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In this paper we study the regularity of the optimal sets for the shape optimization problem min λ 1 (Ω) + • • • + λ k (Ω) : Ω ⊂ R d open , |Ω| = 1 , where λ 1 (•), . . . , λ k (•) denote the eigenvalues of the Dirichlet Laplacian and | • | the d-dimensional Lebesgue measure. We prove that the topological boundary of a minimizer Ω * k is composed of a relatively open regular part which is locally a graph of a C ∞ function and a closed singular part, which is empty if d < d * , contains at most a finite number of isolated points if d = d * and has Hausdorff dimension smaller than (d -d * ) if d > d * , where the natural number d * ∈ [5, 7] is the smallest dimension at which minimizing one-phase free boundaries admit singularities.

To achieve our goal, as an auxiliary result, we shall extend for the first time the known regularity theory for the one-phase free boundary problem to the vector-valued case.
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Introduction

Functionals involving the eigenvalues of the Laplacian are the object of a growing interest in the analysis of PDEs from Mathematical Physics. Particularly challenging are the links between the spectrum of the Laplace operator and the geometry of the domain, a typical example being the Weyl asymptotic law. In this paper we study the regularity properties of the sets Ω that minimize the sum λ 1 (Ω) + • • • + λ k (Ω) of the first k eigenvalues of the Dirichlet Laplacian among all sets of fixed volume. That is, we are interested in the solutions of the shape optimization problem

min λ 1 (Ω) + • • • + λ k (Ω) : Ω ⊂ R d open , |Ω| = 1 , (1.1) 
where

λ 1 (Ω) ≤ • • • ≤ λ i (Ω) ≤ • • • ≤ λ k (Ω)
, for i = 1, . . . , k, denote the eigenvalues of the Dirichlet Laplacian on the set Ω counted with the due multiplicity 1 .

From the point of view of the shape optimization theory, problem (1.1) is a special model case of the more general spectral optimization problem min F λ 1 (Ω), . . . , λ k (Ω) :

Ω ⊂ R d , |Ω| = 1 , (1.2) 
where the cost function is defined through a function F : R k → R. The optimization problems of the form (1.2) naturally arise in the study of physical phenomena as, for example, heat diffusion or wave propagation inside a domain Ω ⊂ R d , for a detailed introduction to the topic we refer to the books [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF][START_REF] Henrot | Variation et Optimisation de Formes. Une Analyse Géométrique[END_REF][START_REF] Henrot | Extremum Problems for Eigenvalues of Elliptic Operators[END_REF]. The solution of (1.2) is known explicitly only in the special cases F (λ 1 , . . . , λ k ) = λ 1 and F (λ 1 , . . . , λ k ) = λ 2 . For more general functionals the existence of a solution in the class of quasi-open sets 2 was first proved by Buttazzo and Dal Maso in [START_REF] Buttazzo | An existence result for a class of shape optimization problems[END_REF] for F increasing in each variable and lower semi-continuous, under the assumption that the candidate sets Ω are all contained in a bounded open set D ⊂ R d . This last assumption was later removed by Bucur in [START_REF] Bucur | Minimization of the k-th eigenvalue of the Dirichlet Laplacian[END_REF] and Mazzoleni and Pratelli in [START_REF] Mazzoleni | Existence of minimizers for spectral problems[END_REF].

The regularity of the optimal sets and of the corresponding eigenfunctions turns out to be a rather difficult issue, due to the min-max nature of the spectral cost functionals, and was an open problem since the general Buttazzo-Dal Maso existence theorem. The only known result prior to the present paper concerning the regularity of the free boundary of the optimal sets is due to Briançon and Lamboley [START_REF] Briançon | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF] who prove that the optimal sets for the problem

min λ 1 (Ω) : Ω ⊂ D open, |Ω| = 1 , (1.3) 
in a bounded open set D ⊂ R d have smooth boundary up to a set of finite (d -1)-dimensional Hausdorff measure. Based on the techniques introduced in the seminal paper of Alt and Caffarelli [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF], this result depends strongly on the fact that the first eigenvalue is the minimum of the variational problem

λ 1 (Ω) = min R d |∇u| 2 dx : u ∈ H 1 0 (Ω), R d u 2 dx = 1
and so the shape optimization problem (1.3) can be written as a one-phase free boundary problem min

D |∇u| 2 dx + Λ|{u > 0}| : u ∈ H 1 0 (D), D u 2 dx = 1 ,
where the level set {u > 0} corresponds to Ω and Λ is a Lagrange multiplier. The extension of this result to the general case of functionals involving higher eigenvalues presents some major difficulties since the higher eigenvalues are variationally characterized through a min-max procedure and thus it is not possible to reduce the shape optimization problem (1.2) to a one-phase free boundary problem. Nevertheless, some properties of the optimal sets were deduced in [START_REF] Bucur | Minimization of the k-th eigenvalue of the Dirichlet Laplacian[END_REF], [START_REF] Mazzoleni | Existence of minimizers for spectral problems[END_REF], [START_REF] Bucur | A surgery result for the spectrum of the Dirichlet Laplacian[END_REF] and [START_REF] Bucur | Lipschitz regularity of the eigenfunctions on optimal domains[END_REF], as for example the fact that they are bounded, have finite perimeter and Lipschitz continuous eigenfunctions. We summarize the known results for the functional F λ 1 (Ω), . . . , λ k (Ω) = λ 1 (Ω) + • • • + λ k (Ω) in the following theorem. (ii) (Bucur [6]; Mazzoleni-Pratelli [START_REF] Mazzoleni | Existence of minimizers for spectral problems[END_REF]) There is a solution to the shape optimization problem

min λ 1 (Ω) + • • • + λ k (Ω) : Ω ⊂ R d quasi-open, |Ω| = 1 . (1.4)
Moreover every solution Ω * of (1.4) is bounded. (iii) (Bucur [6]) Every solution Ω * of (1.4) has finite perimeter. (iv) (Bucur-Mazzoleni-Pratelli-Velichkov [START_REF] Bucur | Lipschitz regularity of the eigenfunctions on optimal domains[END_REF]) Let Ω * be a solution of (1.4). Then the first k normalized eigenfunctions u 1 , . . . , u k on Ω * , extended by zero over R d \ Ω * , are Lipschitz continuous on R d and ∇u i L ∞ ≤ C d,k , for every i = 1, . . . , k, where C d,k is a constant depending only on k and d. In particular, every solution of (1.4) is an open set and is also a solution of (1.1).

The aim of this paper is to prove that the boundary of the optimal sets, solutions of (1.1), is regular up to a set of lower dimension, precisely we prove that Ω * is d * -regular in the sense of the following definition.

Definition 1.2. We call a set Ω ⊂ R d d * -regular if ∂Ω is the disjoint union of a regular part Reg(∂Ω) and a (possibly empty), singular part Sing(∂Ω) such that:

• Reg(∂Ω) is an open subset of ∂Ω and locally a C ∞ hypersurface of codimension one;

• Sing(∂Ω) is a closed subset of ∂Ω and has the following properties:

- In our work, d * is the smallest dimension at which the free boundaries of the local minima of scalar the one-phase functional u → |∇u| 2 dx + |{u > 0}|, admit singularities. Up to our knowledge d * ∈ [START_REF] Briançon | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF][START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF], see [START_REF] Silva | A singular energy minimizing free boundary[END_REF] and the recent work [START_REF] Jerison | Some remarks on stability of cones for the one phase free boundary problem[END_REF]. The main result of the paper is the following. where the constant Λ is given by Λ = 2

If
d k i=1 λ i (Ω * k ).
Proof of Theorem 1.3. The fact that Ω * k is connected will be proved in Corollary 4.3. The regular part of the free boundary will be the object of Proposition 5.14 and of Proposition 5.16, while for the singular part we refer to Proposition 5.18. The extremality condition (1.5) is a consequence of the optimality condition in viscosity sense (see Lemma 5.2) and the fact that ∇|U | is well defined on the regular part of the free boundary.

In order to prove Theorem 1.3 we first show that the vector of eigenfunctions U = (u 1 , . . . , u k ) is a local quasi-minimizer of the vector-valued functional

H 1 (R d ; R k ) V → R d |∇V | 2 dx + Λ {|V | > 0} ,
that is, U is a local minimizer of the functional

H 1 (R d ; R k ) V → 1 + K V -U L 1 R d |∇V | 2 dx + Λ {|V | > 0} .
Our proofs mostly rely on the free boundary approach for this shape optimization problem, suitably modifying many seminal ideas from [START_REF] Ramos | Existence and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF][START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF][START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF], that we are extending for the first time to the vectorial case. The intrinsic differences are mainly related with the vectorial nature of the variable U . This causes a number of new difficulties, starting from the non-degeneracy at the boundary, the classification of conic blow-ups, the validity and consequences of the extremality condition in a proper sense. We first use a Weiss-like monotonicity formula to classify the boundary points through a blow-up analysis. Then, a key point of our argument is to prove an optimality condition (1.5) for |U | on the boundary, which is fulfilled in a proper viscosity sense. In the scalar case this is a well-established approach, for which classical references are [START_REF] Caffarelli | A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are C 1,α[END_REF][START_REF] Caffarelli | A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz[END_REF], which however cannot be easily reproduced in the vectorial case. Next, in order to reduce our problem to a scalar one, we need to compare the boundary derivatives of the different components involved in the optimality condition. We first prove that the regular part of the free boundary is Reifenberg flat, which implies that it is an NTA domain, following the works by Kenig and Toro [START_REF] Kenig | Free boundary regularity for harmonic measures and Poisson kernels[END_REF][START_REF] Kenig | Harmonic measure on locally flat domains[END_REF]. For NTA domains, Jerison and Kenig [START_REF] Jerison | Boundary behavior of harmonic functions in nontangentially accessible domains[END_REF] proved a boundary Harnack inequality, which is enough for our aims. Then we are able to obtain an optimality condition which involves only u 1 on the regular part of the free boundary and then apply the classical results to obtain C 1,α regularity. In order to get C ∞ regularity with a bootstrap argument, we need an improved boundary Harnack principle [START_REF] Silva | A note on higher regularity boundary Harnack inequality[END_REF], which allows us to use the general result by Kinderlehrer and Nirenberg [START_REF] Kinderlehrer | Regularity in free boundary problems[END_REF] on the one-phase problem for u 1 , which otherwise would not work directly in the vectorial setting. Finally, the analysis of the dimension for the singular set follows as in [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]Section 4] by an adaptation of the classical arguments from the theory of minimal surfaces.

Further remarks and comments. As a consequence of the regularity theory developed for vectorvalued functions, we obtain an auxiliary regularity result, which better highlights the analogy with the free boundary problem studied by Alt and Caffarelli [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF] and Weiss [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]. We note that the extension to the vectorial case that we are able to prove still requires one function to have a positive trace (and so to be positive in the interior). A major open problem, up to our knowledge, is to prove Theorem 1.4 with all the φ i changing sign on ∂D. How to deduce Theorem 1.4 from our arguments is explained in Section 6.

Theorem 1.4. Let D ⊂ R d be an open set with smooth boundary, Λ > 0, and let φ 1 , . . . , φ k ∈ C 0 (∂D) be given functions, with φ 1 > 0 on ∂D. Then, there is a solution

U = (u 1 , . . . , u k ) ∈ H 1 (D; R k ) to the problem min D |∇U | 2 dx + Λ |{|U | > 0}| , U ∈ H 1 (D; R k ), u i = φ i on ∂D, ∀i = 1, . . . , k . (1.6) 
Moreover, for every solution U = (u 1 , . . . , u k ) the set {|U | > 0} is d * -regular and the optimality condition (1.5) holds on the regular part of the free boundary.

Remark 1.5. We highlight that in Theorem 1.4 above, the hypothesis φ 1 > 0 is not the optimal one. In fact it is sufficient to suppose that, in each connected component of the open set {|U | > 0}, there is at least one component u i of the vector U which is positive. This holds for example if all φ i are non-negative (as it is required in [START_REF] Caffarelli | A minimization problem with free boundary related to a cooperative system[END_REF]).

Our results can be extended to the case of smooth functionals F (λ 1 , . . . , λ k ) which are invariant under permutations of the variables and non-decreasing in each variable. The sum of powers of the first k eigenvalues for example is of great interest also from the point of view of applications to the Lieb-Thirring theory, as it is explained by Lieb and Loss in [START_REF] Lieb | Analysis, Graduate studies in mathematics[END_REF]Chapter 12], and it can be considered a more natural functional to study than the lone λ k , when one has in mind, for example, the Lieb-Thirring inequalities. An extension of Theorem 1.3 to more general functionals of eigenvalues of the form (1.2) (still involving λ 1 ) can be proved starting from the techniques of this work with some careful approximation procedures and will be the object of a forthcoming paper.

An alternative approach to the regularity of its solutions would be to see (1.1) as a two-partition problem of R d with the Lebesgue measure being the cost functional for one of the two competing populations and the sum of the eigenvalues the cost functional for the other one. Indeed, functionals involving higher eigenvalues were successfully treated in the framework of the optimal partition problems, for example in the recent work [START_REF] Ramos | Existence and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF] (see also [START_REF] Tavares | Regularity of the nodal set of segregated critical configurations under a weak reflection law[END_REF]), where it is proved the existence of an optimal regular partition, i.e. with free boundary that is C 1,α regular, up to a set of Hausdorff dimension less than d-2. Unfortunately, some key techniques used for partitions fail when dealing with (1.1). For example, we are not able to establish an Almgren monotonicity formula, which is one of the principal tools used in [START_REF] Ramos | Existence and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF]. This is due, mainly, to the measure term, which does not seem to behave well with the quantities involved in the Almgren quotient.

As it was proved in [START_REF] Bucur | Minimization of the k-th eigenvalue of the Dirichlet Laplacian[END_REF] an optimal set Ω * k for (1.1) has finite perimeter P (Ω * k ) < ∞. This means that there is a constant P > 0 such that Ω * k is also a solution to the problem min λ

1 (Ω) + • • • + λ k (Ω) : Ω ⊂ R d , |Ω| = 1, P (Ω) = P .
Unfortunately, up to our knowledge, there is no way to directly replace the condition P (Ω) = P by a (non-zero) Lagrange multiplier or to reasonably approximate Ω * k by optimal sets for the functional

λ 1 (Ω) + • • • + λ k (Ω) + ΛP (Ω)
, for which a regularity theory was developed in [START_REF] De Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF] (see also [START_REF] Bucur | A surgery result for the spectrum of the Dirichlet Laplacian[END_REF]).

Remark 1.6. The study of the optimal sets for the problem (1.1) might suggest a new approach to some inequalities involving the spectrum of the Dirichlet Laplacian, as the well-known Li-Yau inequality [START_REF] Li | On the Schrödinger equation and the eigenvalue problem[END_REF], or to more refined lower bounds on λ 1 (Ω) + • • • + λ k (Ω) in terms of the geometry of Ω, as for example the ones suggested by the Weyl's asymptotic expansion.

Plan of the paper. In Section 2 we deal with the quasi-minimality of the eigenfunctions for a more general free boundary problem and then we provide some non-degeneracy and density estimates. In Section 3 we prove a monotonicity formula in the spirit of Weiss [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]. In Section 4 we perform the analysis of the blow-up limits and prove their optimality and 1-homogeneity. Finally, in Section 5 we are ready to prove the regularity of the free boundary. We study the optimality condition in the viscosity sense, we identify the regular and singular part of the topological boundary and then we reduce ourselves to a problem with only one non-negative function and apply the regularity result for the classical Alt-Caffarelli free boundary problem. At the end we provide the estimates on the Hausdorff dimension for the singular part of the boundary. Section 6 is devoted to highlight how with a similar scheme also Theorem 1.4 can be proved.

Note. After the submission and the upload on arXiv of this paper, we discovered the preprint [START_REF] Caffarelli | A minimization problem with free boundary related to a cooperative system[END_REF] by Caffarelli-Shahgholian-Yeressian, which appeared few days before ours. Our Theorem 1.4 is very similar to their main result, which requires the additional hypothesis that all φ i are non-negative. We stress that the two teams agreed that they worked in a completely independent way.

A recent preprint [START_REF] Kriventsov | Regularity for shape optimizers: the nondegenerate case[END_REF] by Kriventsov-Lin appeared on arXiv few days later than ours. It contains a result similar to our Theorem 1.3, for a slightly more general class of functionals. We point out that our result is stronger: whereas we prove C ∞ regularity of the free boundary, up to a d -5 dimensional set, they prove only C 1,α regularity up to a d -3 dimensional set, with completely different techniques.

Preliminaries and notations. We will denote by d the dimension of the space and by C d a generic constant depending only on the dimension. For x = (x 1 , . . . , x d ) ∈ R d and r > 0 we will denote by B r (x) the ball centered in x of radius r with respect to the Euclidean distance |y| = (y 2 1

+ • • • + y 2 d ) 1/2
. We will use the notation B r , when the ball is centered in zero. For a generic measurable set Ω ⊂ R d , by |Ω| we denote the Lebesgue measure of Ω, while for the measure of the unit ball B 1 ⊂ R d we will use the notation ω d . For a point x 0 ∈ R d we recall that the density of the measurable set Ω in x 0 is given by

lim r→0 |Ω ∩ B r (x 0 )| |B r | ,
whenever the above limit exists. We recall the classical notation

Ω (γ) := x 0 ∈ R d : lim r→0 |Ω ∩ B r (x 0 )| |B r | = γ ,
for the set of point of density γ ∈ [0, 1]. For α > 0 we will denote by H α the α-dimensional Hausdorff measure, for example the surface area of the unit sphere is H d-1 (∂B . For a vector valued function U = (u 1 , . . . , u k ) : Ω → R k we will say that U ∈ H 1 0 (Ω; R k ) if all of its components are Sobolev, u i ∈ H 1 0 (Ω) for every i = 1, . . . , k,. Thus we have

|U | 2 = u 2 1 + • • • + u 2 k , |∇U | 2 = |∇u 1 | 2 + • • • + |∇u k | 2 and U H 1 = Ω |∇U | 2 dx + Ω |U | 2 dx 1/2
.

If Ω = R d , then the index zero will be omitted and we will use the usual notations H 1 (R d ) and H 1 (R d ; R k ), for the vector-valued functions. Moreover, we will suppose that all the Sobolev functions u ∈ H 1 0 (Ω) and U ∈ H 1 0 (Ω; R k ) are extended by zero outside Ω. Thus

H 1 0 (Ω; R k ) ⊂ H 1 (R d ; R k ). Let Ω ⊂ R d be
an open set of finite Lebesgue measure |Ω| < ∞. The spectrum σ(Ω) of the Dirichlet Laplacian on Ω is given by an increasing sequence λ

1 (Ω) ≤ λ 2 (Ω) ≤ • • • ≤ λ k (Ω) ≤ .
. . , of strictly positive, non-necessarily distinct real numbers. We call the elements of σ(Ω) eigenvalues and we count them with the due multiplicity. A real number λ is an eigenvalue if there exists a non-trivial function u ∈ H 1 0 (Ω) (an eigenfunction) solution of the equation

-∆u = λu in Ω , u ∈ H 1 0 (Ω) , Ω u 2 dx = 1.
We will denote by u k the eigenfunction corresponding to the eigenvalue λ k (Ω). The family of eigenfunctions {u k } k∈N form a (complete) orthonormal system in L 2 (Ω), that is,

Ω u i u j dx = δ ij := 1, if i = j, 0, if i = j.
The supremum of an eigenfunction on a set Ω can be estimated by a power of the corresponding eigenvalue independently on the regularity and the geometry of Ω. The following estimate was proved in [START_REF] Davies | Heat kernels and spectral theory[END_REF]

, Example 2.1.8] u k L ∞ (R d ) ≤ e 1/8π λ k (Ω) d/4 .
First of all we use capital letters for denoting vectors of functions like U = (u 1 , . . . , u k ) and we denote by

Ω U := x ∈ R d : |U (x)| > 0 .
The eigenvalues of the Dirichlet Laplacian on Ω can be variationally characterized by the following min-max principle

λ k (Ω) = inf S k ⊂H 1 0 (Ω) sup S k \{0} Ω |∇u| 2 dx Ω u 2 dx
, where the infimum is over all k-dimensional linear subspaces S k of H 1 0 (Ω). Thus, for λ 1 (Ω) we have

λ 1 (Ω) = inf u∈H 1 0 (Ω)\{0} Ω |∇u| 2 dx Ω u 2 dx .
A similar variational formulation, involving vector-valued functions, holds for the sum of the first k eigenvalues (see for example [START_REF] Lieb | Analysis, Graduate studies in mathematics[END_REF] or [START_REF] Ramos | Existence and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF])

k i=1 λ i (Ω) = min Ω |∇U | 2 dx : U = (u 1 , . . . , u k ) ∈ H 1 0 (Ω; R k ), Ω u i u j dx = δ ij , (1.7) 
the minimum being attained for the vector U whose components are the first k normalized eigenfunctions on Ω. Viewed as a a functional over the family of open sets, λ k (•) is decreasing with respect to the set inclusion and is homogeneous of order -2, i.e. we have that for any t > 0

λ k (tΩ) = 1 t 2 λ k (Ω) and k i=1 λ i (tΩ) = 1 t 2 k i=1 λ i (Ω), (1.8) 
where, as usual, we denote by tΩ the set tΩ := {x ∈ R d : x t ∈ Ω}.

Properties of the eigenfunctions on the optimal sets

In this section we study the normalized eigenfunctions on an optimal set for problem (1.1). We will denote by Ω a solution of (1.1) and by U the corresponding vector of normalized eigenfunctions on Ω, U = (u 1 , . . . , u k ). We also set Λ :

= 2 d k i=1 λ i (Ω).
In subsection 2.1 we will show that U is a local quasi-minimizer of a variational problem in the sense of the following proposition. Proposition 2.1 (Minimality of U ). Suppose that the set Ω ⊂ R d is a solution to the shape optimization problem (1.1). Then the vector U = (u 1 , . . . , u k ) ∈ H 1 0 (Ω; R k ) of normalized eigenfunctions on Ω satisfies the following quasi-minimality condition:

There are constants K > 0 and ε > 0 such that

R d |∇U | 2 dx + Λ {|U | > 0} ≤ 1 + K U -U L 1 R d |∇ U | 2 dx + Λ {| U | > 0} , for every U ∈ H 1 (R d ; R k ) such that U L ∞ ≤ ε -1 and U -U L 1 ≤ ε. (2.1)
In subsection 2.2 we will use Proposition 2.1 to show that the vector of the eigenfunctions on the optimal set does not degenerate at the free boundary. The following proposition describes the behavior of the eigenfunctions close to the boundary. We notice that the first claim is simply a restatement of Theorem 1.1 (iv).

Proposition 2.2 (Boundary behavior of the eigenfunctions).

Let Ω be optimal for (1.1) and let U = (u 1 , . . . , u k ) ∈ H 1 0 (Ω; R k ) be the vector of the first k normalized eigenfunctions on Ω. (1) The vector-valued function U : R d → R k is Lipschitz continuous on R d .

(2) The real-valued function |U | is non-degenerate, i.e. there are constants c 0 > 0 and r 0 > 0 such that for every x 0 ∈ R d and r ∈ (0, r 0 ] the following implication holds

- Br(x0) |U | dx < c 0 r ⇒ U ≡ 0 in B r/2 (x 0 ) .
(3) The first eigenfunction u 1 is non-degenerate, i.e. there are constants c 0 > 0 and r 0 > 0 such that for every x 0 ∈ R d and r ∈ (0, r 0 ] the following implication holds -

Br(x0) u 1 dx < c 0 r ⇒ u 1 ≡ 0 in B r/2 (x 0 ) .
As a corollary of Proposition 2.2 we obtain that the optimal sets for (1.1) satisfy a density estimate.

Corollary 2.3 (Density estimate).

Let Ω be optimal for (1.1). Then Ω = {|U | > 0} and there are constants ε 0 , r 0 and δ such that:

(1) The following density estimate holds:

ε 0 |B r | ≤ Ω ∩ B r (x 0 ) ≤ (1 -ε 0 )|B r |, for every x 0 ∈ ∂Ω and r ≤ r 0 .
(2) For every x 0 ∈ ∂Ω and r ≤ r 0 there is a point x 1 ∈ ∂B r/2 (x 0 ) such that B δr (x 1 ) ⊂ Ω.

2.1. Quasi-minimality of the eigenfunctions. In this subsection we prove that the vector of eigenfunctions U ∈ H 1 0 (Ω; R k ) on the optimal set Ω for (1.1) is a local minimum of a functional of the form

F K : H 1 (R d ; R k ) → R , F K (V ) = 1 + K U -V L 1 R d |∇V | 2 dx + Λ {|V | > 0} ,
that can alternatively be interpreted as a local quasi-minimum of the functional

F 0 (V ) = R d |∇V | 2 dx + Λ {|V | > 0} .
We first prove the following Lemma which assures the existence of the Lagrange multiplier for (1.1).

Lemma 2.4. Suppose that Ω is a solution of (1.1). Then Ω is a solution of the shape optimization problem

min λ 1 ( Ω) + • • • + λ k ( Ω) + Λ| Ω| : Ω ⊂ R d open , where Λ = 2 d k i=1 λ i (Ω).
Proof. Let Ω ⊂ R d be a generic open subset of R d of finite Lebesgue measure. By the optimality of Ω and the homogeneity of the eigenvalues (1.8) we have that

k i=1 λ i ( Ω) ≥ k i=1 λ i (tΩ) = 1 t 2 k i=1 λ i (Ω),
where t is such that |tΩ| = t d |Ω| = | Ω|. Thus, we have

k i=1 λ i ( Ω) + Λ| Ω| ≥ 1 t 2 k i=1 λ i (Ω) + t d Λ|Ω| ≥ k i=1 λ i (Ω) + Λ|Ω|,
where the last inequality is due to the fact that the function

t → 1 t 2 k i=1 λ i (Ω) + t d Λ|Ω|,
achieves its maximum at t = 1.

In view of the variational characterization (1.7) of the sum of the first k eigenvalues and Lemma 2.4 we have that U is a solution of the problem min

R d |∇V | 2 dx + Λ|{|V | > 0}| : V = (v 1 , . . . , v k ) ∈ H 1 (R d ; R k ), R d v i v j dx = δ ij .
(2.2)

In the following lemma we remove the orthogonality constraint

R d v i v j dx = δ ij .
Lemma 2.5 (Orthonormalization of small perturbations). Let U = (u 1 , . . . , u k ), where u 1 , . . . , u k are eigenfunctions on an open domain Ω. Let δ > 0 be fixed, and let Ũ = (ũ 1 , . . . , ũk ) ∈ H 1 (R d ; R k ) be such that

ε k := k i=1 Br |ũ i -u i | dx ≤ 1 and sup i=1,...,k u i L ∞ (Br) + ũi L ∞ (Br) ≤ δ. Let V = (v 1 , . . . , v k ) ∈ H 1 0 (Ω ∪ B r
) be the vector obtained orthonormalizing Ũ by the Gram-Schmidt procedure, i.e.

v 1 = ũ1 -1 L 2 ũ1 , v 2 = ũ2 - ũ2 v 1 dx v 1 -1 L 2 ũ2 - ũ2 v 1 dx v 1 , v 3 = ũ3 - ũ3 v 2 dx v 2 - ũ2 v 1 dx v 1 -1 L 2 ũ3 - ũ3 v 2 dx v 2 - ũ2 v 1 dx v 1 , ... v k = ũk - k-1 i=1 ũk v i dx v i -1 L 2 ũk - k-1 i=1 ũk v i dx v i .
There exist constants 1 ≥ ε k > 0 and C k > 0, depending on the dimension d, the constant k, the bound δ and the measure |Ω|, such that the following estimate holds for every Ũ as above with

ε k ≤ ε k . R d |∇V | 2 dx ≤ 1 + C k ε k R d |∇ Ũ | 2 dx.
(2.3)

Proof. We first prove that there is ε k and C k such that the following estimates hold whenever

ε k ≤ ε k . k i=1 u i -v i L 1 ≤ C k ε k , max i=1,...,k v i L ∞ ≤ C k ,
where C k and ε k are constants depending on the dimension d, the constant k, the bound δ and the measure |Ω|. We proceed by induction. In fact for k = 1 we have

u 1 -v 1 L 1 ≤ u 1 -ũ1 L 1 + ũ1 -v 1 L 1 = u 1 -ũ1 L 1 + ũ1 L 2 -1 ũ1 L 2 ũ1 L 1 ≤ u 1 -ũ1 L 1 + ũ1 2 L 2 -1 ũ1 2 L 2 ũ1 L 1 = u 1 -ũ1 L 1 + u 1 + (ũ 1 -u 1 ) 2 L 2 -1 u 1 + (ũ 1 -u 1 ) 2 L 2 u 1 + (ũ 1 -u 1 ) L 1 = u 1 -ũ1 L 1 + 2 u 1 |ũ 1 -u 1 | dx + ũ1 -u 1 2 L 2 1 -2 u 1 |ũ 1 -u 1 | dx u 1 L 1 + ũ1 -u 1 L 1 = 1 + ũ1 -u 1 2 L 2 1 -2 u 1 |ũ 1 -u 1 | dx u 1 -ũ1 L 1 + 2 u 1 |ũ 1 -u 1 | dx + ũ1 -u 1 2 L 2 1 -2 u 1 |ũ 1 -u 1 | dx u 1 L 1 ≤ 1 + ũ1 -u 1 L 1 ũ1 -u 1 L ∞ + u 1 L 1 2 u 1 L ∞ + ũ1 -u 1 L ∞ 1 -2 u 1 L ∞ ũ1 -u 1 L 1 u 1 -ũ1 L 1 ≤ 1 + δε 1 + |Ω| 1/2 4δ 1 -2δε 1 ε 1 ≤ 1 + 12δ|Ω| 1/2 ε 1 , (2.4) 
where the last inequality holds for ε 1 ≤ inf δ, (4δ) -1 , |Ω| 1/2 . On the other hand, for the infinity norm we have

v 1 L ∞ = ũ1 L ∞ ũ1 L 2 = ũ1 L ∞ u 1 + (ũ 1 -u 1 ) L 2 ≤ ũ1 L ∞ 1 -2 u 1 |ũ 1 -u 1 | dx 1/2 ≤ ũ1 L ∞ 1 -2 u 1 |ũ 1 -u 1 | dx ≤ ũ1 L ∞ 1 -2 u 1 L ∞ ũ1 -u 1 L 1 ≤ δ 1 -2δε 1 ≤ 2δ, (2.5) 
for ε 1 as above. Suppose now that the claim holds for 1, . . . , k -1. In order to prove the estimate for v k we first estimate the L 1 distance from u k to the orthogonalized function

w k := ũ1 , if k = 1, ũk - k-1 i=1 ũk v i dx v i , if k > 1.
We first estimate u k -w k L 1 , that gives:

u k -w k L 1 ≤ u k -ũk L 1 + k-1 i=1 ũk v i dx ( u i L 1 + v i -u i L 1 ) ≤ ε k + k-1 i=1 ũk v i dx |Ω| 1/2 + ε k-1 ≤ ε k + k-1 i=1 (ũ k -u k )u i + (v i -u i )u k + (ũ k -u k )(v i -u i ) dx |Ω| 1/2 + ε k-1 ≤ ε k + k-1 i=1 ( ũk -u k L 1 u i L ∞ + v i -u i L 1 u k L ∞ + ũk -u k L 1 v i -u i L ∞ ) |Ω| 1/2 + ε k-1 ≤ ε k + (k -1)ε k δ + C k-1 ε k-1 δ + (k -1)ε k C k-1 |Ω| 1/2 + ε k-1 ≤ 1 + |Ω| 1/2 + ε k-1 (k -1)δ + C k-1 δ + (k -1)C k-1 δ ε k .
(2.6)

Then we deal with w k L ∞ :

w k L ∞ ≤ ũk L ∞ + k-1 i=1 ũk v i dx v i L ∞ ≤ δ + C k-1 k-1 i=1 (ũ k -u k )u i + (v i -u i )u k + (ũ k -u k )(v i -u i ) dx ≤ δ + C k-1 (k -1)δ + C k-1 δ + (k -1)C k-1 δ ε k ≤ δ 1 + C k-1 (k -1) + C k-1 + (k -1)C k-1 .
(2.7)

We set for simplicity Ck to be the largest of the constants appearing on the right hand side of (2.6) and (2.7). Thus we have

u k -w k L 1 ≤ Ck ε k and w k L ∞ ≤ Ck . Recalling that v k = w k -1 L 2 w k we have w k L 2 -1 ≤ w k 2 L 2 -1 = u k + (w k -u k ) 2 L 2 -1 = 2 R d u k (u k -w k ) dx + R d (u k -w k ) 2 dx ≤ 2 u k L ∞ u k -w k L 1 + u k -w k L ∞ u k -w k L 1 ≤ 2δ Ck ε k + (δ + Ck ) Ck ε k .
(2.8)

We ask then that

ε k ≤ ε k := 1 2 2δ Ck + (δ + Ck ) Ck -1
. Thus, 1/2 ≤ w k L 2 ≤ 3/2 and we have the estimate

v k L ∞ = w k -1 L 2 w k L ∞ ≤ 2 Ck .
On the other hand, repeating precisely the same procedure as in (2.4) we obtain

u k -v k L 1 ≤ u k -w k L 1 + w k -v k L 1 ≤ Ck ε k + w k 2 L 2 -1 w k 2 L 2 w k L 1 = Ck ε k + u k + (w k -u k ) 2 L 2 -1 u k + (w k -u k ) 2 L 2 u k + (w k -u k ) L 1 ≤ 1 + 12 Ck |Ω| 1/2 Ck ε k , for ε k ≤ ε k
, where ε k > 0 is small enough and depends on Ck , δ and |Ω|. We conclude the recursive step and the proof of the claim by defining

C k := 2 1 + 12 Ck |Ω| 1/2
Ck .

We are now in position to prove (2.3) by induction. For k = 1 we repeat the estimate from (2.5) and we get

∇v 1 L 2 = ∇ũ 1 L 2 ũ1 L 2 ≤ ∇ũ 1 L 2 1 -2 u 1 L ∞ u 1 -ũ1 L 1 ≤ (1 + 4δε 1 ) ∇ũ 1 L 2 ,
For k > 1, by (2.8) we obtain

∇v k L 2 = ∇w k L 2 w k L 2 ≤ 1 1 -w k L 2 -1 ∇ũ k - k-1 i=1 ũk v i dx ∇v i L 2 = 1 + 2 2δ Ck + (δ + Ck ) Ck ε k ∇ũ k L 2 + k-1 i=1 ũk v i dx ∇v i L 2 ,
Using one more time the estimate

k-1 i=1 ũk v i dx ≤ (k -1)δ + C k-1 δ + (k -1)C k-1 δ ε k , from (2.6
), and the inductive hypothesis we obtain the claim.

Proof of Proposition 2.1. Let U ∈ H 1 (R d ; R k ) be a vector-valued function satisfying the assumptions of Proposition 2.1 and let V = (v 1 , . . . , v k ) ∈ H 1 (R d ; R k ) be the function obtained through the orthonormalization procedure in Lemma 2.5 starting from U . By Lemma 2.4 we have that U is a solution of (2.2) and since we v i v j dx = δ ij we can use V as a test function in (2.2) obtaining

R d |∇U | 2 dx + Λ|{|U | > 0}| ≤ R d |∇V | 2 dx + Λ|{|V | > 0}| ≤ 1 + C k U -U L 1 R d |∇ U | 2 dx + Λ|{| U | > 0}|,
where the last inequality follows by Lemma 2.5 and the fact that by the construction of V we have that

{|V | > 0} ⊂ {| U | > 0}.
2.2. Non-degeneracy of the eigenfunctions. The following Lemma will be applied to the case when U is the vector of eigenfunctions on an optimal set, but it holds for functions U = (u 1 , . . . , u k ) satisfying the quasi-optimality condition (2.1) or, more generally, to functions satisfying the following condition (2.9) which are roughly speaking subsolutions of (2.1) since they are minimal only with respect to perturbations

Ũ such that | Ũ | ≤ |U |.
There are constants K > 0 and ε > 0 such that

R d |∇U | 2 dx + Λ {|U | > 0} ≤ 1 + K U -U L 1 R d |∇ U | 2 dx + Λ {| U | > 0} , for every U ∈ H 1 (R d ; R k ) such that | U | ≤ |U | and U -U L 1 ≤ ε.
(2.9)

Lemma 2.6 (Non-degeneracy of U ). Let U = (u 1 , . . . , u k ) ∈ H 1 (R d ; R k
) be a function satisfying the quasi-optimality condition (2.9). There are contants c 0 > 0 and r 0 > 0, depending on d, K, Λ, ε and ∇U L 2 (R d ;R k ) , such that for every x 0 ∈ R d and r ∈ (0, r 0 ] the following implication holds

U L ∞ (B2r) < c 0 r ⇒ U ≡ 0 in B r (x 0 ) .
Proof. Suppose for simplicity x 0 = 0. Let r > 0 be such that r ≤ r 0 and U L ∞ (B2r) ≤ c 0 r with c 0 and r 0 that will be chosen later in (2.10) and (2.13).

Consider the radial functions

ψ : B 2 \ B 1 → R and φ : B 2 \ B 1 → R, solutions of the PDEs ∆ψ = 0 in B 2 \ B 1 , ψ = 0 on ∂B 1 , ψ = 1 on ∂B 2 , -∆φ = 1 in B 2 \ B 1 , φ = 0 on ∂B 1 , φ = 0 on ∂B 2 .
We set α = c 0 r > 0, while β > 0 will be chosen in (2.11) and will also depend on r > 0. We consider the function η(x) = αψ(x/r) + βr 2 φ(x/r), solution of the boundary value problem

-∆η = β in B 2r \ B r , η = 0 on ∂B r , η = α on ∂B 2r ,
and we notice that we have the estimate

|∇η| ≤ C d βr + α r ≤ C d (βr 0 + c 0 ) on ∂B r . Consider the test function Ũ = (ũ 1 , . . . , ũk ) : R d → R k , defined by ũi = u + i ∧ η -(u - i ∧ η) in B 2r , u i in R d \ B 2r .
We first choose r 0 and c 0 such that

ω d 2 d r d+1 0 c 0 ≤ ε, (2.10) 
in such a way that U L 1 (B2r 0 ) ≤ ε and we define ε(2r) as

ε(2r) = k i=1 R d |u i -ũi | dx = k i=1 B2r (u + i -η) + + (u - i -η) + dx.
By (2.10) we have ε(2r) ≤ ε(2r 0 ) ≤ ε and so the optimality of U gives

R d |∇U | 2 dx + Λ|{|U | > 0}| ≤ (1 + Kε(2r)) R d |∇ Ũ | 2 dx + Λ|{| Ũ | > 0}|. Since U = Ũ on R d \ B 2r we have Br |∇U | 2 dx + Λ|{|U | > 0} ∩ B r | ≤ B2r\Br |∇ Ũ | 2 -|∇U | 2 dx + Kε(2r) R d |∇ Ũ | 2 dx = (1 + Kε(2r)) B2r\Br |∇ Ũ | 2 -|∇U | 2 ) dx + Kε(2r) R d |∇U | 2 dx = (1 + Kε(2r)) B2r\Br -|∇( Ũ -U )| 2 + 2∇ Ũ • ∇( Ũ -U ) dx + Kε(2r) R d |∇U | 2 dx ≤ 2(1 + Kε(2r)) B2r\Br ∇ Ũ • ∇( Ũ -U ) dx + Kε(2r) R d |∇U | 2 dx.
We now estimate the first term in the right-hand side

B2r\Br ∇ Ũ • ∇( Ũ -U ) dx = k i=1 B2r\Br ∇ũ + i • ∇(ũ + i -u + i ) dx + B2r\Br ∇ũ - i • ∇(ũ - i -u - i ) dx = - k i=1 B2r\Br ∇η • ∇(u + i -η) + dx + B2r\Br ∇η • ∇(u - i -η) + dx = - k i=1 B2r\Br β(u + i -η) + dx + B2r\Br β(u - i -η) + dx + C d βr + α r k i=1 ∂Br |u i | dH d-1 .
We now choose

β = K 2(1 + Kε(2r)) R d |∇U | 2 dx, (2.11) 
and we set

E(U, B r ) = Br |∇U | 2 dx + Λ|{U = 0} ∩ B r |.
Thus, we obtain the inequality

E(U, B r ) ≤ -2(1 + Kε(2r)) k i=1 B2r\Br β(u + i -η) + dx + B2r\Br β(u - i -η) + dx + C d βr + α r k i=1 ∂Br |u i | dH d-1 + Kε(2r) R d |∇U | 2 dx ≤ C d βr + α r k i=1 ∂Br |u i | dH d-1 + K ∇U 2 L 2 (R d ;R k ) k i=1 Br |u i | dx, (2.12) 
since, thanks to the choice of β > 0 and the fact that η = 0 in B r , we have

ε(2r) - i B2r\Br (u + i -η) + dx + B2r\Br (u - i -η) + dx = k i=1 Br |u i | dx.
We now aim to estimate the term in the right hand side of (2.12) by E(U, B r ). By the W 1,1 trace inequality in B r we have

∂Br |u i | dH d-1 ≤ C d Br |∇u i | dx + 1 r Br |u i | dx ≤ C d 1 2 Br |∇u i | 2 dx + 1 2 |{|u i | > 0} ∩ B r | + C d r c 0 r|{|u i | > 0} ∩ B r | ≤ C d (1 + c 0 ) max {1, 1/Λ} E(U, B r ).
Summing the above inequality for i = 1, . . . , k we get

k i=1 ∂Br |u i | dH d-1 ≤ k C d (1 + c 0 ) max {1, 1/Λ} E(U, B r ) =: C k,d,Λ,c0 E(U, B r ).
Since the above inequality holds also for every s ∈ (0, r] we get k i=1 Br

|u i | dx = k i=1 r 0 ds ∂Bs |u i | dH d-1 ≤ C k,d,Λ,c0 r 0 ds E(U, B s ) ≤ r C k,d,Λ,c0 E(U, B r ).
We can finally estimate the right hand side of (2.12) obtaining

E(U, B r ) ≤ C k,d,Λ,c0 βr + α r + rK ∇U 2 L 2 (R d ;R k ) E(U, B r ) ≤ C k,d,Λ,c0 2K ∇U 2 L 2 (R d ;R k ) r 0 + c 0 E(U, B r ).
Choosing r 0 and c 0 such that

k C d (1 + c 0 ) max {1, 1/Λ} 2K ∇U 2 L 2 (R d ;R k ) r 0 + c 0 < 1, (2.13) 
for a dimensional constant C d > 0, we get that E(U, B r ) = 0 and so we obtain the claim. 

H 1 (R d ), the inequality ∆|U | + λ k (Ω)|U | ≥ 0 in R d , |U | ∈ H 1 0 (Ω). In fact, on the set ω := {|U | > 0}, |U | satisfies the inequality ∆|U | = j u j ∆u j |U | + |∇u j | 2 |U | - u j ∇u j • ∇|U | |U | 2 = - 1 |U | j λ j (Ω)u 2 j + 1 |U | 3 i,j u 2 i |∇u j | 2 -u i u j ∇u i • ∇u j ≥ -λ k (Ω)|U |,
while the result on the entire space follows from the fact that |U | is positive.

Remark 2.8 (Equivalent definitions of non-degeneracy). Suppose that u ∈ H 1 (B R ) is such that:

(1) u ≥ 0 and ∆u + 1 ≥ 0 weakly in H 1 0 (B R ).

(2) There are constants c 0 and r 0 such that for all r ≤ r 0 ,

u L ∞ (B2r) ≤ c 0 r ⇒ u ≡ 0 in B r .
Then there are constants r 1 and c 1 , depending only on the dimension d and the constants c 0 and r 0 , such that the following implication hold for every r ≤ r 1 :

- Br u dx ≤ c 1 r ⇒ u ≡ 0 in B r/4 , - ∂Br u dH d-1 ≤ c 1 r ⇒ u ≡ 0 in B r/4 .

Density estimate and non-degeneracy of the first eigenfunction.

First of all we prove a non-degeneracy result for the gradient, which will lead to a non-degeneracy for u 1 .

Lemma 2.9 (Non-degeneracy of |∇U |).

Let Ω be an optimal set for problem (1.1) and let U = (u 1 , . . . , u k ) be the vector of the first k normalized eigenfunctions. Then there are constants c > 0 and r > 0 such that

∇U 2 = k j=1 |∇u j | 2 ≥ c on the set S r := x ∈ Ω : dist(x, ∂Ω) ≤ r . (2.14)
Proof. The key point of our proof is that there are constants c > 0 and r > 0 such that c ≤ -

Bρ(x0) ∇U 2 dx, where ρ = dist(x 0 , ∂Ω) ≤ r. (2.15)
We prove this starting from the non-degeneracy of U , which implies (applying an Hölder inequality) that for all r ≤ r 0 and for some constant c,

Br∩Ω |U | 2 ≥ cr d+2 .
For all j = 1, . . . , k we consider u ± j and we call h ± j their harmonic extension of u ± j in B r . For all j = 1, . . . , k, we can deduce, using also the Poincaré inequality, c r 2

Br∩Ω (u ± j ) 2 dx ≤ c r 2 Br (u ± j -h ± j ) 2 dx ≤ Br |∇(u ± j -h ± j )| 2 dx = Br |∇u ± j | 2 -|∇h ± j | 2 dx ≤ Br |∇u ± j | 2 dx,
for some constant c. Then summing up over j and using the non-degeneracy of U , we obtain

Br |∇U | 2 = k j=1 Br |∇u + j | 2 + |∇u - j | 2 ≥ c 1 r 2 Br∩Ω |U | 2 ≥ c 2 r d ,
for some constants c 1 , c 2 . This easily implies the claim (2.15).

Then, for every x 0 ∈ S r there is j ∈ {1, . . . , k} and e ∈ {e 1 , . . . , e d } such that c 0 ≤ -

Bρ(x0)
∇ e u j dx.

On the other hand, on the ball B ρ (x 0 ) ⊂ Ω, the function v = ∇ e u j satisfies the equation -∆v = λ j (Ω)v and so we have |∆v| ≤ λ k (Ω)L, where L denotes the Lipschitz constant of U . Thus, by the subharmonicity of v(x)

+ |x -x 0 | 2 λ k (Ω)L we have |∇u j | ≥ ∇ e u j ≥ - Bρ(x0) ∇ e u j dx -ρ 2 λ k (Ω)L ≥ c 0 -r 2 0 λ k (Ω)L,
which concludes the proof.

It is important to highlight that, until now, we needed as hypothesis on U only a quasi-minimality condition (2.1) and no sign assumption on the u i was involved. On the other hand, in the next lemmas, it will become essential that the first component u 1 of the vector U is positive.

Lemma 2.10 (Non-degeneracy of u 1 ). Suppose that Ω is a connected optimal set for problem (1.1). Then there is a constant C > 0 such that Cu 1 ≥ |U | on Ω.

Proof. Let r and c be as in (2.14). Consider the function

v = |U | + |U | 2 /2. On the strip S r we have ∆v = ∆|U | + k j=1 (|∇u j | 2 + u j ∆u j ) ≥ c 0 -λ k (Ω)(|U | + |U | 2 ).
Since |U | is continuous and 0 on ∂Ω we have that there is r > 0 such that v is subharmonic on the strip S r .

Let Ω r = {x ∈ Ω : dist(x, ∂Ω) ≥ r}. Since Ω is connected we have that inf x∈Ωr u 1 > 0 and so there is M > 0 such that M u 1 ≥ v on Ω r . On the other hand u 1 is superharmonic on S r which gives that M u 1 ≥ v ≥ |U | on the entire domain Ω.

The last lemma of this Section provides a density estimate for the optimal set Ω U . We remark that, in order to obtain the upper bound on the density, it is fundamental to know that u 1 is non-negative and non-degenerate: without this assumption we are not able to prove such a claim. Here is the main difficulty if one wants to prove an extension of the Alt-Caffarelli result to the vectorial case in the general setting.

Lemma 2.11 (Density estimate for Ω U ). Suppose that U ∈ C(B R ; R k ) is a Lipschitz continuous function satisfying the quasi-minimality condition (2.1). Then there are constant r 0 > 0 and ε 0 > 0 such that

ε 0 |B r | ≤ {|U | > 0} ∩ B r (x 0 ) ≤ (1 -ε 0 )|B r |, for every x 0 ∈ ∂{|U | > 0} and r ≤ r 0 .
(2.16)

Proof. The proof follows by the same argument as in [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF]. We assume that x 0 = 0. By Lemma 2.6 we have that for r small enough U L ∞ (B r/2 ) ≥ c 0 r 4 . Thus there is some

x r ∈ B r/2 such that |U |(x r ) ≥ c 0 r 4 .
On the other hand |U | is Lipschitz continuous, and so, setting

θ = inf 1 2 , c 0 4 ∇|U | L ∞
we have that |U | > 0 on B θr (x r ) and this proves the lower bound in (2.16).

For the upper bound, we notice that since 0 ∈ ∂{|U | > 0} we can apply Lemma 2.10 obtaining that there are constants c 1 and r 0 such that

- ∂Br u 1 dH d-1 ≥ c 1 r for every r ≤ r 0 .
Let U = (ũ 1 , . . . , u k ), where ũ1 is the harmonic extension of u 1 on the ball B r . By the quasi-optimality of U we have

Λ {|U | = 0} ∩ B r ≥ B R |∇U | 2 dx -1 + K U -U L 1 B R |∇ U | 2 dx ≥ Br |∇(U -U )| 2 dx -K U -U L 1 B R |∇U | 2 dx = Br |∇(u 1 -u 1 )| 2 dx -K u 1 -u 1 L 1 B R |∇U | 2 dx.
(2.17) Let L = ∇u 1 L ∞ . Then u 1 L ∞ (Br) ≤ Lr and by the maximum principle u 1 L ∞ (Br) ≤ Lr. Thus we have the estimate

K u 1 -u 1 L 1 B R |∇U | 2 dx ≤ ω d KL ∇U L 2 (B R ) r d+1 =: Cr d+1 .
(2.18)

In order to estimate Br |∇(u 1 -u 1 )| 2 dx we first notice that by the Poincaré inequality in B r we have

Br |∇(u 1 -u 1 )| 2 dx ≥ λ 1 (B 1 ) r 2 Br |u 1 -u 1 | 2 dx ≥ C d |B r | 1 r Br |u 1 -u 1 | dx 2 . (2.19)
Let κ ∈ (0, 1/3). Since u 1 is non-negative and harmonic in B r the Harnack inequality for u 1 together with the non-degeneracy of u 1 gives that

c 1 r ≤ - ∂Br u 1 dH d-1 = - ∂Br u 1 dH d-1 = u 1 (0) ≤ max Bκr u 1 ≤ 1 -κ 1 -3κ d min Bκr u 1 ,
while the Lipschitz continuity of u 1 gives that max Bκr u 1 ≤ Lκr. Thus for κ small enough (depending on d, c 1 and L) we have

u 1 ≥ |u 1 | + c 1 3 r in B κr .
Together with (2.17), (2.18) and (2.19) this gives

Λ {|U | = 0} ∩ B r ≥ C d |B r | 1 r Bκr |u 1 -u 1 | dx 2 -Cr d+1 ≥ C d c 2 1 κ 2d r d -Cr d+1 ≥ C d c 2 1 κ 2d 2 r d ,
for r small enough.

Weiss monotonicity formula

In this section we establish a monotonicity formula in the spirit of [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]. Following the original notation from [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF], for a function

U ∈ H 1 (R d ; R k ) we define φ(U, x 0 , r) := 1 r d Br(x0) |∇U | 2 dx + Λ {|U | > 0} ∩ B r (x 0 ) - 1 r d+1 ∂Br(x0) |U | 2 dH d-1 . (3.1)
The monotonicity of φ(U, x 0 , •) is related to the classification of the blow-up limits and is an essential tool for proving the regularity of the free boundary. The following proposition concerns the case when U is the vector of the first k eigenfunctions on an optimal set. Proposition 3.1 (Monotonicity formula for the optimal eigenfunctions). Let Ω be optimal for (1.1) and let U = (u 1 , . . . , u k ) ∈ H 1 0 (Ω; R k ) be the vector of the first k normalized eigenfunctions on Ω. Suppose that x 0 ∈ ∂Ω. Then there are constants r 0 and C 1 such that the function r → φ(U, x 0 , r) satisfies the following inequality for every r ≤ r 0 :

d dr φ(U, x 0 , r) ≥ 1 r d+2 k i=1 ∂Br(x0) |(x -x 0 ) • ∇u i -u i | 2 dx -C 1 .
Moreover, the limit lim r→0 + φ(U, x 0 , r) exists and is a real number.

The last result of the section concerns the vector-valued functions 

U = (u 1 , . . . , u k ) ∈ H 1 loc (R d ; R k ) that are local minimizers of the functional F 0 (U ) = |∇U | 2 dx + |{|U | > 0}|
F 0 (U ) = |∇U | 2 dx + Λ|{|U | > 0}|, if for every B R ⊂ R d and for every function Ũ ∈ H 1 loc (R d ; R k ) such that Ũ -U ∈ H 1 0 (B R ; R k ) we have B R |∇U | 2 dx + Λ {|U | > 0} ∩ B R ≤ B R |∇ Ũ | 2 dx + Λ {| Ũ | > 0} ∩ B R . Proposition 3.3 (Monotonicity formula for local minimizers of F 0 ). Suppose that U = (u 1 , . . . , u k ) ∈ H 1 loc (R d ; R k
) is a local minimizer of the functional F 0 in sense of Definition 3.2. Then the function φ(r) := φ(U, 0, r) from (3.1) satisfies the inequality

φ (r) ≥ 1 r d+2 k i=1 ∂Br |x • ∇u i -u i | 2 dx.
If moreover, φ is constant in (0, +∞), then the function U is one-homogeneous.

For the sake of simplicity in the rest of the section we will fix x 0 = 0 and φ(r) := φ(U, 0, r). In order to prove Proposition 3.1 and Proposition 3.3 we need the following lemma, in which, following the ideas from [39, Theorem 1.2], we compare the function U with its one-homogeneous extension in the ball B r .

Lemma 3.4. Let U ∈ H 1 (R d ; R k )∩W 1,∞ (R d ; R k ) be a Lipschitz continuous function such that U (0) = 0.
Suppose that U is a quasi-minimizer of F K in sense of (2.1). Then, there are constants r 0 > 0 and C 0 > 0 such that, for every r ∈ (0, r 0 ), we have the estimate

Br |∇U | 2 dx + Λ B r ∩ {|U | > 0} ≤ r d ∂Br |∇ τ U | 2 + |U | 2 r 2 dH d-1 + Λ r d H d-1 ∂B r ∩ {|U | > 0} + C 0 r d+1 . (3.2)
Proof. Let U = (u 1 , . . . , u k ) be a quasi-minimizer in the sense of (2.1) with constants K, ε and we can clearly assume that U L ∞ ≤ ε -1 . We consider the one homogeneous function

U = ( u 1 , . . . , u k ) : B r → R k defined by U (x) := |x| r U x r |x| . For its components u i we have u i (x) := |x| r u i x r |x| and 
|∇ u i | 2 (x) = |∇ τ u i | 2 x r |x| + r -2 u 2 i x r |x| .
Integrating over B r and summing for i = 1, . . . , k we obtain

Br |∇ U | 2 dx = k i=1 r d ∂Br |∇ τ u i | 2 + u 2 i r 2 dH d-1 = r d ∂Br |∇ τ U | 2 + |U | 2 r 2 dH d-1 ,
while for the measure term we have that

B r ∩ {| U | > 0} = r d H d-1 ∂B r ∩ {|U | > 0} .
Since U ≡ U on ∂B r , the minimality of U in B r gives

Br |∇U | 2 dx + Λ B r ∩ {|U | > 0} ≤ Br |∇ U | 2 dx + Λ B r ∩ {| U | > 0} + K U -U L 1 R d |∇ U | 2 dx ≤ r d ∂Br |∇ τ U | 2 + |U | 2 r 2 dH d-1 + Λ r d H d-1 ∂B r ∩ {|U | > 0} + K2r|B r | ∇U L ∞ R d |∇U | 2 dx + 2|B r | ∇U 2 L ∞ .
It is now sufficient to choose C 0 and r 0 such that

2r d+1 0 |B 1 | ∇U L ∞ ≤ ε and C 0 ≥ 2K|B 1 | ∇U L ∞ R d |∇U | 2 dx + 2|B r0 | ∇U 2 L ∞ ,
where K and ε are the constants from (2.1).

We are now in position to prove the desired monotonicity formula for the function φ.

Proof of Proposition 3.1. Let r 0 and C 0 be the constants from Lemma 3.4 and let C 1 = dC 0 . Calculating the derivative φ (r) and using (3.2) from Lemma 3.4, we have

φ (r) = 1 r d ∂Br |∇U | 2 dH d-1 + ΛH d-1 ({|U | > 0} ∩ ∂B r ) - d r d+1 Br |∇U | 2 dx + Λ|{|U | > 0} ∩ B r | + 2 r d+2 ∂Br |U | 2 dH d-1 - 1 r d+1 k i=1 ∂Br 2u i ∂u i ∂ν dH d-1 ≥ 1 r d ∂Br |∇U | 2 dH d-1 + ΛH d-1 ({|U | > 0} ∩ ∂B r ) - d r d+1 r d ∂Br |∇ τ U | 2 + |U | 2 r 2 dH d-1 + r d ΛH d-1 ({|U | > 0} ∩ ∂B r ) + C 0 r d+1 + 2 r d+2 ∂Br |U | 2 dH d-1 - 1 r d+1 k i=1 ∂Br 2u i ∂u i ∂ν dH d-1 = 1 r d k i=1 ∂Br ∂u i ∂ν 2 dH d-1 + 1 r d+2 ∂Br |U | 2 dH d-1 - 1 r d+1 k i=1 ∂Br 2u i ∂u i ∂ν dH d-1 -C 1 = 1 r d+2 k i=1 ∂Br r 2 ∂u i ∂ν 2 + u 2 i -2ru i ∂u i ∂ν dH d-1 -C 1 = 1 r d+2 ∂Br |x • ∇U -U | 2 dH d-1 -C 1 ,
which concludes the proof of the first part of Proposition 3.1. In particular, we obtain that the function r → φ(r) + C 1 r is non-decreasing. Thus the limit lim r→0+ (φ(r) + C 1 r) = lim r→0+ φ(r) does exist and is necessarily a real number or -∞. In order to exclude this last possibility, we notice that due to the Lipschitz continuity of U and the fact that U (0) = 0, we have that

φ(r) ≥ - 1 r d+1 ∂Br |U | 2 dH d-1 ≥ -dω d ∇U 2
L ∞ , for every r > 0, which finally proves that lim r→0+ φ(r) is finite.

Proof of Proposition 3.3. We notice that if U is a local minimizer of the functional F 0 , then both the constants C 0 and C 1 defined above can be taken equal to zero. The last claim of the proposition follows by the fact that if φ ≡ 0, then x • U ≡ U in R d , which proves that U is 1-homogeneous.

Blow-up sequences and blow-up limits

Let U : R d → R k be a given Lipschitz function. For r > 0 and x ∈ R d such that U (x) = 0, we define U r,x (y) := 1 r U (x + ry).

When x = 0 we will use the notation U r := U r,0 . Suppose now that (r n

) n≥0 ⊂ R + and (x n ) n≥0 ⊂ R d are two sequences such that lim n→∞ r n = 0, lim n→∞ x n = x 0 , x n ∈ ∂{|U | > 0} for every n ≥ 0. (4.1)
Then the sequence {U rn,xn } n∈N is uniformly Lipschitz and locally uniformly bounded in R d . Thus, up to a subsequence, U rn,xn converges locally uniformly in R d as n → ∞.

Definition 4.1. Let U : R n → R k be a Lipschitz function, r n and x n be two sequences satisfying (4.1).

• We say that the sequence U rn,xn is a blow-up sequence with variable center (this is sometimes called pseudo-blow-up). • If the sequence x n is constant, i.e. x n = x 0 for every n ≥ 0, we say that the sequence U rn,x0 is a blow-up sequence with fixed center. • We denote by BU U (x 0 ) the space of all the limits of blow-up sequences with fixed center x 0 .

The main result of this section is the following : Proposition 4.2 (Structure of the blow-up limits). Let Ω be optimal for (1.1) and let U = (u 1 , . . . , u k ) be the vector of the first k normalized eigenfunctions on Ω. For every x 0 ∈ ∂Ω and U 0 ∈ BU U (x 0 ) there is a unit vector ξ ∈ ∂B 1 ⊂ R k such that U 0 = ξ|U 0 |. Moreover the (real-valued) function |U 0 | is not identically zero and satisfies the following properties:

(1) |U 0 | is 1-homogeneous ;

(2) |U 0 | is a local minimizer (in the sense of Definition 3.2) of the Alt-Caffarelli functional

H 1 loc (R d ; R) u → |∇u| 2 dx + Λ|{u > 0}|.
The rest of the section is dedicated to the proof of Proposition 4.2. In Proposition 4.5 we prove that the blow-up sequences (of fixed or variable center) converge strongly in H 1 loc and the corresponding free boundaries converge in the Hausdorff distance. In Lemma 4.6 we prove that the vector-valued function U 0 is a local minimizer (in the sense of Definition 3.2) of the functional

H 1 loc (R d ; R k ) U → |∇U | 2 dx + Λ|{|U | > 0}|.
We apply then the Weiss monotonicity formula (Proposition 3.1 and Proposition 3.3) to obtain the 1homogeneity of U 0 , that we use to prove the existence of the vector ξ in Lemma 4.9. This result together with the optimality of U 0 gives the optimality of |U 0 |, which is finally proved in Lemma 4.10.

As a consequence of Proposition 4.2 we get the following result.

Corollary 4.3. Every optimal set for (1.1) is connected.

Proof. Let Ω be an optimal set for the problem (1.1). Suppose that Ω is a union of two disjoint open sets Ω 1 and Ω 2 . Then the spectrum of Ω is given by σ(Ω) = σ(Ω 1 ) ∪ σ(Ω 2 ) and in particular there is some l ∈ 1, . . . , k -1 such that

{λ 1 (Ω), . . . , λ k (Ω)} = {λ 1 (Ω 1 ), . . . , λ l (Ω 1 )} ∪ {λ 1 (Ω 2 ), . . . , λ k-l (Ω 2 )}.
Now since Ω is optimal for the sum λ 1 + • • • + λ k , we have that Ω 1 has to be optimal for

λ 1 + • • • + λ l and Ω 2 for λ 1 + • • • + λ k-l .
Let Ω 1 and Ω 2 be translations of Ω 1 and Ω 2 such that Ω 1 and Ω 2 are disjoint and tangent in 0

∈ ∂ Ω 1 ∩ ∂ Ω 2 .
Setting Ω = Ω 1 ∪ Ω 2 we have that Ω and the original set Ω have the same spectrum and the same measure. Thus Ω is a solution of (1.1). Let (u 1 , . . . , u l ) and (v 1 , . . . , v k-l ) be the vectors of the first eigenfunctions on Ω 1 and Ω 2 . Let U 0 and V 0 be two limits of the blow-up sequences of these two vectors in zero. By the optimality and the homogeneity of |U 0 | and |V 0 |, together with the fact that they are non-zero (see Proposition 4.2) we have that necessarily {|U 0 | > 0} and {|V 0 | > 0} are two complementary half-spaces. On the other hand there is a blow-up limit W 0 ∈ BU U (0) whose components are precisely the ones of U 0 and V 0 . Now, by the optimality of |W 0 |, it has to be a non-negative nonzero harmonic function on B 1 vanishing in zero, in contradiction with the maximum principle, so Ω is disconnected.

The proof of Proposition 4.2 is based on the fact that if U is the vector eigenfunctions on the optimal set for λ 1 + • • • + λ k , then U r,x0 satisfies a quasi-minimality condition of the form (2.1). This is a direct consequence from the scaling properties of the functional F K defined in Section 2.1. Since it is essential for the proof of Proposition 4.2, we show it in the following Lemma.

Lemma 4.4. Suppose that U ∈ H 1 (R d ; R k ) ∩ L ∞ (R d ; R k
) and that there are constants K > 0 and ε > 0 such that U satisfies the quasi-minimality condition 2.1. Then, for every

x 0 ∈ R d , U r,x0 satisfies R d |∇U r,x0 | 2 dx + Λ {|U r,x0 | > 0} ≤ 1 + Kr d+1 U r,x0 -U L 1 R d |∇ U | 2 dx + Λ {| U | > 0} , for every U ∈ H 1 (R d ; R k ) such that U L ∞ ≤ 1 εr and U -U L 1 ≤ ε r d+1 . Proof. Assume for simplicity that x 0 = 0. Let U ∈ H 1 (R d ; R k ) ∩ L ∞ (R d ; R k ) be such that U r -U L 1 ≤ ε r d+1 and U L ∞ ≤ 1 εr ,
and consider the functions Φ = U r -U , Φ r (x) := rΦ x r and Ũ r (x) := r Ũ x r . We notice that

Φ r L 1 = r d+1 Φ L 1 ≤ ε and Ũ r L ∞ = r Ũ L ∞ ≤ 1 ε ,
and so we may use Ũ r = U + Φ r to test the optimality of U :

R d |∇U r | 2 dx + Λ {|U r | > 0} = 1 r d R d |∇U | 2 dx + Λ r d {|U | > 0} ≤ 1 + K Φ r L 1 1 r d R d |∇ Ũ r | 2 dx + Λ r d {| Ũ r | > 0} = 1 + Kr d+1 Φ L 1 R d |∇ U | 2 dx + Λ {| U | > 0} ,
which gives the claim. where the convergence of U rn,xn is to be intended locally uniform in R d . Then, for every R > 0, the following properties hold:

(a) The sequence U rn,xn (x

) := 1 r n U (x n + r n x) converges to U 0 strongly in H 1 (B R ; R k ).
(b) The sequence of characteristic functions 1 Ωn converges in L 1 (B R ) to 1 Ω0 , where

Ω n := {|U rn | > 0} and Ω 0 := {|U 0 | > 0}.
(c) The sequences of closed sets Ω n and Ω c n converge Hausdorff in B R respectively to Ω 0 and

Ω c 0 . (d) U 0 is non-degenerate at zero, that is, there is a dimensional constant c d > 0 such that U 0 L ∞ (Br) ≥ c d r for every r > 0.
Proof. We set for simplicity U n = U rn,xn and we divide the proof in some steps, for sake of clarity.

Step 1. Since U n is bounded in H 1 loc (R d ; R k ) (being uniformly Lipschitz) we have that U n converges weakly in

H 1 loc to U 0 ∈ H 1 loc (R d ; R k ).
By the definition of Ω n and the fact that |U n | converges locally uniformly to |U 0 | we have that

1 Ω0 ≤ lim inf n→∞ 1 Ωn .
Step 2. Let us now prove that U n converges strongly in H 1 loc (R d ; R k ) to U 0 and that 1 Ωn converges to

1 Ω0 pointwise on R d . Fixed a ball B R ⊂ R d it is sufficient to prove that lim n→∞ B R |∇U n | 2 dx + Λ|B R ∩ Ω n | = B R |∇U 0 | 2 dx + Λ|B R ∩ Ω 0 |. (4.2)
We notice that the function U n is a local minimizer of

F n (V ) = 1 + r d+1 n K U n -V L 1 R d |∇V | 2 dx + Λ {|V | > 0} . Consider a function ϕ ∈ C ∞ c (R d ) such that 0 ≤ ϕ ≤ 1 and B R = {ϕ = 1}. We introduce the test function Ũn = ϕU 0 + (1 -ϕ)U n .
The optimality of U n now gives

{ϕ>0} |∇U n | 2 dx + Λ {|U n | > 0} ∩ {ϕ > 0} ≤ 1 + r d+1 n K U n -Ũn L 1 {ϕ>0} |∇ Ũn | 2 dx + Λ {| Ũn | > 0} ∩ {ϕ > 0} ≤ 1 + r d+1 n K ϕ(U 0 -U n ) L 1 {ϕ>0} |∇ Ũn | 2 dx + Λ {| Ũn | > 0} ∩ {ϕ > 0} ≤ 1 + r d+1 n K ϕ(U 0 -U n ) L 1 {ϕ>0} |∇ Ũn | 2 dx + Λ {ϕ = 1} ∩ {|U 0 | > 0} + {0 < ϕ < 1} (4.3) Since U n converges strongly L 2 (B R ; R k ) and weakly H 1 loc (R d ; R k ) to U 0 , we can estimate {ϕ>0} |∇U n | 2 - {ϕ>0} |∇ Ũn | 2 dx = {ϕ>0} |∇U n | 2 - {ϕ>0} |∇(ϕU 0 + (1 -ϕ)U n )| 2 dx = {ϕ>0} (∇U n -∇(ϕU 0 + (1 -ϕ)U n )) • (∇U n + ∇(ϕU 0 + (1 -ϕ)U n )) dx = {ϕ>0} (ϕ∇(U n -U 0 ) + (U n -U 0 )∇ϕ) • (ϕ∇(U n + U 0 ) + (U n + U 0 )∇ϕ + 2∇((1 -ϕ)U n )) dx = {ϕ>0} ϕ 2 (|∇U n | 2 -|∇U 0 | 2 ) dx + 2 {ϕ>0} ϕ∇(U n -U 0 ) • (1 -ϕ)∇U n dx + o(1/n) = {ϕ>0} (1 -(1 -ϕ) 2 )(|∇U n | 2 -|∇U 0 | 2 ) dx + o(1/n). Now since |∇U n | converges weakly in L 2 ({0 < ϕ < 1}; R) to |∇U 0 |, we have that lim sup n→∞ {ϕ>0} |∇U n | 2 -|∇ Ũn | 2 dx ≥ lim sup n→∞ {ϕ=1} |∇U n | 2 -|∇U 0 | 2 dx.
Substituting in the inequality (4.3) above we obtain lim sup

n→∞ {ϕ=1} |∇U n | 2 -|∇U 0 | 2 dx + Λ(|{ϕ = 1} ∩ Ω n | -|{ϕ = 1} ∩ Ω 0 |) ≤ lim sup n→∞ {ϕ>0} |∇U n | 2 -|∇ Ũn | 2 dx + Λ(|{ϕ = 1} ∩ Ω n | -|{ϕ = 1} ∩ Ω 0 |) ≤ Λ|{0 < ϕ < 1}|.
Now, since ϕ is arbitrary outside B R , we get (4.2). So we have proved part (a) and (b) of the Proposition.

Step 3.

It is well-known that the convergence L 1 of the sequence of characteristic functions 1 Ωn together with the fact that each Ω n satisfies the density estimate

ε 0 |B r | ≤ |Ω n ∩ B r | ≤ (1 -ε 0 )|B r |, ∀r < r 0 /r n ,
gives that both Ω n and Ω c n converge Hausdorff respectively to Ω 0 and Ω c 0 locally in R d , hence also part (c) of the statement is concluded.

Step 4. It remains only to prove the non-degeneracy of U 0 . We first note that every function U rn is non-degenerate in the following sense:

y ∈ Ω n ⇒ U n L ∞ (Br(y)) ≥ c 0 r, ∀r ≤ r 0 /r n . (4.4) In fact if y ∈ Ω n , then r n y ∈ Ω = {|U | > 0}.
By the non-degeneracy of U we obtain

r n U n L ∞ (Br(y)) = U L ∞ (Brr n (xn+rny)) ≥ c 0 rr n , ∀r ≤ r 0 /r n ,
which is precisely (4.4). Our claim that the function U 0 is non-degenerate means

y ∈ Ω 0 ⇒ U 0 L ∞ (Br(y)) ≥ c 0 4 r, ∀r > 0. (4.5)
Suppose that y ∈ Ω 0 and r > 0. Then there is y ∈ B r2 (y) such that |U 0 |(y ) > 0. Then for n large enough y ∈ Ω n . By the non-degeneracy of U n we have that there is a point

y n ∈ B r/2 (y ) such that 2|U n |(y n ) ≥ U n L ∞ (B r/2 (y )) ≥ c 0 r/2.
We can assume that y n converges to some y ∞ ∈ B r/2 (y ), for which the uniform convergence of U n gives |U 0 |(y ∞ ) ≥ c 0 r/4, and so we have (4.5). Proof. Let x 0 = 0 and B R ⊂ R d be a fixed ball. We first notice that if U satisfies (2.1) and r > 0, then U r (x) = 1 r U (rx) satisfies the following quasi-minimality condition in the ball B R (see Lemma 4.4)

1 + Kr d+1 U r -U L 1 B R |∇U r | 2 dx + Λ {|U r | > 0} ∩ B R ≤ 1 + Kr d+1 U r -U L 1 B R |∇ U | 2 dx + Λ {| U | > 0} ∩ B R +Kr U r -U L 1 R d |∇U | 2 dx, (4.6) 
for every

U ∈ H 1 (R d ; R k ) ∩ L ∞ (R d ; R k ) such that U r -U ∈ H 1 0 (B R , R k ) and U r -U L 1 ≤ ε r d+1 and U L ∞ ≤ 1 εr . Let now U ∈ H 1 loc (R d ; R k ) ∩ L ∞ loc (R d ; R k ) be such that U 0 -U ∈ H 1 0 (B R , R k ) and let η ∈ C ∞ c (B R ) be such that 0 ≤ η ≤ 1.
We consider a sequence U rn converging to U 0 is sense of Proposition 4.5. We recall that U rn → U 0 both uniformly in B R and strongly in H 1 (B R ). Consider the test function

W n = U + (1 -η)(U rn -U 0 ). Since U = U 0 outside B R we have that W n = U rn outside B R . Moreover, since W n -U rn = U -U 0 -η(U rn -U 0 ) and U rn → U 0 in L 1 (B R )
we have that, for n ≥ n 0 (where n 0 does not depend on η but only on the sequence r n ),

W n -U rn L 1 ≤ 2 U -U 0 L 1 and W n -U rn L ∞ ≤ 2 U -U 0 L ∞ ,
and so W n can be used as a test function in (4.6), thus obtaining

1 + Kr d+1 n U rn -W n L 1 B R |∇U rn | 2 -|∇W n | 2 dx + Λ {|U rn | > 0} ∩ B R ≤ Λ {| U | > 0} ∩ {η = 1} + {0 < η < 1} +2Kr n U -U 0 L 1 R d |∇U | 2 dx. Now since U rn → U 0 in H 1 (B R ; R k ) and W n → Ũ in H 1 (B R ; R k ) we have B R |∇U 0 | 2 dx + Λ {|U 0 | > 0} ∩ B R ≤ B R |∇ U | 2 dx + Λ {| U | > 0} ∩ {η = 1} + {0 < η < 1} .
Since we can choose η such that |{η = 1}| is arbitrarily close to |B R | we obtain

B R |∇U 0 | 2 dx + Λ {|U 0 | > 0} ∩ B R ≤ B R |∇ U | 2 dx + Λ {| U | > 0} ∩ B R .
Lemma 4.7 (Homogeneity of the blow-up limits). Let U ∈ H 1 (R d ; R k ) be a Lipschitz continuous function satisfying the quasi-minimality condition (2.1). Let x 0 ∈ ∂{|U | > 0} and U 0 ∈ BU U (x 0 ). Then U 0 is a one-homogeneous function.

Proof. Let the sequence r n → 0 be such that the sequence U n (x) := 1 rn U (x 0 + r n x) converges to U 0 both uniformly and (see Proposition 4.5) strongly in

H 1 (B R ; R k ), for every ball B R ⊂ R d . Let φ n be the Weiss functional corresponding to U n φ n (r) := φ(U n , 0, r) = 1 r d Br |∇U n | 2 dx - 1 r d+1 ∂Br |U n | 2 dH d-1 + Λ r d {|U n | > 0} ∩ B r . (4.7)
We notice that φ n (r) = φ(U, x 0 , r n r) for every r > 0, (4.8) where φ(U, x 0 , r) is the Weiss functional corresponding to U from (3.1). By (4.8) and the fact that the limit lim r→0 φ(U, x 0 , r) exists (see Proposition 3.1) we have that for every fixed r > 0 lim n→∞ φ n (r) = lim n→∞ φ(U, x 0 , r n r) = lim ρ→0 φ(U, x 0 , ρ).

(4.9)

On the other hand Proposition 4.5 gives that

lim n→∞ φ n (r) = φ 0 (U 0 , 0, r),
Now since φ 0 (U 0 , 0, r) is constant in r (due to (4.9)) and U 0 is optimal (due to Proposition 4.6) we can apply Proposition 3.3 and finally obtain that U 0 is one-homogeneous function on R d .

Remark 4.8. In the following Lemma and in Section 5 we will use some rather well known facts about eigenvalues of the spherical Laplacian ∆ S on regions of the sphere. For more details we refer to [START_REF] Sperner | Zur Symmetrisierung von Funktionen auf Sphären[END_REF][START_REF] Friedland | Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions[END_REF], but we summarize here the main facts that we need in the following.

• Let S ⊂ ∂B 1 be an open subset of the sphere ∂B 1 ⊂ R d , for d ≥ 2, and let C S = {rθ : θ ∈ S, r > 0} be the cone generated by S. Then, given an α-homogeneous function u : C S → R for some α > 0, we have that u is a solution of the problem

∆u = 0 in C S , u = 0 on ∂C S ,
if and only if the trace ϕ = u| ∂B1 is a solution of the problem

-∆ S ϕ = λϕ in S, ϕ = 0 on ∂S,
where λ = α(α + d -2) and ∆ S denotes the Laplace-Beltrami operator on the sphere ∂B 1 . We denote by {λ j (S)} j≥1 the non-decreasing sequence of eigenvalues on set S ⊂ ∂B 1 counted with the due multiplicity. • For the spherical sets S we have the inequality

λ 1 (S) ≥ d -1 for every S ⊂ ∂B 1 such that H d-1 (S) ≤ dω d 2 , (4.10) 
and the equality is achieved if and only if, up to a rotation, S is the half-sphere

∂B + 1 = {x = (x 1 , . . . , x d ) ∈ ∂B 1 : x d > 0} . • As a consequence of (4.10) we get that λ 2 (S) ≥ d -1 for every S ⊂ ∂B 1 , (4.11) 
where the equality is achieved if and only if, up to a rotation, ∂B 1 ∩ {x d = 0} ⊂ S. Indeed, if the second eigenfunction ϕ 2 ∈ H 1 0 (S) changes sign, then we can apply (4.10) to the sets {ϕ 2 > 0} and {ϕ 2 < 0}. If ϕ 2 ≥ 0 on S, then the sets {ϕ 1 > 0} (ϕ 1 ≥ 0 being the first eigenfunction on S) and {ϕ 2 > 0} are disjoint and again the claim follows by (4.10).

• As a consequence of (4.10) and (4.11) we obtain that if S ⊂ ∂B 1 is such that λ 1 (S) ≤ d -1

and H d-1 (S) < dω d , then the first eigenvalue λ 1 (S) is simple, that is there exists a unique (non-negative) function

ϕ 1 ∈ H 1 0 (S) such that -∆ S ϕ 1 = λ 1 (S)ϕ 1 in S, ϕ 1 = 0 on ∂S, S ϕ 2 1 = 1. Lemma 4.9. Let U ∈ H 1 (R d ; R k ) be a Lipschitz continuous function satisfying the quasi-minimality condition (2.1). Let x 0 ∈ ∂{|U | > 0} and U 0 ∈ BU U (x 0 ). Then, there is a unit vector ξ ∈ ∂B 1 ⊂ R k such that U 0 = ξ|U 0 |. Proof. By Lemma 4.7 U 0 = (u 1 , . . . , u k ) is a one-homogeneous function and so is |U 0 |. Let S := ∂B 1 ∩ {|U 0 | > 0}.
We first notice that all the components u 1 , . . . , u k of U 0 are harmonic functions on the cone

{|U 0 | > 0} = {rξ : ξ ∈ S, r > 0}.
Thus in polar coordinates we have that u i (r, θ) = rϕ i (θ), where

ϕ i satisfies -∆ S ϕ i = (d -1)ϕ i in S, ϕ i = 0 on ∂S,
that is, d -1 is an eigenvalue of the spherical Laplacian ∆ S on S and the non-zero components of U 0 are (non-normalized) eigenfunctions. Now since |S| < |∂B 1 | ( due to the optimality of U 0 ) the last point of Remark 4.8 implies that the first eigenvalue λ 1 (S) is simple. Then, denoting by ϕ the first normalized eigenfunction on S, we get that there are constants a 1 , . . . , a k such that ϕ i = a i ϕ, for every i = 1, . . . , k. Setting A = (a 1 , . . . , a k ) we have that |U 0 | = |A|ϕ. Since U 0 is not constantly zero on ∂B 1 (see Proposition 4.5), we have that |A| = 0 and thus, taking ξ = |A| -1 A we have the claim. Proof. We set for simplicity u = |U 0 |. Let ξ be the unit vector from Lemma 4.9. Let ũ ∈ H 1 loc (R d ) be such that the difference u -ũ is supported in the ball B R . Then the same holds for the function U 0 -ξ ũ. By the optimality of U 0 we have

B R |∇u| 2 dx + Λ|{u > 0} ∩ B R | = B R |∇U 0 | 2 dx + Λ|{|U 0 | > 0} ∩ B R | ≤ B R |∇(ξ ũ)| 2 dx + Λ|{|ξ ũ| > 0} ∩ B R | = B R |∇ũ| 2 dx + Λ|{|ũ| > 0} ∩ B R |,
which proves the claim.

Regularity of the free boundary

In this section we conclude the proof of Theorem 1.3.

5.1.

The optimality condition on the free boundary. It is well-known (see for example [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF]) that if u is a local minimizer of the Alt-Caffarelli functional

H 1 loc (R d ) u → E 0 (u) := |∇u| 2 dx + Λ|{u > 0}|,
and the boundary ∂{u > 0} is smooth, then the following boundary optimality condition holds :

|∇u| = √ Λ on ∂{u > 0}.
There are various ways to state this optimality for free boundaries that are not a priori smooth (see for example [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF] and [START_REF] Silva | Free boundary regularity from a problem with right hand side[END_REF]). In the case of vector-valued functionals the most appropriate one seems to be the approach exploiting the notion of a viscosity solution. 

U n (x) = 1 r n U (r n x) and ϕ n (x) = 1 r n ϕ(r n x),
for a sequence of radii r n → 0. Up to a subsequence we have that the blow-up limits

U 0 = lim n→∞ U n (x) and ϕ 0 = lim n→∞ ϕ n (x), (5.2) 
exist where the convergence is locally uniform in R d . We first notice that, as ϕ is smooth, we have ϕ 0 (x) = ξ • x for a vector ξ ∈ R d . Without loss of generality we may assume that ξ = ae d for some constant a > 0, thus |∇ϕ(0)| = |∇ϕ 0 (0)| = a and ϕ 0 (x) = ax d .

(5.3) Now, since |U 0 | ≥ ϕ 0 , we obtain that |U 0 | > 0 on {x d > 0}. By Proposition 4.7 we have that U 0 is a 1-homogeneous harmonic function on the cone {|U 0 | > 0} ⊃ {x d > 0}. Thus, necessarily U 0 = 0 on the hyperplane {x ∈ R d : x d = 0} and by the second point of Remark 4.8 we have only two possibilities:

{|U 0 | > 0} = {x d > 0} or {|U 0 | > 0} = {x d = 0}.
The second case is ruled out since, due to Proposition 4.2, |U 0 | is a local minimizer of the Alt-Caffarelli functional and so it has to satisfy an exterior density estimate, which is not the case of the set {x d = 0}. Thus the only possibility is

{|U 0 | > 0} = {x d > 0}.
In particular the boundary ∂{|U 0 | > 0} is smooth as well as the function U 0 whose components are linear functions. Since |U 0 | is a minimizer of the Alt-Caffarelli functional, it satisfies the optimality condition

|∇|U 0 || = √ Λ on {x d = 0}. (5.4) 
Thus we obtain that |U 0 | = √ Λx + d . Now, by the inequality |U 0 | ≥ ϕ 0 , we get that a ≤ √ Λ, which concludes the proof of Step 1.

Step 2. Suppose now that ϕ touches |U | from above at x 0 = 0 and once again we consider the blow-up limits U 0 and ϕ 0 defined in (5.2) and we assume that ϕ 0 is as in (5.3). Due to the non-degeneracy of U 0 (see Proposition 4.5) we get that U 0 ≡ 0 and a > 0. Since U 0 ≤ ϕ 0 we have that the cone {|U 0 | > 0} is contained in the half-space {x d > 0}. By the 1-homogeneity of U 0 and Remark 4.8 we obtain that necessarily {|U 0 | > 0} = {x d > 0}. In particular, ∂{|U 0 | > 0} is smooth and |U 0 | is linear. In conclusion, applying as above Proposition 4.2, we get that |U 0 | satisfies (5.4), which gives that

|U 0 | = √ Λx + d and a ≥ √ Λ.
5.2. Regular and singular parts of the free boundary. Let Ω be a solution of (1.1). We define the regular part of the free boundary (or the regular set) Reg(∂Ω) to be the set of points of density 1/2 of Ω, that is, Reg(∂Ω) := Ω (1/2) . On the other hand, the singular part of the free boundary (or the singular set) Sing(∂Ω) is defined as the complementary of Reg(∂Ω)

Sing(∂Ω) := ∂Ω \ Reg(∂Ω).

In this subsection we prove that Reg(∂Ω) is relatively open in ∂Ω (i.e. Sing(∂Ω) is a closed set).

Lemma 5.3 (Density gap).

There exists a constant δ > 0 such that for every non-trivial 1-homogeneous local minimizer u of the Alt-Caffarelli functional

H 1 loc (R d ) u → E 0 (u) = |∇u| 2 dx + Λ|{u > 0}|,
we have that 0 / ∈ Ω (γ) u , for every γ ∈ (1/2, 1/2 + δ), where Ω u = {u > 0}.

Proof. Suppose by contradiction that there are an infinitesimal sequence of positive real numbers δ n and a sequence u n of 1-homogeneous non-zero local minimizers of E 0 such that

|B r ∩ Ω n | |B r | = 1 2 + δ n , for every r > 0,
where Ω n = {u n > 0}. By [2, Section 3] the sequence u n is uniformly Lipschitz and non-degenerate and so, up to a subsequence it converges to a 1-homogeneous non-zero function u 0 . Reasoning as in [2, Lemma 5.4] it is straightforward to check that u 0 is a local minimizer of E 0 and, in particular, harmonic on the cone Ω 0 = {u 0 > 0}. Moreover, using the density assumption on Ω n and passing to the limit as n → ∞ we deduce

|B r ∩ Ω 0 | |B r | ≤ 1 2
, for every r > 0.

Thus, by the second point of Remark 4.8, up to a change of coordinates we may assume, that Ω 0 = {x d > 0} and u 0 (x) = ax + d , for some a > 0. By the uniform convergence of u n , for every ε > 0 we can find n 0 such that a(

x d -ε) + ≤ u n (x) ≤ a(x d + ε) + for every x ∈ B 1 , n ≥ n 0 .
Applying Theorem 1.1 from [START_REF] Silva | Free boundary regularity from a problem with right hand side[END_REF] we obtain that for n large enough ∂Ω n is C 1,α and so 0 ∈ Ω (1/2) n

. In particular δ n = 0 in contradiction with the initial assumption. Lemma 5.4. Let Ω be a solution of (1.1) and U = (u 1 , . . . , u k ) be the vector of the first k eigenfunctions on Ω. Then the following facts do hold:

(i) For every boundary point x 0 ∈ ∂Ω we have that

lim inf r→0 |B r (x 0 ) ∩ Ω| |B r | ≥ 1 2 . 
(ii) For every γ ≥ 1/2 we have

Ω (γ) = x 0 ∈ ∂Ω : lim r→0 φ(U, x 0 , r) = Λω d γ ,
where we recall that ω d = |B 1 | and φ(U, x 0 , r) is the Weiss functional defined in (3.1). (iii) There is a constant δ > 0 such that

∂Ω = γ∈{ 1 2 }∪[ 1 2 +δ,1[ Ω (γ) .
Proof. (i) Suppose that this is not the case. Then, there is a point x 0 = 0 and a sequence r n → 0 such that

lim n→∞ |B rn ∩ Ω| |B rn | < 1 2 . Setting U n (x) = 1 rn U (r n x) and Ω n = {|U n | > 0} we can suppose that U n converges in H 1 loc (R d ; R k ) to a non-zero 1-homogeneous function U 0 , such that |U 0 |
is a one-homogeneous local minimizer of the Alt-Caffarelli functional E 0 . Moreover, we can suppose that the sequence of conic level sets Ω n converges in L 1 loc to the cone Ω 0 = {|U 0 | > 0}. In particular we have

|B 1 ∩ Ω 0 | |B 1 | = lim n→∞ |B 1 ∩ Ω n | |B 1 | = lim n→∞ |B rn ∩ Ω| |B rn | < 1 2 ,
which is a contradiction since there cannot be a non-trivial 1-homogeneous harmonic function on a cone of density less that 1/2. (ii) Let x 0 ∈ ∂Ω. We suppose that x 0 = 0 and set φ(r) := φ(U, x 0 , r). By Proposition 3.1, the limit lim r→0 φ(r) does exist. We set γ to be the limit

γ := 1 Λω d lim r→0 φ(r).
On the other hand, consider an arbitrary sequence r n → 0. There is a subsequence, that we still denote by r n , such that the corresponding blow-up sequence U n (x) := 1 rn U (r n x) converges locally uniformly in R d . Defining φ n (r) := φ(U n , 0, r) as in (4.7) we have φ n (r) = φ(rr n ) and thus, as in Proposition 4.7,

γ = 1 Λω d lim n→∞ φ(rr n ) = 1 Λω d lim n→∞ φ n (r) = 1 Λω d 1 r d Br |∇U 0 | 2 dx + Λ|{|U 0 | > 0} ∩ B r | - 1 r d+1 ∂Br |U 0 | 2 dH d-1 , (5.5)
where U 0 is the blow-up limit of U n . By the 1-homogeneity of U 0 and the fact that it is harmonic on {|U 0 | > 0} we obtain that

1 r d Br |∇U 0 | 2 dx - 1 r d+1 ∂Br |U 0 | 2 dH d-1 = 0.
Thus, by(5.5), Proposition 4.5 [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF] and the fact that {|U n | > 0} = r n Ω, we get that

γ = |{|U 0 | > 0} ∩ B r | |B r | = lim n→∞ |Ω n ∩ B r | |B r | = lim n→∞ |Ω ∩ B rrn | |B rrn | .
Since the sequence r n is arbitrary we have that x 0 ∈ Ω (γ) , which gives the claim.

(iii) By the previous point, for every x 0 ∈ ∂Ω the limit 1 Λω d lim r→0 φ(U, x 0 , r), exists and coincides with the density of Ω in x 0 . By point (i) we have that γ ≥ 1/2. On the other hand, by Lemma 5.3 we have that γ > 1/2 + δ, which gives the claim.

Remark 5.5. We highlight that the claim of Lemma 5.4 (ii) can be restated as follows:

lim r→0 |Ω ∩ B r (x 0 )| |B r | = 1 Λω d lim r→0
φ(U, x 0 , r), for every x 0 ∈ ∂Ω.

(5.6)

In the next Proposition we show that the regular part of the free boundary is relatively open in the topological boundary of an optimal set. This is due to a general principle which can be stated as follows: Suppose that Y ⊂ X is a set for which there exists a function f Y : X × [0, +∞) → [0, +∞) such that:

• the function f Y (•, r) : X → [0, +∞) is continuous for every fixed r > 0;

• the function f Y (x, •) : [0, +∞) → [0, +∞) is continuous and non-decreasing for every fixed x ∈ X;

• Y = {x : f Y (x, 0) = 0} and there is δ > 0 such that {x : 0 < f Y (x, 0) < δ} = ∅.
Then Y is relatively open in X. In fact the first two points imply that the function f Y (•, 0) : X → [0, +∞) is upper semi-continuous and this, combined with the last point, gives the conclusion. In our case the situation is slightly different but follows by the same principle. For sake of completeness we give here an elementary proof in our situation.

Proposition 5.6. Let Ω be a solution of (1.1). Then the regular set Reg(∂Ω) is an open subset of ∂Ω.

Proof. Let x 0 ∈ Reg(∂Ω) = Ω (1/2) . Suppose that there is a sequence x n ∈ Sing(∂Ω) = ∂Ω \ Ω (1/2) such that x n → x 0 . Let U be the vector of the first k eigenfunction on Ω. We set γ n to be the limit

γ n := 1 Λω d lim r→0 φ(U, x n , r).
Thus by Lemma 5.4 (ii), x n ∈ Ω (γn) . Since γ n = 1/2, by Lemma 5.4 (iii) we have that γ n ≥ 1/2 + δ. By the monotonicity of the function ψ n (r) := φ(U, x n , r) + C 1 r (see Proposition 3.1), we have that

ψ n (r) Λω d ≥ γ n ≥ 1 2
+ δ , for every r > 0.

On the other hand, fixing r > 0, the function x → φ(U 0 , x, r) is continuous and so

1 Λω d φ(U, x 0 , r) + C 1 r = 1 Λω d lim n→∞ φ(U, x n , r) + C 1 r ≥ 1 2 + δ.
Passing to the limit as r → 0 we obtain lim r→0 φ(U, x 0 , r)

Λω d ≥ 1 2 + δ,
which is in contradiction with the assumption x 0 ∈ Ω (1/2) .

5.3.

The regular part of the free boundary is Reifenberg flat. In this section we prove the Reifenberg flatness of the regular set Reg(∂Ω U ) defined in the previous subsection. We recall the definition of Reifenberg flatness below. For more details on the properties and the structure of the Reifenberg flat domains we refer to [START_REF] Kenig | Harmonic measure on locally flat domains[END_REF] and [START_REF] Ramos | Existence and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF].

Definition 5.7 (Reifenberg flat domains). Let Ω ⊂ R d be an open set and let 0 < δ < 1/2, R > 0. We say that Ω is a (δ, R)-Reifenberg flat domain if:

(1) For every x ∈ ∂Ω and every 0 < r ≤ R there is a hyperplane H = H x,r containing x such that dist H (B r (x) ∩ H, B r (x) ∩ ∂Ω) < rδ.

(2) For every x ∈ ∂Ω, one of the connected components of the open set

B R (x) ∩ {x : dist(x, H x,R ) > 2δR} is contained in Ω, while the other one is contained in R d \ Ω.
Remark 5.8. We want to highlight here a difference between our approach and the one of Caffarelli, Shahgholian and Yeressian [START_REF] Caffarelli | A minimization problem with free boundary related to a cooperative system[END_REF]. In [15, Theorem 5] it was proved that the entire positivity set {|U | > 0} is an N T A domain (see Definition 5.10), which is a stronger result that can be obtained by applying the approach of [START_REF] Aguilera | An optimization problem in heat conduction[END_REF] to the first eigenfunction which in our case is strictly positive, Lipschitz continuous and non-degenerate. On the other hand this result is actually used only at the regular part of the free boundary, where it is a consequence of the Reifenberg flatness (see Theorem 5.11).

Proposition 5.9. Suppose that Ω is a solution of (1.1) and let x 0 ∈ Reg(∂Ω) = Ω (1/2) . Then Ω is Reifenberg flat in a neighborhood of x 0 .

Proof. Fix δ > 0 to be chosen later. Suppose that Ω is not (δ, R)-Reifenberg flat for any R > 0. Then there are sequences x n → x 0 and r n → 0 such that Ω is not (δ, r n ) flat in B rn (x n ). Consider the blow-up sequence

U n (x) := U xn,rn (x) = 1 r n U (x n + xr n ).
By Proposition 4.5 and Lemma 4.6 we may assume that U n converges uniformly in B 1 to a function U 0 : R d → R k which is a non-trivial local minimizer for F 0 . Let φ n (r) := φ(U n , 0, r) be the Weiss functional relative to U n defined in (4.7). Then we have : 

• φ n (r) = φ(U, x n , rr n ) and φ n (r) ≥ -C 1 r n ,
φ n (r) = lim r→0 |Ω ∩ B rrn (x n )| |B rrn | = 1 2 ; 
• the limit lim n→∞ φ n (r) exists and is given by the function φ 0 (r) := φ(U 0 , 0, r) which, for every

r 2 > r 1 > 0, satisfies (see Proposition 3.3) φ 0 (r 2 ) -φ 0 (r 1 ) = r2 r1 1 r d+2 ∂Br |x • ∇U 0 -U 0 | 2 dH d-1 (x) dr. (5.7) 
Step 1. We claim that φ 0 (r) = Λω d 2 for every r > 0.

We define ψ n (r) = φ n (r)+C 1 r n r = φ(U, x n , rr n )+C 1 r n r. In particular ψ n (r) is a non-decreasing function in r such that lim r→0 ψ n (r) = Λω d 2 . We fix ε > 0 and let R > 0 be such that φ(U, x 0 , R)

+ C 1 R ≤ Λω d 2 + ε (such an R exists since lim r→0 φ(U, x 0 , r) = Λω d 2 ). Since lim n→∞ φ(U, x n , R) = φ(U, x 0 , R),
and the function r → φ(U, x n , r) + C 1 r is non-decreasing, we have that for n large enough Λω

d 2 ≤ φ(U, x n , R) + C 1 R ≤ Λω d 2 + ε.
Let n be large enough such that rr n ≤ R. Then we have that

ψ n (r) = φ(U, x n , rr n ) + C 1 rr n ≤ φ(U, x n , R) + C 1 R ≤ Λω d 2 + ε, which proves that lim n→∞ ψ n (r) = Λω d 2 ,
and, in particular, for every r > 0 we have

φ 0 (r) = lim n→∞ φ n (r) = lim n→∞ ψ n (r) = Λω d 2 ,
which concludes the proof of Step 1.

Step 2. We now prove that, up to a rotation, {|U 0 | > 0} = {x d > 0}. We first notice that, by (5.7), U 0 is one-homogeneous. On the other hand U 0 is harmonic on Ω 0 which gives that

1 2 = 1 Λω d lim r→0 φ 0 (r) = lim r→0 |Ω 0 ∩ B r | |B r | .
Thus after a rotation of the coordinate axes necessarily U 0 (x) = ξx + d , for some vector ξ ∈ R k , which is non-zero due to Proposition 4.5. In particular, we get that {|U 0 | > 0} = {x d > 0}.

Then ϕ 0 > 0 in B 2R0 and we have that u 1 /ϕ 0 and u i /ϕ 0 solve the equation div ϕ 2 0 ∇(

u 1 ϕ 0 ) = 0, div ϕ 2 0 ∇( u i ϕ 0 ) = (λ i (Ω) -λ 1 (Ω))u i ϕ 0 in B 2R0 ∩ Reg(∂Ω).
At this point we are in position to prove the full regularity of Reg(∂Ω).

Proposition 5.16. Let Ω be a solution of (1.1). Then Reg(∂Ω) = Ω (1/2) is locally a graph of a C ∞ function.

Proof. The smoothness of the free boundary follows by a bootstrap argument as in [START_REF] Kinderlehrer | Regularity in free boundary problems[END_REF]. Let us assume that Reg(∂Ω) is locally C k,α regular for some k ≥ 1, the case k = 1 being true thanks to Proposition 5.14.

We will prove that Reg(∂Ω) is locally C k+1,α . By Lemma 5.13 the first eigenfunction u 1 is a solution to the problem

-∆u 1 = λ 1 (Ω)u 1 in Ω , u 1 = 0 on Reg(∂Ω) , |∇u 1 | = g √ Λ on Reg(∂Ω).
Now thanks to Lemma 5.15 and the definition of g we have that g is a C k,α function. Now by [START_REF] Kinderlehrer | Regularity in free boundary problems[END_REF]Theorem 2] we have that Reg(∂Ω) is locally a graph of a C k+1,α function, and this concludes the proof.

5.5. Dimension of the singular set. In this last subsection we discuss the dimension of the singular set Sing(∂Ω) = ∂Ω \ Reg(∂Ω). We first notice that H d-1 (Sing(∂Ω)) = 0.

Remark 5.17 (The singular set has H d-1 -measure zero). We recall that, if Ω is a solution of (1.1), then the De Giorgi perimeter of Ω is finite, P (Ω) < +∞. In particular, by the Federer's Theorem (see, for example, [3, Theorem 3.61]) we obtain

H d-1 R d \ (Ω (1) ∪ Ω (0) ∪ Ω (1/2) ) = 0. ( 5.8) 
On the other hand, by the density estimate Lemma 2.11, we have that 1) ∪ Ω (0) ), which together with (5.8) gives

∂Ω = R d \ (Ω ( 
H d-1 Sing(∂Ω) = H d-1 ∂Ω \ Reg(∂Ω) = H d-1 ∂Ω \ Ω (1/2) = 0.
The above result concerning the "smallness" of the singular set can be improved in the following form.

Proposition 5.18. Let Ω be a solution of (1.1). There exists a critical dimension d * ∈ [START_REF] Briançon | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF][START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF] such that Ω has the following property: We recall that d * is the lowest dimension at which the free boundaries ∂{u > 0} of the (onehomogeneous) local minimizers u of the functional

H 1 loc (R d ) u → E 0 (u) = |∇u| 2 dx + |{u > 0}|,
admit singularities. This is related but slightly different from the case of minimal surfaces, since in our situation we have more information than the minimality with respect to the area. Moreover, while in the theory of minimal surfaces it is well-known that the critical dimension is precisely 8 (thanks to the works of Simons [START_REF] Simons | Minimal varieties in riemannian manifolds[END_REF] and Bombieri, De Giorgi, Giusti [START_REF] Bombieri | Minimal cones and the Bernstein problem[END_REF]), up to our knowledge (see, for example, [START_REF] Silva | A singular energy minimizing free boundary[END_REF] and the recent [START_REF] Jerison | Some remarks on stability of cones for the one phase free boundary problem[END_REF]) it is only known that d * ∈ [START_REF] Briançon | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF][START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF]. A reasonable conjecture, suggested by the techniques used in [START_REF] Caffarelli | Global energy minimizers for free boundary problems and full regularity in three dimensions[END_REF], is that d * = 7. The kind of stratification result above is nowadays rather standard in the theory of minimal surfaces and it can be proved in many ways, for example by applying the well-known Federer's reduction principle (see, for example [START_REF] Simon | Lectures on Geometric Measure Theory[END_REF]Appendix A]). On the other hand, we will follow the approach of Weiss [39, Section 4], which comes directly from the book of Giusti [START_REF] Giusti | Minimal surfaces and functions of bounded variations[END_REF]. The rest of the section is dedicated to the proof of Proposition 5.18.

Proof of Proposition 5.18 (a). Let U = (u 1 , . . . , u k ) be the vector of the first k eigenfunctions on Ω. Let x 0 ∈ ∂Ω and U 0 ∈ BU U (x 0 ). By Proposition 4.2 we have that |U 0 | is a local minimizer of the scalar Alt-Caffarelli functional. Since d < d * , we have that 0 is a regular point for ∂{|U 0 | > 0}, and in particular it has density 1/2. Thus Ω also has density 1/2 in x 0 , that is

lim r→0 |Ω ∩ B r (x 0 )| |B r | = lim r→0 |{|U 0 | > 0} ∩ B r (x 0 )| |B r | = 1 2 ,
which finally gives that x 0 ∈ Reg(∂Ω). Since x 0 is an arbitrary point of the free boundary, we obtain that ∂Ω = Reg(∂Ω) and Sing(∂Ω) = ∅.

For the proof of (b) and (c) we will need some preliminary results.

Lemma 5.19. Suppose that U ∈ H 1 (R d ; R k ) is a Lipschitz continuous function, satisfying the quasiminimality condition (2.1). There are constants δ 0 and r 0 such that :

If x 0 ∈ ∂Ω U and r ≤ r 0 are such that φ(U, x 0 , r) ≤ 1 2 + δ 0 , then x 0 ∈ Reg(∂Ω U ),

where Ω U = {|U | > 0}, Reg(∂Ω U ) = Ω

(1/2) U and φ(U, x 0 , r) is the Weiss functional from (3.1).

Proof. Suppose that x 0 ∈ ∂Ω U is such that φ(U, x 0 , r) ≤ 1 2 + δ 0 and let C 1 be the constant from Proposition 3.1. Then the function r → φ(U, x 0 , r) + C 1 r is non-decreasing and so, taking into account the fact that the density is the limit of the Weiss functional (5.6), we obtain Choosing, δ 0 and r 0 such that δ 0 + C 1 r 0 ≤ γ where γ is the constant from Lemma 5.3, we get the claim by Lemma 5.4.

Proof of Proposition 5.18 (b). We argue as in [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]Theorem 4.1]. Suppose that there are infinite points in Sing(∂Ω). Then there is a sequence x n ∈ Sing(∂Ω) such that:

x n → x 0 ∈ Sing(∂Ω) , r n := |x n -x 0 | → 0 , U n (x) := U (x n + r n x) r n → U 0 (x) ∈ BU U (x 0 ).

We set Ω 0 = {|U 0 | > 0} and we consider two cases:

Case 1 : Sing(Ω 0 ) \ {0} = ∅. Then there is a point ξ 0 ∈ Sing(Ω 0 ) \ 0 and by the one-homogeneity of u 0 := |U 0 | we have that every point of the form tξ 0 , for t > 0, is a singular point for Ω 0 . We can now apply directly [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]Theorem 4.1] to obtain a contradiction. x n -x 0 r n ∈ ∂B 1 . Up to a subsequence we may suppose that ξ n converges to a point ξ 0 ∈ ∂B 1 . Now since ξ 0 is a regular point for Ω 0 , we can find some r > 0 small enough such that φ(U 0 , ξ 0 , r) ≤ 1 2 + δ 0 3 , where δ 0 is the constant from Lemma 5.19. Since U 0 is the limit of the blow-up sequence U n , by Proposition 4.5 we have that φ(U n , ξ 0 , r) → φ(U 0 , ξ 0 , r). Thus for n large enough we have that φ(U n , ξ 0 , r) ≤ 1 2 + δ 0 2 .

6.1. Existence. The existence of a solution of (1.6) follows by a standard argument in the calculus of variations; the proof is precisely the same as in the scalar case (see [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF]Theorem 1.3]). From now on we suppose that the vector-valued function U = (u 1 , . . . , u k ) ∈ H 1 (D; R k ) is a solution of (1.6) and we set Ω = {|U | > 0}. As in the scalar case, each component of U is harmonic on Ω.

6.2. Lipschitz continuity of the minimizers. Let i ∈ {1, . . . , k} and let B r ⊂ D for some r > 0.

Then the optimality of U implies that for every function ũi such that ũi -u i ∈ H 1 0 (B r ) we have

|∇u i | 2 dx + Λ|{u 2 1 + • • • + u 2 i + • • • + u 2 k > 0}| ≤ |∇ũ i | 2 dx + Λ|{u 2 1 + • • • + ũ2 i + • • • + u 2 k > 0}|,
which gives that

|∇u i | 2 dx ≤ |∇ũ i | 2 dx + Λ|B r |
for every ũi such that ũi -u i ∈ H 1 0 (B r ), that is each component u i is a quasi-minimizer of the Dirichlet energy. Applying [9, Theorem 3.3] we get that u i , and so U , is Lipschitz continuous in D. In particular, Ω is open and u 1 > 0 in Ω.

6.3. Non-degeneracy of U . We first notice that U satisfies the condition (2.9) in D with K = 0 and there is no restriction on the perturbations Ũ , formally ε = +∞. Thus, we can apply Lemma 2.6 obtaining that there are contants c 0 > 0 and r 0 > 0, depending on d and Λ such that for every x 0 ∈ D and 0 < r ≤ inf{r 0 , dist(x 0 , ∂D)} the following implication holds:

U L ∞ (B2r) < c 0 r ⇒ U ≡ 0 in B r (x 0 ) .
As in Section 2 it is straightforward to deduce that for every r > 0 such that B r (x) ⊂ D and x ∈ ∂Ω. For the proof we refer to Proposition 3.3. 6.5. Structure of the blow-up limits. Setting U r,x0 (x) = 1 r U (x 0 + rx) we have that, up to a subsequence r n → 0, U rn,x0 converges to a function U 0 : R d → R k (see Proposition 4.5). The structure of the blow-up limits is precisely the one described in Proposition 4.2, that is the blow-up limit U 0 is of the form U 0 = ξ 0 |U 0 | with ξ ∈ ∂B 1 ⊂ R k and u = |U 0 | being a one-homogeneous non-trivial global minimizer of the scalar Alt-Caffarelli functional F 0 in the sense of Definition 3.2. The proof is precisely the same as in the case of the spectral functional (we notice that Section 4 concerns only functions satisfying the more general quasi-minimality condition (2.1)) and is based on the Weiss' monotonicity formula and on the Lipschitz continuity and the non-degeneracy of the minimizer U . • The regular part of the free boundary, defined as Reg(∂Ω) = Ω (1/2) , is an open subset of ∂Ω ∩ D. The proof of this fact is given in Proposition 5.6 with the additional simplification due to the fact that C 1 = 0 and φ n = ψ n . • The set Ω is Reifenberg flat in a neighborhood of any point x 0 ∈ Reg(∂Ω). The proof is given in Proposition 5.9 where again we have C 1 = 0 and φ n = ψ n . • The Reifenberg flatness of Reg(∂Ω) together with [28, Theorem 3.1] and [START_REF] Jerison | Boundary behavior of harmonic functions in nontangentially accessible domains[END_REF] where g : Ω → R is a smooth function with a C 0,α extension to Reg(∂Ω). For the proof we refer to Lemma 5.13. We notice that the optimality condition in viscosity sense can be alternatively stated as

•
∆u 1 = 0 in Ω , u 1 = 0 on ∂Ω ∩ D, |∇u 1 | = g √ Λ on ∂Ω ∩ D.
In 

Theorem 1 . 1 .1

 11 (i) (Buttazzo-Dal Maso[START_REF] Buttazzo | An existence result for a class of shape optimization problems[END_REF]) Given a bounded open set D ⊂ R d , there is a solution to the shape optimization problemmin λ 1 (Ω) + • • • + λ k (Ω) : Ω ⊂ D quasi-open, |Ω| = 1 .We recall that on an open set of finite volume the Dirichlet Laplacian has compact resolvent and its spectrum is real and discrete. 2 A quasi-open set is a level set {u > 0} of a Sobolev function u ∈ H 1 (R d ). In particular, every open set is also quasi-open.

  d < d * , then Sing(∂Ω) is empty, -If d = d * , then the singular set Sing(∂Ω) contains at most a finite number of isolated points, -If d > d * , then the Hausdorff dimension of Sing(∂Ω) is less than d -d * .

Theorem 1 . 3 .

 13 Let the open set Ω * k ⊂ R d be an optimal set for problem (1.1). Then Ω * k is connected and d * -regular. Moreover the vector U = (u 1 , . . . , u k ) of the normalized eigenfunctions is such that |U | has a C 1 extension on the regular part of the free boundary and satisfies the optimality condition ∇|U | = √ Λ on Reg(Ω * k ), (1.5)

Remark 2 . 7 (

 27 Subharmonicity of |U |). Let Ω ⊂ R d be an open set of finite measure and u 1 , . . . , u k be the first k normalized eigenfunctions on Ω. Then the function |U | = |(u 1 , . . . , u k )| satisfies, weakly in

Proposition 4 . 5 (

 45 Convergence of the blow-up sequences). Let U be a Lipschitz continuous local minimizer of F K in the open set D ⊂ R d . Suppose that (r n ) n∈N and (x n ) n∈N ⊂ ∂{|U | > 0} are two sequences such that, for some x 0 ∈ ∂{|U | > 0} and U 0 : R d → R k Lipschitz continuous, we have lim n→∞ r n = 0 , lim n→∞ x n = x 0 and lim n→∞ U rn,xn = U 0 ,

Lemma 4 . 6 (

 46 Optimality of the blow-up limits). Let U ∈ H 1 (R d ; R k ) be a Lipschitz continuous function satisfying the quasi-minimality condition (2.1). Let x 0 ∈ ∂{|U | > 0} and U 0 ∈ BU U (x 0 ). Then U 0 is a local minimizer of the functional F 0 .

Lemma 4 . 10 .

 410 Let U ∈ H 1 (R d ; R k ) be a Lipschitz continuous function satisfying the quasi-minimality condition (2.1). Let x 0 ∈ ∂{|U | > 0} and U 0 ∈ BU U (x 0 ). Then, the scalar function |U 0 | is a local minimizer of the Alt-Caffarelli functional.

Definition 5 . 1 .Lemma 5 . 2 .

 5152 Let Ω ⊂ R d be an open set and λ = (λ 1 , . . . , λ k ) ∈ R k a vector with positive coordinates. We say that the continuous function U = (u 1 , . . . , u k ) : Ω → R k is a viscosity solution of the problem -∆U = λU in Ω, U = 0 on ∂Ω, |∇|U || = √ Λ on ∂Ω, if for every i = 1, . . . , k the component u i is a solution of the PDE -∆u i = λ i u i in Ω, u i = 0 on ∂Ω, and the boundary condition |∇|U || = √ Λ on ∂Ω, holds in viscosity sense, that is • for every continuous function ϕ : R d → R differentiable in x 0 ∈ ∂Ω and such that "ϕ touches |U | from below in x 0 " (that is |U | -ϕ : Ω → R has a local minimum equal to zero in x 0 ), we have |∇ϕ|(x 0 ) ≤ √ Λ. • for every continuous function ϕ : R d → R differentiable in x 0 ∈ ∂Ω and such that "ϕ touches |U | from above in x 0 " (that is |U | -ϕ : Ω → R has a local maximum equal to zero in x 0 ), we have |∇ϕ|(x 0 ) ≥ √ Λ. Let Ω be a solution of the problem (1.1), U = (u 1 , . . . , u k ) be the vector of the first k eigenfunctions on Ω, λ = (λ 1 (Ω), . . . , λ k (Ω)) and Λ = 2 d λ 1 (Ω) + • • • + λ k (Ω) . Then U is a viscosity solution to the problem -∆U = λU in Ω, U = 0 on ∂Ω, |∇|U || = √ Λ on ∂Ω. (5.1) Proof. From Theorem 1.1 it follows that |U | : R d → R k is Lipschitz continuous. We only have to prove that the identity |∇|U || = √ Λ holds in viscosity sense on the boundary ∂Ω. Step 1. Suppose first that ϕ touches |U | from below in x 0 ∈ ∂Ω and assume x 0 = 0. Consider the blow-up sequences

  (a) If d < d * , then Sing(∂Ω) is empty, (b) If d = d * , then the singular set Sing(∂Ω) contains at most a finite number of isolated points, (c) If d > d * , then the Hausdorff dimension of Sing(∂Ω) is less than d -d * , that is, for every s > 0 we have that H d-d * +s (Sing(∂Ω)) = 0.

  + C 1 r 0 .

Case 2 :

 2 Sing(Ω 0 ) \ {0} = ∅. Let ξ n =

6 . 4 .

 64 |U | is subharmonic, that is ∆|U | ≥ 0 on D (see Remark 2.7); • |U | ≤ Cu 1 on Ω, for some constant C > 0 (see Lemma 2.10; notice that the fact that ∆U = 0 in Ω significantly simplifies the proof since this time we can take v = |U | and avoid the questions involving the non-degeneracy of |∇U |); • there are constants r 0 > 0 and ε 0 > 0 such that Ω satisfies the density estimate (see Lemma 2.11) ε 0 |B r | ≤ Ω ∩ B r (x 0 ) ≤ (1 -ε 0 )|B r |, for every x 0 ∈ ∂Ω ∩ D and r ≤ r 0 . Weiss monotonicity formula. The functional φ(U, x, r) defined in (3.1) is monotone with respect to r and satisfies the inequality d dr φ(U, x, r) ≥ 1 r d+2 k i=1 ∂Br(x) |x • ∇u i -u i | 2 dx,

6. 6 .

 6 Regularity of the free boundary. The regularity of the free boundary is based on the fact that U is a viscosity solution (in sense of Definition 5.1 withλ 1 = • • • = λ k = 0) to the problem ∆U = 0 in Ω, U = 0 on ∂Ω ∩ D, |∇|U || = √ Λ on ∂Ω ∩ D.The proof is precisely the one of Lemma 5.2 and is based on the structure of the blow-up limits described above. All the results in the rest of Section 5 hold true in this setting.• Lemma 5.4 holds for the solutions of (1.6) and the density of the set Ω = {|U | > 0} is determined by the monotone function φ, that islim r→0 |Ω ∩ B r (x 0 )| |B r | = 1 Λω d lim r→0φ(U, x 0 , r), for every x 0 ∈ ∂Ω ∩ D.

  imply that the set Ω satisfies a Boundary Harnack Principle at the flat free boundary points. Now the positivity of u 1 and the optimality condition |∇|U || = √ Λ give that u 1 is a viscosity solution of the problem ∆u 1 = 0 in Ω , u 1 = 0 on ∂Ω ∩ D, |∇u 1 | = g √ Λ on Reg(∂Ω),

  1 ) = dω d . By d H (A, B) we denote the Hausdorff distance between the sets A, B ⊂ R d ,

		d H (A, B) := max sup	{dist(a, B)}; sup	{dist(b, A)} ,
		a∈A	b∈B
	where for x ∈ R d and A ⊂ R d we set dist(x, A) = inf y∈A |x -y|.
	For an open set Ω ∈ R d we denote with H 1 0 (Ω) the Sobolev space obtained as a closure of the smooth real-valued functions with compact support C ∞ c (Ω) with respect to the Sobolev norm u H 1 =
		1/2	
	|∇u| 2 dx +	u 2 dx	
	Ω	Ω	

  in the sense of the following definition. Definition 3.2. We say that a function U ∈ H 1 loc (R d ; R k ) is a local minimizer (we note that this is sometimes called absolute or global minimizer) of the functional

  where C 1 is the constant from Proposition 3.1 ;• the limit lim

	r→0	φ n (r) exists (see Proposition 3.1) and by Lemma 5.4 (ii) we have that
		1 Λω d	lim r→0

  fact, if a smooth test function touches u 1 in a boundary point, then this point is necessarily part of the regular free boundary Reg(∂Ω). • Applying [18, Theorem 1.1] we get that Reg(∂Ω) is locally a graph of a C 1,α function. By the improved boundary Harnack principle of De Silva and Savin [20] for harmonic functions (see Lemma 5.15), we get that Reg(∂Ω) is C ∞ . The estimate of the dimension of the singular set Sing(∂Ω) = ∂Ω \ Reg(∂Ω) is classical and we refer to Subsection 5.5 for more details.
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We now get the conclusion since, by Proposition 4.5, ∂Ω n converges Hausdorff to {x d = 0} and thus, for n large enough, Ω n is (δ, 1) flat in the ball B 1 , which is a contradiction with the initial assumption. 5.4. The regular part of the free boundary is C ∞ . In this last section we are finally in a position to prove our main result, Theorem 1.3. For sake of simplicity we present the results in several steps, highlighting all the key points of our strategy. First of all, in order to prove C 1,α regularity for the regular part of the boundary, we need first to introduce the notion of NTA, i.e. non-tangentially accessible, domains. NTA domains were first introduced by Jerison and Kenig in the seminal paper [START_REF] Jerison | Boundary behavior of harmonic functions in nontangentially accessible domains[END_REF] in order to extend the boundary Harnack principle under minimal geometrical conditions, while Kenig and Toro [START_REF] Kenig | Harmonic measure on locally flat domains[END_REF] proved that a (δ, R)-Reifenberg flat set (with δ sufficiently small) is also NTA. Roughly speaking, an NTA domain is such that every boundary point is accessible from inside and outside the domain by means of non-tangential balls. For sake of completeness, though we will just refer to the papers [START_REF] Jerison | Boundary behavior of harmonic functions in nontangentially accessible domains[END_REF][START_REF] Kenig | Harmonic measure on locally flat domains[END_REF] for the proofs and the details, we give the formal definition of NTA domain and the statements of the main Theorems.

Definition 5.10. A bounded domain Ω ⊂ R d is called NTA if there exist constants M > 0 and r 0 > 0, called NTA constants, such that (1) Ω satisfies the corkscrew condition, that is, given x ∈ ∂Ω and r ∈ (0, r 0 ), there exists

Theorem 5.11 (Reifenberg flat implies NTA, [28, Theorem 3.1]). There exists a δ 0 > 0 such that if Ω ⊂ R d is a (δ, R)-Reifenberg flat domain for δ < δ 0 , then it is NTA.

It was proved in [START_REF] Jerison | Boundary behavior of harmonic functions in nontangentially accessible domains[END_REF] that in any NTA domain Ω ⊂ R d the Boundary Harnack Principle does hold, that is, if u and v are positive harmonic functions in Ω, vanishing on the boundary ∂Ω ∩ B r , then v u is Hölder continuous on Ω ∩ B r .

In our setting, there are two main differences. First of all our functions u i , i = 1, . . . , k are not harmonic, but they solve an eigenvalue problem

for some λ i > 0. On the other hand, we do not know whether in a neighborhood of a boundary point all the u i are positive or not; this is an information that we have only on u 1 , thanks to the non-degeneracy properties (see Lemma 2.10). The case of eigenfunctions was treated in [START_REF] Ramos | Existence and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF]Appendix A]. Precisely, we have the following result.

Lemma 5.12 (Boundary Harnack principle for the eigenfunctions on optimal sets). Let Ω be a solution of (1.1), U = (u 1 , . . . , u k ) be the vector of the first k eigenfunctions on Ω and 0 ∈ Ω (1/2) . Then Ω is an NTA domain in a neighborhood of 0 and there exists β > 0, depending only on the NTA constants, such that for all i = 2, . . . , k u i u 1 is Hölder continuous of order β on Ω ∩ B r .

In particular, for every x 0 ∈ Ω (1/2) ∩ B r , the limit

exists and g i : B r ∩ ∂Ω → R is an β-Hölder continuous function.

Proof. By Proposition 5.6 and Proposition 5.9 we have that ∂Ω = Ω (1/2) and Ω is Reifenberg flat in a sufficiently small ball B r . The claim follows by [START_REF] Ramos | Existence and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF]Lemma A.2] and [START_REF] Ramos | Existence and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF]Lemma A.3].

In the following lemma we show that the first eigenfunction on an optimal set Ω is a solution of a one-phase free boundary problem. Lemma 5.13. Let Ω be an optimal set for (1.1) and let u 1 be the first eigenfunction on Ω. Then, for every x 0 ∈ Reg(∂Ω) there is a radius r > 0, a constant 0 < c 0 ≤ 1 and a Hölder continuous function g : B r (x 0 ) ∩ ∂Ω → [c 0 , 1] such that u 1 is a viscosity solution to the problem

Proof. Let x 0 = 0 and U = (u 1 , . . . , u k ) be the vector of the first k eigenfunctions on Ω. Let r > 0 be the radius and g i : B r ∩ ∂Ω → R, for i = 2, . . . , k be the Hölder continuous functions from Lemma 5.12.

Then we have

where we have set

We notice that g is a β-Hölder continuous function on Ω ∩ B r for some β > 0 and is such that c 0 ≤ g ≤ 1, where c 0 = 1/C and C is the constant from Lemma 2.10. Suppose now that the function

and so, setting

that is in the ball B ρ (x 0 ) we have that ψ touches |U | from below in x 0 . On the other hand, ψ is differentiable in x 0 and |∇ψ(x 0 )| = 1 g(x0) |∇ϕ(x 0 )|. Since U is a viscosity solution of (5.1) we get that

which gives the claim, the case when ϕ touches u 1 from below being analogous. Now the regularity of Reg(∂Ω) follows by the already known results on the regularity of the one-phase free boundaries (see [START_REF] Silva | Free boundary regularity from a problem with right hand side[END_REF] and the references therein).

Proposition 5.14. Let Ω be a solution of (1.1). Then Reg(∂Ω) = Ω (1/2) is locally a graph of a C 1,α function.

Proof. In view of Lemma 5.13 the claim follows by [START_REF] Silva | Free boundary regularity from a problem with right hand side[END_REF]Theorem 1.1].

In order to pass from C 1,α to C ∞ we need an improved boundary Harnack principle, as it was proved by De Silva and Savin [START_REF] Silva | A note on higher regularity boundary Harnack inequality[END_REF] for harmonic functions. The extension to eigenfunctions can be done as in [34, Appendix A].

Lemma 5.15 (Improved boundary Harnack principle).

Let Ω be a solution of (1.1), U = (u 1 , . . . , u k ) be the vector of the first k eigenfunctions on Ω and 0 ∈ Reg(∂Ω). There exists

In particular, for every x 0 ∈ Reg(∂Ω) ∩ B r , the limit

exists and

Proof. In order to get the claim, it is enough to apply [START_REF] Silva | A note on higher regularity boundary Harnack inequality[END_REF]Theorem 2.4] for the case k = 1 and [20, Theorem 3.1] for the case k ≥ 2 to the functions u = u 1 /ϕ 0 and v = u i /ϕ 0 , for all i = 2, . . . , k, for a suitable ϕ 0 chosen following the ideas of [START_REF] Ramos | Existence and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF]Lemma A.2]. More precisely, we take R 0 > 0 such that there exists ϕ 0 ≥ 0 a nontrivial function satisfying

Let us set for simplicity L = ∇U L ∞ , in particular, we have also that L = ∇U n L ∞ , for every n ∈ N.

We now notice that by the definition of φ we have the inequality

where in the last inequality we used that, for n large, |ξn-ξ| r < 1/2. Now choosing, n large enough we get that

which is impossible since U n satisfies the conditions of Lemma 5.19, but ξ n is a singular point for U n by hypothesis.

In order to prove Proposition 5.18 (c), we need another preliminary result analogous to [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]Lemma 4.2]. The main difference is that, instead of applying the epsilon regularity result [2, Theorem 8.2], we have at our disposal Lemma 5.19 which, in fact, is an epsilon regularity result expressed in terms of the Weiss functional φ. Proof. Suppose for the sake of contradiction that this is not the case. Then, there is a sequence x n ∈ Sing(∂Ω n ) ∩ K \ D converging to some x 0 ∈ Sing(∂Ω 0 ) ∩ K ⊂ D. We notice that by the Hausdorff convergence of the free boundaries (see Proposition 4.5), we have necessarily x 0 ∈ ∂Ω 0 and so x 0 ∈ Reg(Ω 0 ). Thus, we can fix some 0 < r < r 0 such that

where φ is the Weiss functional and r 0 , δ 0 are the constants from Lemma 5.19. By the convergence of U n to U 0 we have that for n large enough

Now, using the estimate (5.9) for x n and x 0 instead of ξ n and ξ 0 we have that for n large enough φ(U n , x n , r) ≤ φ(U n , x 0 , r)

Now, by Lemma 5.19 we have that x n ∈ Reg(∂Ω n ) in contradiction with the initial assumption.

Proof of Proposition 5.18 (c). Suppose that for some s > 0 we have H d-d * +s (Sing(∂Ω)) > 0. By Lemma 5.20, [39, Lemma 4.3] and [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]Lemma 4.4] we have that there is some point x 0 ∈ ∂Ω and a blow-up limit U 0 ∈ BU U (x 0 ) such that the set Ω 0 = {|U 0 | > 0} satisfies H d-d * +s (Sing(∂Ω 0 )) > 0. Since |U 0 | is a minimizer of the scalar Alt-Caffarelli function E 0 , this is in contradiction with the dimension of the singular set of ∂Ω 0 (see [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]Theorem 4.5]).

6. A free-boundary problem for vector-valued functions. Proof of Theorem 1.4

In this final Section we prove Theorem 1.4 following step by step the proof of Theorem 1.3.