we have that Uy is a
1-homogeneous harmonic function on the cone {|Up| > 0} D {xqg > 0}. Thus, necessarily Uy = 0 on the
hyperplane {x € R? : x4 = 0} and by the second point of Remark we have only two possibilities:

{Us| >0} = {za >0} or  {|Uo| >0} = {wa #0}.
The second case is ruled out since, due to Proposition |Uo| is a local minimizer of the Alt-Caffarelli
functional and so it has to satisfy an exterior density estimate, which is not the case of the set {4 # 0}.
Thus the only possibility is {|Up| > 0} = {z4 > 0}. In particular the boundary 9{|Uy| > 0} is smooth

as well as the function Uy whose components are linear functions. Since |Up| is a minimizer of the
Alt-Caffarelli functional, it satisfies the optimality condition

IV|Uo|| = VA on  {xq=0}. (5.4)

Thus we obtain that [Uy| = vAz}. Now, by the inequality |Us| > ¢o, we get that a < /A, which
concludes the proof of Step 1.

Step 2. Suppose now that ¢ touches |U| from above at g = 0 and once again we consider the blow-up
limits Uy and ¢( defined in and we assume that g is as in . Due to the non-degeneracy of Uy
(see Proposition we get that Up £ 0 and a > 0. Since Uy < ¢ we have that the cone {|Uy| > 0}
is contained in the half-space {xq4 > 0}. By the 1-homogeneity of Uy and Remark we obtain that
necessarily {|Up| > 0} = {xq4 > 0}. In particular, 9{|Up| > 0} is smooth and |Up| is linear. In conclusion,
applying as above Proposition we get that |Up| satisfies , which gives that |Ug| = \/Kx;; and
a>VA. O

5.2. Regular and singular parts of the free boundary. Let 2 be a solution of . We define the
regular part of the free boundary (or the regular set) Reg(9€2) to be the set of points of density 1/2 of
Q, that is, Reg(9) := Q1/2), On the other hand, the singular part of the free boundary (or the singular
set) Sing(0Q) is defined as the complementary of Reg(0§)

Sing(0€) := 002\ Reg(90Q).
In this subsection we prove that Reg(9f2) is relatively open in 9 (i.e. Sing(99) is a closed set).

Lemma 5.3 (Density gap). There exists a constant § > 0 such that for every non-trivial 1-homogeneous
local minimizer u of the Alt-Caffarelli functional

Hijoo(RY) 3 u s Eg(u) = / |Vu|? dz 4 Al{u > 0},

we have that
0¢ Q. for every e (1/2,1/2+9),
where Q,, = {u > 0}.

Proof. Suppose by contradiction that there are an infinitesimal sequence of positive real numbers §,, and
a sequence u, of 1-homogeneous non-zero local minimizers of & such that
|B, N, 1
—— =— 4 for every r >0,
B, 5+ 0ns y
where Q,, = {u, > 0}. By [2| Section 3] the sequence w,, is uniformly Lipschitz and non-degenerate
and so, up to a subsequence it converges to a 1-homogeneous non-zero function ug. Reasoning as in [2]
Lemma 5.4] it is straightforward to check that wug is a local minimizer of & and, in particular, harmonic
on the cone Qg = {ug > 0}. Moreover, using the density assumption on £2,, and passing to the limit as

n — 0o we deduce B, 1|
M Qo 1
——— < -, forevery r>0.
|BT ‘ —_ 2 K V y
Thus, by the second point of Remark up to a change of coordinates we may assume, that Qy = {z4 >
0} and ug(x) = axg', for some a > 0. By the uniform convergence of u,, for every ¢ > 0 we can find ng
such that

a(zg —e)+ <up(z) <alzq+e)y forevery =€ By, n>ny.
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Applying Theorem 1.1 from [I8] we obtain that for n large enough 99, is C1* and so 0 € Q% I
particular §,, = 0 in contradiction with the initial assumption. O

Lemma 5.4. Let Q be a solution of (1.1)) and U = (uy,...,ux) be the vector of the first k eigenfunctions
on Q. Then the following facts do hold:

(i) For every boundary point xg € O we have that

lim inf 7|BT($O) na

>
r—0 |Br‘ -

1
5 -
(ii) For every vy > 1/2 we have
00 = {xo e oN }%¢(U, Xo,T) = Awdv}7

where we recall that wg = |B1| and ¢(U, zo,r) is the Weiss functional defined in (3.1)).
(1ii) There is a constant § > 0 such that

o= |J oo
velzjulz+on]

Proof. (i) Suppose that this is not the case. Then, there is a point g = 0 and a sequence r,, — 0 such
that
. |B.,NnQ 1
1 —_— < -,
nooo By | 2

Setting Uy, (z) = ~U(rpz) and Q, = {|U,| > 0} we can suppose that U,, converges in H}, (R% R)
to a non-zero 1-homogeneous function Uy, such that |Up| is a one-homogeneous local minimizer of
the Alt-Caffarelli functional &. Moreover, we can suppose that the sequence of conic level sets €,
converges in Lj . to the cone o = {|Up| > 0}. In particular we have
|B1 N Q| . |BiNQy,| .. B, NQl 1
—=lm — = lim — < =,
| B1] nsoo | By n=oo  |B, | 2
which is a contradiction since there cannot be a non-trivial 1-homogeneous harmonic function on a
cone of density less that 1/2.
(ii) Let zo € 0. We suppose that o = 0 and set ¢(r) := ¢(U, z¢,r). By Proposition the limit
Tli_)mo ¢(r) does exist. We set v to be the limit

1 .
= Awd AI—I{%)QS T)

On the other hand, consider an arbitrary sequence r, — 0. There is a subsequence, that we still
denote by r,, such that the corresponding blow-up sequence U, (z) := %U (rpz) converges locally
uniformly in R%. Defining ¢, (r) := ¢(U,,0,7) as in ({#.7) we have ¢, (r) = ¢(rr,) and thus, as in
Proposition [£.7]

1 I 1 I

YT Ry i ) = g lim 6n(r) 55)
1 1 1 :
=—|= VUo|? dx + A|{|Us| >0} N B,| | — —— Uo|? dH4 ],
s L (] 90 e A0 > 030 B1) = g [ o

where Uy is the blow-up limit of U,,. By the 1-homogeneity of Uy and the fact that it is harmonic
on {|Uy| > 0} we obtain that

1 2 1 2 gpd—1 _
M/BT|VU0| dm-rdﬂ/mw At =0,
Thus, by (5.5)), Proposition (2) and the fact that {|U,| > 0} = r,Q, we get that

{ITo| >0}nB,| _ . |%NB:| _ . |05,
= = lim —— = lim ———*.
| B n—oo | By n=co | By, |

Since the sequence 7, is arbitrary we have that zo € Q("), which gives the claim.
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(iii) By the previous point, for every xy € 92 the limit

1 ..
de }% ¢(U7 Zo, T)7

exists and coincides with the density of Q in xy. By point (i) we have that v > 1/2. On the other
hand, by Lemma we have that v > 1/2 + §, which gives the claim.

([l
Remark 5.5. We highlight that the claim of Lemma (#i) can be restated as follows:
QN B, 1 .
lim | (o)l _ lim ¢(U, zg,r), for every xq € ON. (5.6)

r—0 |Br| o Awd r—0

In the next Proposition we show that the regular part of the free boundary is relatively open in the
topological boundary of an optimal set. This is due to a general principle which can be stated as follows:
Suppose that Y C X is a set for which there exists a function fy : X x [0,400) — [0,+00) such that:

o the function fy(-,r): X — [0,400) is continuous for every fixed r > 0;
o the function fy(z,-) : [0,+00) — [0, +00) is continuous and non-decreasing for every fivzed x € X ;
o Y ={z : fy(z,0) =0} and there is 6 > 0 such that {z : 0< fy(z,0) <d} =0.
Then Y is relatively open in X.
In fact the first two points imply that the function fy (-,0) : X — [0, +00) is upper semi-continuous and
this, combined with the last point, gives the conclusion. In our case the situation is slightly different but
follows by the same principle. For sake of completeness we give here an elementary proof in our situation.

Proposition 5.6. Let Q be a solution of (1.1). Then the regular set Reg(02) is an open subset of OS).

Proof. Let 2o € Reg(992) = QU/2). Suppose that there is a sequence z,, € Sing(d) = 0Q \ Q(1/?) such
that x,, — xg. Let U be the vector of the first k£ eigenfunction on 2. We set v, to be the limit

1 ..
Tn = lel_r%MU,me)

Thus by Lemma (i), 2, € QOn). Since 7, # 1/2, by Lemma (iii) we have that v, > 1/2+ 0. By
the monotonicity of the function ¢, (r) := ¢(U, x,,r) + Cyr (see Proposition [3.1), we have that

Unlr) 5 51
Awd 2

+4§, forevery r>0.

On the other hand, fixing r > 0, the function x — ¢(Uy, x,r) is continuous and so
1 1 . 1
A—Wd(gb(U, Xo,T) + C’lr) = Ao nhﬁngo {gb(U, Tp,T) + Clr} > 5 + 9.

Passing to the limit as » — 0 we obtain

r—0 Awd
which is in contradiction with the assumption zy € Q(/2). O
5.3. The regular part of the free boundary is Reifenberg flat. In this section we prove the
Reifenberg flatness of the regular set Reg(9€2y) defined in the previous subsection. We recall the definition

of Reifenberg flatness below. For more details on the properties and the structure of the Reifenberg flat
domains we refer to [28] and [34].

Definition 5.7 (Reifenberg flat domains). Let  C R? be an open set and let 0 < § < 1/2, R > 0. We
say that Q) is a (0, R)-Reifenberg flat domain if:

(1) For every x € 002 and every 0 < r < R there is a hyperplane H = H,, , containing x such that
disty (By(x) N H, B.(z) N ON) < rd.

(2) For every x € 0N, one of the connected components of the open set Br(x)N{x : dist(xz, Hy r) >
20 R} is contained in Q, while the other one is contained in RY\ Q.
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Remark 5.8. We want to highlight here a difference between our approach and the one of Caffarelli,
Shahgholian and Yeressian [15]. In [I5, Theorem 5] it was proved that the entire positivity set {|{U| > 0}
is an NTA domain (see Definition , which is a stronger result that can be obtained by applying
the approach of [1] to the first eigenfunction which in our case is strictly positive, Lipschitz continuous
and non-degenerate. On the other hand this result is actually used only at the regular part of the free
boundary, where it is a consequence of the Reifenberg flatness (see Theorem .

Proposition 5.9. Suppose that Q is a solution of (L.1) and let o € Reg(9) = QU/2). Then Q is
Reifenberg flat in a neighborhood of .

Proof. Fix 6 > 0 to be chosen later. Suppose that € is not (4, R)-Reifenberg flat for any R > 0. Then
there are sequences x,, — xg and 7, — 0 such that  is not (d,r,) flat in B, (z,). Consider the blow-up
sequence

1
Up(z) :=Uyg, v, (x) = T—U(xn + xry,).

By Proposition [£.5] and Lemma [.6] we may assume that U,, converges uniformly in B; to a function
Up : R — RF which is a non-trivial local minimizer for Fy. Let ¢, (1) := ¢(U,,0,7) be the Weiss
functional relative to U, defined in (4.7)). Then we have :
o ¢n(r)=¢(U,xpn,rry) and ¢ (r) > —Cyry,, where Cy is the constant from Proposition;
e the limit Thg(l) on(r) exists (see Proposition and by Lemma (ii) we have that
1 . QN By, (z,)] 1
R Sy on(r) =l = === = 5
e the limit lim ¢,(r) exists and is given by the function ¢o(r) := ¢(Up,0,r) which, for every
n— oo

ro > 11 > 0, satisfies (see Proposition [3.3))
T2 1
$o(r2) — ¢o(r1) :/ W/ |z - YUy — Up|* dH¥ () dr. (5.7)
T1 8B7.

Step 1. We claim that
A
oo(r) = % for every r > 0.
We define 9, (r) = ¢ (r)+Cirpr = &(U, xpy, 71,) +Crrpr. In particular ¢, (r) is a non-decreasing function
A A
in r such that lir%wn(r) = %. We fix € > 0 and let R > 0 be such that ¢(U, 2o, R) + C1R < % +¢€
r—
A
(such an R exists since liH(l) o(U, xo, 1) = %) Since
r—s

lim ¢(U,zy, R) = ¢(U,z0, R),

n—oo
and the function r — ¢(U, x,,r) + C1r is non-decreasing, we have that for n large enough

A A
% < (U, 2p,R) + C1R < %—&-5.

Let n be large enough such that rr, < R. Then we have that
A
V(1) = d(U, xp, rry) + Crrry, < d(U, 20, R) + C1R < % +e,

which proves that
A
lim ¢, (r) = ﬂ,

n—o0 2
and, in particular, for every r > 0 we have

. . Awd
¢o(r) = lim ¢n(r) = lim ¢n(r) = —=,
which concludes the proof of Step 1.
Step 2. We now prove that, up to a rotation, {|Uy| > 0} = {x4 > 0}. We first notice that, by (5.7)),
Uy is one-homogeneous. On the other hand Uy is harmonic on €2y which gives that
1 1 . . |QO N Br|
- = 1 = 1 e ——
3 = Ry iy Go(r) = limy =
Thus after a rotation of the coordinate axes necessarily Uy(z) = fx;, for some vector & € R*, which is
non-zero due to Proposition In particular, we get that {|Us| > 0} = {x4 > 0}.
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We now get the conclusion since, by Proposition 09, converges Hausdorff to {z4 = 0} and thus,
for n large enough, Q,, is (4, 1) flat in the ball By, which is a contradiction with the initial assumption. O

5.4. The regular part of the free boundary is C'*™. In this last section we are finally in a position
to prove our main result, Theorem For sake of simplicity we present the results in several steps,
highlighting all the key points of our strategy. First of all, in order to prove C'%® regularity for the
regular part of the boundary, we need first to introduce the notion of NTA, i.e. non-tangentially accessible,
domains. NTA domains were first introduced by Jerison and Kenig in the seminal paper [25] in order to
extend the boundary Harnack principle under minimal geometrical conditions, while Kenig and Toro [28]
proved that a (J, R)-Reifenberg flat set (with ¢ sufficiently small) is also NTA. Roughly speaking, an NTA
domain is such that every boundary point is accessible from inside and outside the domain by means of
non-tangential balls. For sake of completeness, though we will just refer to the papers [25] 28] for the
proofs and the details, we give the formal definition of NTA domain and the statements of the main
Theorems.

Definition 5.10. A bounded domain Q C R? is called NTA if there exist constants M > 0 and 1o > 0,
called NTA constants, such that

(1) Q satisfies the corkscrew condition, that is, given x € 9Q and r € (0,rg), there exists o €
such that
M~ < dist(zg,00) < |z — x0| < 1,
(2) R4\ Q satisfies the corkscrew condition,
(8) If w € 9Q and wy,ws € B(w,r9)NCQ, then there is a rectifiable curve v: [0,1] — Q with v(0) = w;
and (1) = we such that
(i) H'(7([0,1])) < M|wy — wal,
(i) min {H*(v([0,1])), H*(v([t, 1]))} £ Mdist(~y(t),09Q), for every t € [0,1].

Theorem 5.11 (Reifenberg flat implies NTA, [28] Theorem 3.1]). There ewxists a 69 > 0 such that if
Q C R is a (6, R)-Reifenberg flat domain for § < &y, then it is NTA.

It was proved in [25] that in any NTA domain Q C R? the Boundary Harnack Principle does hold,
that is, if v and v are positive harmonic functions in 2, vanishing on the boundary 02 N B,., then

v J—
— is Holder continuous on 2 N B,.
U

In our setting, there are two main differences. First of all our functions u;, ¢ = 1, ...,k are not harmonic,
but they solve an eigenvalue problem

—Au; = Nu; in Q, u; =0 on 09,

for some A; > 0. On the other hand, we do not know whether in a neighborhood of a boundary point all
the u; are positive or not; this is an information that we have only on u;, thanks to the non-degeneracy
properties (see Lemma . The case of eigenfunctions was treated in [34, Appendix A]. Precisely, we
have the following result.

Lemma 5.12 (Boundary Harnack principle for the eigenfunctions on optimal sets). Let Q be a solution
of (LI), U = (uy,...,ux) be the vector of the first k eigenfunctions on Q and 0 € QU/2). Then Q is an
NTA domain in a neighborhood of 0 and there exists B > 0, depending only on the NTA constants, such
that for alli=2,...,k

i is Holder continuous of order B on QN B,.

U1

In particular, for every xo € QU2 N B,., the limit

o ui(@)
gl(xo) T Qalggmo ul(x)’

exists and g; : B, N 9Q) — R is an B-Holder continuous function.

Proof. By Proposition and Proposition we have that 9Q = Q(1/2) and Q is Reifenberg flat in a
sufficiently small ball B,.. The claim follows by [34, Lemma A.2] and [34, Lemma A.3]. a

In the following lemma we show that the first eigenfunction on an optimal set 2 is a solution of a
one-phase free boundary problem.
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Lemma 5.13. Let Q be an optimal set for (1.1) and let uy be the first eigenfunction on Q. Then, for
every xg € Reg(0Q) there is a radius r > 0, a constant 0 < ¢g < 1 and a Hélder continuous function
g : Br(z0) NOQ — [co, 1] such that uy is a viscosity solution to the problem

—Auy =M (Quy in Q, uy =0 on 900, |Vu| = gVA on B, (zg) N AN
Proof. Let xg = 0 and U = (uy,...,ux) be the vector of the first k eigenfunctions on Q. Let r > 0 be
the radius and g; : B, N9Q — R, for ¢ = 2,...,k be the Holder continuous functions from Lemma [5.12

Then we have
wi=guy on B,NQ and wu;=g|Ul on B.NQ,

where we have set

1
VI g+ 4
We notice that g is a S-Holder continuous function on QN B, for some 3 > 0 and is such that ¢y < g < 1,
where ¢y = 1/C and C is the constant from Lemma Suppose now that the function ¢ € C'(R?)
is touching w; from below (see Definition in a point g € 92 N B,.. For p small enough, there is a
constant C' > 0 such that
1 1

9(x) = g(xo)

g:

—Clz —x0[" >0 for every x € QN B,(zo),

and so, setting ¢ (z) = @(m)(ﬁ — Clz — zo|"), we get that ¥ (zg) = |U|(zo) and
P(x) <wuy(zx) <g(i‘ 7 Clz — :c0|7> <|U|(z) for every x € QN B,(zo),
0

that is in the ball B,(x¢) we have that 1 touches |U| from below in z9. On the other hand, ¥ is
differentiable in xq and |V (z0)| = =2~ | V()| Since U is a viscosity solution of (5.1)) we get that

g(xo)
1
\/K> Vi(xg)| = ——|V(zo)l,
> [ V()| g(;vo)| (o)l
which gives the claim, the case when ¢ touches u; from below being analogous. |

Now the regularity of Reg(92) follows by the already known results on the regularity of the one-phase
free boundaries (see [I8] and the references therein).

Proposition 5.14. Let Q be a solution of (L.1). Then Reg(0Q) = QU/2) is locally a graph of a C*

function.
Proof. In view of Lemma the claim follows by [18, Theorem 1.1]. O

In order to pass from C1® to C* we need an improved boundary Harnack principle, as it was proved
by De Silva and Savin [20] for harmonic functions. The extension to eigenfunctions can be done as in [34]
Appendix A].

Lemma 5.15 (Improved boundary Harnack principle). Let Q be a solution of (1.1), U = (u1,...,ux)
be the vector of the first k eigenfunctions on Q and 0 € Reg(0Y). There exists Ry < 1/2 such that, if for
r < Ry, Reg(0Q) N B, is of class C** for k > 1, then for alli =2,...,k we have
% is of class C* on QN B,.
1
In particular, for every xo € Reg(0Q) N B,., the limit

gi(zo) := lim (@)

Q3r—x0 U (JS) ’

exists and g; : B, N0Q — R is a C** function.

Proof. In order to get the claim, it is enough to apply [20, Theorem 2.4] for the case k = 1 and [20
Theorem 3.1] for the case k > 2 to the functions u = uy/po and v = u; /g, for all i = 2,... k, for a
suitable g chosen following the ideas of [34, Lemma A.2]. More precisely, we take Ry > 0 such that
there exists ¢g > 0 a nontrivial function satisfying

—Atp() = )\1(9)(,00, n BSRm Yo = 0 on 83330.
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Then g > 0 in PQRO and we have that u; /¢ and u; /g solve the equation

div <<ng(Z;)) =0, div (%V(;;)) = Q) = AM(Q)uspo in Bag, N Reg(99).

At this point we are in position to prove the full regularity of Reg(9f).
Proposition 5.16. Let Q be a solution of (L.1). Then Reg(dQ) = QU/2) is locally a graph of a C™

function.

Proof. The smoothness of the free boundary follows by a bootstrap argument as in [29]. Let us assume
that Reg(99) is locally C*:® regular for some k > 1, the case k = 1 being true thanks to Proposition
We will prove that Reg(df2) is locally C¥+1¢ By Lemma the first eigenfunction u; is a solution to
the problem

—Auy =M (Qu; in Q, up =0 on Reg(09), IVui| = gVA on  Reg(d9).
Now thanks to Lemma and the definition of g we have that g is a C*® function. Now by [29, Theorem
2] we have that Reg(09) is locally a graph of a C**1< function, and this concludes the proof. |

5.5. Dimension of the singular set. In this last subsection we discuss the dimension of the singular
set Sing(0) = 9N\ Reg(9Q). We first notice that H4~1(Sing(09Q)) = 0.

Remark 5.17 (The singular set has H9!-measure zero). We recall that, if Q is a solution of (1.1)),
then the De Giorgi perimeter of Q) is finite, P(Q)) < 4+o00. In particular, by the Federer’s Theorem (see,
for example, [3, Theorem 3.61]) we obtain

HH R\ (W U QO UQI/)) = 0. (5.8)
On the other hand, by the density estimate Lemma [2.11], we have that
20 =R\ (QM UQ©®),
which together with gives
HE(Sing(09)) = HIH (09 \ Reg(09)) = H~H (90 \ Q1) = 0.
The above result concerning the “smallness” of the singular set can be improved in the following form.

Proposition 5.18. Let Q) be a solution of . There exists a critical dimension d* € [5,7] such that

Q has the following property:

(a) If d < d*, then Sing(0R) is empty,

(b) If d = d*, then the singular set Sing(02) contains at most a finite number of isolated points,

(c) If d > d*, then the Hausdorff dimension of Sing(0Q) is less than d — d*, that is, for every s > 0 we
have that H*=% +2(Sing(9Q)) = 0.

We recall that d* is the lowest dimension at which the free boundaries d{u > 0} of the (one-
homogeneous) local minimizers u of the functional

H}\, o (RY) 3w Eg(u) = / |Vul? dz + [{u > 0},

admit singularities. This is related but slightly different from the case of minimal surfaces, since in our
situation we have more information than the minimality with respect to the area. Moreover, while in the
theory of minimal surfaces it is well-known that the critical dimension is precisely 8 (thanks to the works
of Simons [36] and Bombieri, De Giorgi, Giusti [4]), up to our knowledge (see, for example, [19] and the
recent [26]) it is only known that d* € [5,7]. A reasonable conjecture, suggested by the techniques used
in [I3], is that d* = 7.

The kind of stratification result above is nowadays rather standard in the theory of minimal surfaces
and it can be proved in many ways, for example by applying the well-known Federer’s reduction principle
(see, for example [35, Appendix A]). On the other hand, we will follow the approach of Weiss [39, Section
4], which comes directly from the book of Giusti [22]. The rest of the section is dedicated to the proof of

Proposition [5.18
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Proof of Proposition (a). Let U = (uq,...,u) be the vector of the first k eigenfunctions on €.
Let 29 € 9Q and Uy € BUy (xp). By Proposition we have that |Up| is a local minimizer of the scalar
Alt-Caffarelli functional. Since d < d*, we have that 0 is a regular point for 9{|Up| > 0}, and in particular
it has density 1/2. Thus 2 also has density 1/2 in z, that is

o 120 Bl {106 > 0} By(wo)]
r—0 |Br| r—0 |Br|

1
27

which finally gives that xg € Reg(9€). Since xq is an arbitrary point of the free boundary, we obtain
that 9Q = Reg(99) and Sing(02) = 0. O

For the proof of (b) and (c) we will need some preliminary results.

Lemma 5.19. Suppose that U € H'(R%;RF) is a Lipschitz continuous function, satisfying the quasi-
minimality condition (2.1)). There are constants &g and ro such that :

1
If ©o € 00y and r <ry are such that ¢(U,xg,r) < 3 +3dp, then xp € Reg(0Qy),

where Qu = {|U| > 0}, Reg(0Qy) = 98/2) and ¢(U, xq, 1) is the Weiss functional from (3.1]).
1
Proof. Suppose that o € 0Qp is such that ¢(U,xg,r) < 3 + &p and let C; be the constant from

Proposition Then the function r — ¢(U, zg,r) + C1r is non-decreasing and so, taking into account
the fact that the density is the limit of the Weiss functional (5.6, we obtain

|Q N Br(x0)|

1
= 1 < - .
lim B,] }%¢(U7$077") <3 +do + Cirg

Choosing, &y and rg such that &y + Cy1rg < v where 7 is the constant from Lemma [5.3] we get the claim
by Lemma [5.4] ]

Proof of Proposition (b). We argue as in [39, Theorem 4.1]. Suppose that there are infinite
points in Sing(92). Then there is a sequence x,, € Sing(9) such that:

Tp — g € Sing(09) , Ty = |z, — 20| =0, Un(x) := M — Uy(x) € BUy (zo).

We set Q¢ = {|Up| > 0} and we consider two cases:

Case 1: Sing(Q) \ {0} # 0. Then there is a point & € Sing(Q) \ 0 and by the one-homogeneity of
ug := |Up| we have that every point of the form t&,, for ¢ > 0, is a singular point for . We can now
apply directly [39, Theorem 4.1] to obtain a contradiction.

Iy — X

Case 2 : Sing(Q) \ {0} = 0. Let &, = € 0B;y. Up to a subsequence we may suppose that
Tn

&, converges to a point &y € dB;. Now since & is a regular point for {2y, we can find some r > 0 small
enough such that

1 4

U <4+ =
(ZS( 07§0ar) =9 + 3 )
where Jg is the constant from Lemma [5.19] Since Uy is the limit of the blow-up sequence U, by
Proposition we have that ¢(Uy, &, r) = ¢(Uo, &o, 7). Thus for n large enough we have that

]

¢(Un7§()770) S +§

DN | =
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Let us set for simplicity L = ||VU||, in particular, we have also that L = |VU,| 1, for every n € N.
We now notice that by the definition of ¢ we have the inequality

S(Uns ) =

4 JB, ()
1

ol B;-(&o)
1 dwd

- |Un > dHIY + —2212¢, — & (5.9)
rdtt /aB,,-(sw r ’

n — d
1€n — &ol 4 dwd
T T

|£n *€0|

1
[|VUn|2+A]IQn]da:— —/ U |? dHOH
OB, (€n)

i+
(r + 1€ = &D? = (r = &0 — o)

rd

[IVU[2 + Al | dz + wa(L? + A)

< (U, &o,7) + wa(L* + A)d2? 2L%|€, — o

= ¢(Un, &0, 7) + dwa(271 L% + A)

where in the last inequality we used that, for n large, @ < 1/2. Now choosing, n large enough we
get that

1
¢(Un7§n7r) S 5 + 50;

which is impossible since U, satisfies the conditions of Lemma but &, is a singular point for U,, by
hypothesis. O

In order to prove Proposition (c), we need another preliminary result analogous to [39, Lemma
4.2]. The main difference is that, instead of applying the epsilon regularity result [2, Theorem 8.2], we
have at our disposal Lemma [5.19] which, in fact, is an epsilon regularity result expressed in terms of the
Weiss functional ¢.

Lemma 5.20. Let U € H'(R% RF) be a Lipschitz continuous function, |[VU||p~ = L < 400, satisfying
the quasi-minimality condition (2.1). Let Qu = {|U| > 0}, o € 0Qu and Uy € BUy(xo). Let vy, be an

1
infinitesimal sequence and U, (x) := —U(x, + rpx) the corresponding blow-up sequence with center x
T

converging to Ug. Let Q,, := {|U,| > 0} and Qo := {|Uo| > 0}. Then, for every compact set K C R? and
every open set D such that Sing(0Q0) NK C D, there is some ng > 0 such that Sing(0Q,) NK C D, for
every n 2> ng.

Proof. Suppose for the sake of contradiction that this is not the case. Then, there is a sequence z,, €

Sing(09,) N K\ D converging to some zy € Sing(02) N K C D. We notice that by the Hausdorff

convergence of the free boundaries (see Proposition , we have necessarily xg € 9y and so g €

Reg(€p). Thus, we can fix some 0 < r < rg such that
H(Uo,a0,7) < 3 + 2,

where ¢ is the Weiss functional and rg, dp are the constants from Lemma [5.19] By the convergence of U,

to Uy we have that for n large enough

1 46
¢(Un,$0,T) S 5 +50

Now, using the estimate (5.9) for z,, and x instead of &, and &, we have that for n large enough

n — 1
O(Un, 2n,7) < $(Un, m0,7) + dwa(27L? + A)u <5 +d
T
Now, by Lemma we have that z,, € Reg(0€,,) in contradiction with the initial assumption. O

Proof of Proposition (c). Suppose that for some s > 0 we have H4~ ¢ +5(Sing(9Q)) > 0. By
Lemma [5.20} [39, Lemma 4.3] and [39, Lemma 4.4] we have that there is some point zy € 0 and a
blow-up limit Uy € BUy (o) such that the set Qo = {|Up| > 0} satisfies H*= ¢ +5(Sing(9Q0)) > 0. Since
|Uo| is a minimizer of the scalar Alt-Caffarelli function &y, this is in contradiction with the dimension of
the singular set of 9§y (see [39] Theorem 4.5]). O

6. A FREE-BOUNDARY PROBLEM FOR VECTOR-VALUED FUNCTIONS. PROOF OF THEOREM [[4]

In this final Section we prove Theorem following step by step the proof of Theorem [1.3
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6.1. Existence. The existence of a solution of follows by a standard argument in the calculus of
variations; the proof is precisely the same as in the scalar case (see [2, Theorem 1.3]). From now on we
suppose that the vector-valued function U = (uy,...,ux) € H'(D;RF) is a solution of and we set
Q= {|U| > 0}. As in the scalar case, each component of U is harmonic on €.

6.2. Lipschitz continuity of the minimizers. Let i € {1,...,k} and let B, C D for some r > 0.
Then the optimality of U implies that for every function @; such that @; — u; € H}(B,) we have

/|Vui|2dm+A|{u?+---+uf+~-~+ui > 0} §/|Vﬂi|2d:ﬂ+A|{u%—|—---+ﬂ?+~--+ui > 0},
which gives that
/|Vui|2da:§/|Vﬂ¢|2dz+A\Br| for every @; such that @; —u; € Hy(B,),

that is each component u; is a quasi-minimizer of the Dirichlet energy. Applying [9, Theorem 3.3] we get
that u;, and so U, is Lipschitz continuous in D. In particular, €2 is open and w; > 0 in Q.

6.3. Non-degeneracy of U. We first notice that U satisfies the condition in D with K =0
and there is no restriction on the perturbations U, formally € = 400. Thus, we can apply Lemma
obtaining that there are contants cg > 0 and ry > 0, depending on d and A such that for every xg € D
and 0 < r < inf{rg, dist(xzg,dD)} the following implication holds:

(”U”LN(BQT) < CoT) = (U =0 in Br(xo)).

As in Section [2]it is straightforward to deduce that
e |U| is subharmonic, that is A[U| >0 on D (see Remark [2.7);
e |U| < Cuy on €, for some constant C > 0 (see Lemma [2.10} notice that the fact that AU = 0 in
Q significantly simplifies the proof since this time we can take v = |U| and avoid the questions
involving the non-degeneracy of |VU]);
e there are constants rp > 0 and €y > 0 such that ) satisfies the density estimate (see Lemma

g0l B,| < |2N By (wo)| < (1 —e0)|By|, for every xzo€8QND and r <.

6.4. Weiss monotonicity formula. The functional ¢(U, z, ) defined in (3.1]) is monotone with respect
to 7 and satisfies the inequality

k

d 1

—o(U,z,1) > —— g / |z - Vu; — u;|* de,
dr rit2 e Jop, (x)

for every r > 0 such that B,.(z) C D and xz € 092. For the proof we refer to Proposition

6.5. Structure of the blow-up limits. Setting U, 4, (z) = U (g + rz) we have that, up to a subse-
quence r, — 0, U, ., converges to a function U : R? — R* (see Proposition . The structure of the
blow-up limits is precisely the one described in Proposition that is the blow-up limit Uy is of the
form Uy = &|Up| with € € 9B; C RF and u = |Up| being a one-homogeneous non-trivial global minimizer
of the scalar Alt-Caffarelli functional Fy in the sense of Definition [3:2] The proof is precisely the same
as in the case of the spectral functional (we notice that Section |4 concerns only functions satisfying the
more general quasi-minimality condition ) and is based on the Weiss’ monotonicity formula and on
the Lipschitz continuity and the non-degeneracy of the minimizer U.

6.6. Regularity of the free boundary. The regularity of the free boundary is based on the fact that
U is a viscosity solution (in sense of Definition with Ay = --- = A\t = 0) to the problem
AU=0 in Q, U=0 on 90nD, |V|IU|=VA on 9QND.
The proof is precisely the one of Lemma 5.2 and is based on the structure of the blow-up limits described
above. All the results in the rest of Section [5| hold true in this setting.
e Lemmal5.4 holds for the solutions of (I.6) and the density of the set Q2 = {|U| > 0} is determined
by the monotone function ¢, that is

0N B, 1
}ig%) | |Br|(x0)| = Noos ilg% o(U, xzg,r), forevery zo€dQND.
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e The regular part of the free boundary, defined as Reg(9) = Q21/2)_ is an open subset of 92N D.
The proof of this fact is given in Proposition with the additional simplification due to the fact
that C; = 0 and ¢, = ¥,,.

e The set  is Reifenberg flat in a neighborhood of any point 2y € Reg(9f2). The proof is given in
Proposition [5.9| where again we have C; = 0 and ¢,, = 9,,.

e The Reifenberg flatness of Reg(9€) together with [28, Theorem 3.1] and [25] imply that the set
) satisfies a Boundary Harnack Principle at the flat free boundary points. Now the positivity of
u; and the optimality condition |V|U|| = /A give that u; is a viscosity solution of the problem

Au; =0 in Q, up=0 on 00QND, Vui| = gVA on Reg(d9),

where g :  — R is a smooth function with a C%® extension to Reg(df2). For the proof we refer
to Lemma We notice that the optimality condition in viscosity sense can be alternatively
stated as

Au; =0 in Q, up =0 on 9INND, |Vui| = gVA on 8QND.

In fact, if a smooth test function touches u; in a boundary point, then this point is necessarily
part of the regular free boundary Reg(092).

e Applying [I8, Theorem 1.1] we get that Reg(9) is locally a graph of a C*® function. By the
improved boundary Harnack principle of De Silva and Savin [20] for harmonic functions (see
Lemma , we get that Reg(0R2) is C*°. The estimate of the dimension of the singular set
Sing(0) = 00\ Reg(09) is classical and we refer to Subsection [5.5| for more details.
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