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A LOGARITHMIC EPIPERIMETRIC INEQUALITY FOR THE OBSTACLE
PROBLEM

MARIA COLOMBO, LUCA SPOLAOR, BOZHIDAR VELICHKOV

ABSTRACT. We study the regularity of the regular and of the singular set of the obstacle problem
in any dimension.

Our approach is related to the epiperimetric inequality of Weiss (Invent. Math., 138 (1999),
23-50), which works at regular points and provides an alternative to the methods previously
introduced by Caffarelli (Acta Math., 139 (1977), 155-184). In his paper, Weiss uses a contra-
diction argument for the regular set and he asks the question if such epiperimetric inequality can
be proved in a direct way (namely, exhibiting explicit competitors), which would have significant
implications on the regularity of the free boundary in dimension d > 2.

We answer positively the question of Weiss, proving at regular points the epiperimetric in-
equality in a direct way, and more significantly we introduce a new tool, which we call logarithmic
epiperimetric inequality. It allows to study the regularity of the whole singular set and yields an
explicit logarithmic modulus of continuity on the C* regularity, thus improving previous results
of Caffarelli and Monneau and providing a fully alternative method. It is the first instance in the
literature (even in the context of minimal surfaces) of an epiperimetric inequality of logarithmic
type and the first instance in which the epiperimetric inequality for singular points has a direct
proof. Our logarithmic epiperimetric inequality at singular points has a quite general nature and
will be applied to provide similar results in different contexts, for instance for the thin obstacle
problem.

1. INTRODUCTION

In this paper we study the regularity of the free-boundary of nonnegative local minimizers u
of the functional

£(u) ::/|Vu|2dx+/max{u(z),0}dx.

Our main result is a logarithmic epiperimetric inequality, which is a new tool for the study of
the singular set of minimizers of variational energies. It is also an alternative approach to the
regularity of the singular free boundary as proposed by Caffarelli [4, 2]. Before we state it we
recall that, given u € H'(B1), the Weiss’ boundary adjusted energy of u is defined by

W(u) = / |Vul|? dx — 2/ u? dHI + max{u(z),0} dz.
By B By
The class K of admissible blow-ups of u at singular points is defined by

K:={Qs: R R : Qa(z) =z - Az, A symmetric non-negative with trA = 1/a} . (1.1)

Wd

The energy W is constant on K, precisely we have W(Qa) = g FIGE)E for every Q4 € K. We refer

to this constant as to the energy density at the singular points and denote it by ©.

Theorem 1 (Logarithmic epiperimetric inequality at singular points). There are dimensional
constants § > 0 and € > 0 such that the following claim holds. For every mon-negative function
c € HY(0By), with 2-homogeneous extension z on By, satisfying

distr2ap,) (¢, K) <9 and W(z) -0 <1,
there is a non-negative function h € H'(By) with h = ¢ on 0By satisfying the inequality

W(h) -6 < (W(z)_@)(l_g‘w(z)_gp), where =0 ifd=2

- y=493% ifd>3"
1

(1.2)
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The adjective “logarithmic” for this new epiperimetric inequality is due to the fact that the
presence of v # 0 implies that the function decays to its blow up with a logarithmic rate and
that the free boundary is contained in a C' curve with logarithmic modulus of continuity (see
and below). At points where the classical epiperimetric inequality holds (namely
above with v = 0) the decay and the modulus of continuity are of Holder type.

At flat points we recover the Weiss’ epiperimetric inequality with a direct proof. To state it,
recall that the collection K of possible blow-ups at flat points is defined by

1
Ky = {q,,: R? 5 R : g, (x) = (max{z - v,0})? for some v € R? such that |v| = 2} . (L.3)

The energy W is constant on K, precisely we have W(q,) = —+4 L for every q, € K. We

16 d(d+2
will refer to this constant as the energy density at the flat points and denote it by O .

Theorem 2 (Epiperimetric inequality at flat points). There are dimensional constants dy > 0,
§ > 0 and e > 0 such that the following claim holds. For every non-negative function c € H'(0B1)
satisfying

{za < =00} C{c=0} and |lc—qe,llr20m,) <9,

there exists a non-negative function h € H'(By) such that h = ¢ on 0By and
W(h) 04 < (1-)(W(2) - ©,), (1.4)
where z is the 2-homogeneous extension of ¢ to Bi.

Theoremwas already proved by Weiss in [16] using a very elegant and innovative contradiction
argument, later exploited also by Garofalo-Petrosyan-Garcia and Focardi-Spadaro in the context
of the thin obstacle problem (see [11,[10]). However, the same proof works only at singular points
of maximal and minimal dimension under some special assumptions on the projection of the trace
on K, which can be verified only in dimension d = 2. Notice that the dimension of a singular
point is the maximal dim(ker A) among all Q4 € K blow-ups of u at the singular point. Hence,
no epiperimetric inequality was known in the literature for the whole singular set, as it happens
in Theorem [I] and Weiss himself suggests that ”...it should however be possible to give a direct
proof of the epiperimetric inequality which would then also cover singular sets of intermediate
dimension” (see [16]). Theorems [1| and [2] answer affirmatively to this question, and in particular
Theorem [1|is the first instance in the literature of an epiperimetric inequality of logarithmic type
and the first instance in which the epiperimetric inequality for singular points has a direct proof.
The methods developed to prove the epiperimetric inequality at singular points of any stratum
have a quite general nature and will be applied to provide similar results in other problems, for
instance in the case of the thin obstacle problem [5].

The proof of Theorem [2]is the first adaptation of the Reifenberg and White’s pioneering work
to the classical obstacle problem (see [14, [I§] and [I5], where a similar argument is performed for
the Alt-Caffarelli functional in dimension d = 2). In other words, it is based on a direct proof,
producing explicit energy competitors: they are obtained by changing the homogeneity of the
boundary datum c¢, after subtracting a suitable rotation of the blow up ¢,. At singular points,
namely in the setting of Theorem [2] it is remarkable in our opinion how the failure of Weiss’
contradiction argument translates into a weakening of the epiperimetric inequality, that is the
necessity of introducing the exponent ~ in . Correspondingly, the energy competitor cannot
be constructed by simply changing the homogeneity the extension of ¢, after possibly subtracting
a rotation of the blow up; a more refined construction is necessary and the gain in the energy is
logarithmic rather than being a fraction of the energy of the 2-homogeneous extension.

An estimate of the form is essentially the best one can get for general nonnegative traces ¢
(we discuss this in detail in Subsection and the estimate in Theorem [1|is optimal, in view of
the example constructed by Figalli and Serra [7, Appendix A].

It is well known that Theorem [2] leads to the uniqueness of the blow-up at every flat point
and also to the C'1® regularity of the regular part of the free-boundary (see [16]). We show that
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Theorem [1| yields the uniqueness of the blow-up and the C' regularity of the singular set, with
an explicit logarithmic modulus of continuity. This is an improvement on the results of Caffarelli
and Monneau, where such a modulus arises by contradiction arguments and is therefore not
explicit (see [4, [13]). The method of the present paper is flexible enough to cover more general
and nonlinear functionals, such as the area. The stratification of the singular set for the area
functional, even in the context of Riemannian manifolds, and the C! regularity of the strata
were recently obtained in [9] [8]. Before giving the precise statements, we need some additional
definitions.
We split the free-boundary of a minimizer w in reqular and singular part, defined as

Reg(u) := {x € 0{u >0} NQ : any blow up at z is of the form ¢, € K}
Sing(u) := {x € d{u >0} NQ: at least one blow up at z is not of the form ¢, € K1}

Their regularity is the content of the following results.

Theorem 3 (Uniqueness of the blow up and logarithmic convergence). Let v = %, Q CR? pe
an open set and u € H'(Q) a minimizer of £. Then the blow up of u at each point of the free

boundary 0{u > 0} N Q is unique. Moreover, the following convergence holds.

(1) For every xo € Reg(u) N Q there exist r := r(xg), C = C(x0) and v(xg) € R, with
|v(zo)| = 1/2, such that

(n+2)e

/83 }uxl’r — ql,(ml)| dHIt < Cr20=9) | for every 1 <y and x1 € Reg(u) N By(x0).
1

(2) For every open set Qp € Q and x € Sing(u) N Qq, there exist C' := C(Qy) and Q, € K
such that

/ g — Quo| dHT™! < C(—log 7“)_12;77 . for every r < dist(Q, 00N). (1.5)
0By

The logarithmic modulus of continuity in follows by the exponent v # 0 in the epiperi-
metric inequality . Indeed, we will show that thanks to the epiperimetric inequality, for every
x € Sing(u), the quantity e(r) = W (u,r) — 0,(0) satisfies, for r sufficiently small, the differential
inequality

Do) > Ce(ry,
which corresponds to a logarithmic decay of e(r). Instead, when the classical epiperimetric
inequality holds, we find the differential inequality d%e(r) > ce(r), which gives a Holder decay of
e(r).

The next regularity result recovers all the previously known results and improves the regularity
of the singular set to C'11°8. Before stating it we need to make precise what we mean by singular
points of intermediate dimension. Given k =0, ...,d — 1, we define the singular set of dimension
k (also called k-th stratum) Si(u) as

Sk(u) := {x € Sing(u) : dim(ker(A)) < k for every blow-up Q4 € K of u at x}

k
= U{x € Sing(u) : dim(ker(A)) =1 for the unique blow-up Q4 € K of u at x},
=1

where the equivalence of the two definitions is guaranteed by Theorem [3] In the case of the
stratum So(u) the inequality (T.5)) can be improved to O convergence.

Theorem 4 (Regularity of the free boundary). Let ¢ > 0 be the constant from Theorem

8= gﬁfi; (1 + gﬁf;)fl, Q C R? be an open set and u € H'(Q) a minimizer of £. Then

(1) Reg(u) is locally the graph of a CY# function; namely, for every xo € Reg(u) N there
exists 7 := r(x0) such that Reg(u) N B,(xq) is a CYP- submanifold of dimension (d — 1);
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(2) For every k = 0,...,d — 1 and for every xy € Si(u), there exists ro := ro(xo) such that
Si(uw) N By, (z0) is contained in a single submanifold of dimension k and class C%'°9;
moreover, for every open set Qo € 2 there exists C' := C(Qp) such that for every x1,x9 €
Sing(u) N Qo a logarithmic estimate holds

1—y

|Qay — Qup| < C(=log |z —a2|) >, (1.6)
where @, is the unique blow up of u at x.
(8) If the dimension d = 2, then we have the estimate
|Q:r:1 - Qx2| < C|.T1 - $2|B for any x1, 12 € Sk(u) N, (17)

fork = 1,2, where 3 is the same as in (1), Qo € 2 is a open set, C := C(Qy). In particular
So(u) consists of isolated points in Q and Si(u) is locally contained in a 1-dimensional
submanifold of class C1P.

Remark 1.1. Thanks to a result of Caffarelli and Riviére (see [3]) it is possible to improve (3) to
the following result: the boundary of a connected component of the interior of the free-boundary
is analytic except at finitely many singular points. After the completion of the present paper, a
new higher regularity result for the singular part of the free boundary was proved by Figalli and
Serra [7].

The stratification of the singular set for the area functional, even in the context of Riemannian
manifolds, and the C! regularity of the strata were recently obtained in [9,8]. The method of the
present paper is flexible enough to cover more general and nonlinear functionals, such as the area:
Theorems [3| and [4] remain true if we consider a Holder continuous weight function ¢ : Q@ — R™
and more general functionals, for instance

£,() ::/Q[\Vu]2+q(m)]uﬂ de,  Ag(u) ::/Q [VIVaP+ 1+ gl da.

In this case, the regular and singular parts at a given point x are defined as for £, up to a constant
which depends on ¢(x). Given u € H'(Bj) positive minimizer of £, we define

Reg,(u) := {.CE € 0{u >0} NQ: any blow up at z is of the form ¢, for |v| = (‘7(293)},

q(z)

Sing, (u) = {x € 0{u >0} NQ: at least one blow up at = is not of the form g, for |v| = T}’

Sqk(u) = {x € Sing,(u) : dim(ker(A)) < k for every blow-up Q4 € K of u at x}.

Theorem 5 (Holder continuous weight functions and area functional). Let a >0, Q C R? be an
open set and g € CO¥%(Q;RT) be an Hélder continuous function such that q > cqg > 0, where ¢4
is a given constant. Let uw € H'(Q) be a minimizer of & or A,. Then the blow up of u at each
point of the free boundary O{u > 0} N is unique and

(1) there exists 3 > 0 such that Reg,(u) is locally the graph of a CYB function;

(2) For everyk =0,...,d—1, Sy (u) is contained in the union of countably many submanifolds
of dimension k and class C'°9; namely for every xq € Sing,(u) N Q) there exists 1o :=
ro(zo) and C := C(xg) such that a logarithmic estimate holds

|Q(z1) — Q(x2)| < C(log |z1 — :1:2|)712;vv for any x1, x9 € Sing,(u) N By (z0). (1.8)

Compared to a similar result obtained from the epiperimetric inequality with indirect proof,
here we have quantitative estimates as ((1.8)) and, for the regular set, an explicit Holder regularity
in terms of the dimension and the Hoélder exponent of q.
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1.1. Classical vs logarithmic epiperimetric inequality. The key ingredients in the proof of
Theorems [] and 2] are

e a Fourier decomposition of the trace ¢ — ¢, (resp. ¢—@Q4) onto the eigenfunctions of S~

e an energy improvement with respect to z obtained by taking the harmonic extension of
the modes with homogeneity larger than two;

e a choice of v (resp. A) to control the projection of ¢ — ¢, (resp. ¢ — Q4) onto the
eigenfunctions of homogeneity one and two, with the projection on the higher modes.

At flat points and at every point in dimension d = 2, the estimate of the third bullet is linear,
however in general dimension at singular points we can only prove a control of the form

1P(c = Qa)llmomy < Cll(Td = P)e = Qa)lllop, 7€ (0,1),

where P denotes the projection on the modes relative to homogeneity two. The above estimate
corresponds to from the proof of Theorem and is sharp in higher dimension (see Subsection
4.6). The reason for this different behavior in the flat and singular points is essentially the
following: at the flat points we are able to eliminate the lower modes (the modes corresponding
to homogeneity smaller than two) on a spherical cap by means of the choice of the vector v; this
is possible since the space of admissible functions g, is an open manifold of the same dimension as
the eigenspace corresponding to the lower modes, so we can apply an implicit function argument
(see Lemma. At general singular points, we would like to eliminate the modes of homogeneity
two, that is the modes corresponding to the eigenvalue 2d on the sphere and whose eigenspace
can be identified with the space of d x d real symmetric matrices S;(R). However, the positivity
constraint on the competitor forces the choice of the matrix A to be in the space of nonnegative
symmetric matrices SJ(R). Now these two spaces have the same dimension, but, due to the
non-negativity assumption, the set SJ (R) C Sq(R) is not open, so we cannot apply the implicit
function theorem here. Indeed, if we are in its interior, which corresponds to the singular points
studied by Weiss, then the argument works and we can eliminate the second modes; but at the
boundary of S; (R) an implicit function argument only provides us with a matrix in the larger
space Sq(R). This leaves us to estimate the difference between the element of S;(R), corresponding
to the second modes of the trace ¢, and its projection on SI(R). We can do this by means of the
additional condition that c¢ is positive, which suggests that this difference should be comparable
to the higher modes of the trace, but because of capacitary reasons the bound comes with an
exponent v # 0. Roughly speaking, if the negative part produced by the second modes is very
small, concentrated on a set of small capacity, then it can be compensated by a function with
very small energy, much smaller than the distance to S:[ (R) in the space of symmetric matrices.
In particular, it seems that this obstruction is of the same nature as the one that appears in [16],
where the strong convergence of the traces cannot see the nodal sets of small capacity.

A similar phenomenon can be found in the theory of minimal surfaces. Indeed if we think
about the collection of singular points of lower dimension as a minimal surface in codimension
higher than one, then it is known the existence of non-integrable cones, that is cones with non-
integrable Jacobi fields. In this case the best possible rate of convergence to the blow-up is indeed
logarithmic, as shown in [I].

Organization of the paper. The paper is divided in four short sections. In Section [2] we fix
notations and easy preliminary computations. In Section [3] we prove the Weiss epiperimetric
inequality Theorem [2] while Section [4]is dedicated to Theorem [I} Finally, in Section [§] we apply
these two theorems to deduce the various regularity results.

2. PRELIMINARIES

In this section we fix some notations and we recall some known facts about the solutions of the
obstacle problem, their blow-up limits, the decomposition of the free boundary in a regular and
singular part and its realtion with the Weiss boundary adjusted functional. The final subsection is
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dedicated to the Fourier analysis on the unit sphere in R, which will be useful for both Theorems

[ and 2

2.1. Notations. We will use the following notations. Bj is the d-dimensional unit ball centered
in zero and wy = |Bj| is the Lebesgue measure of B;. We denote by S¢~! or dB; the unit
(d — 1)-dimensional sphere in R? equipped with the (d — 1)-dimensional Hausdorff measure H% 1.
6 will denote the variable on the sphere B;. For an open set € in R? or on the sphere S?—!
we will denote by H(Q2) C L?(f2) the Sobolev space of weakly differentiable functions on €2 with
gradients in L?(Q;RY) and by H}(Q2) the space of functions H'(2) which are zero on 0.

For a function f : R? — R we denote by fy its positive part, fi(z) = max{f(z),0}. For
instance, given a vector v € R% we will often use the notations

(x-v)y = max{z-v,0} and (z-v)% = (max{z - v, O})2,
where z - v is the scalar product of the vectors z and v in R

2.2. Weiss boundary adjusted energy. For a function u € H'(Q2), with Q C R? we denote
by W, Wy and W the functionals

1 2
Wo(u, zo, ) == —— / |Vul|? dx — / u? dHI
el TN .
— 1
W (u,20,1) 1= Wo(usaor) + 5 [ ulw)d,
r Br(m())
1

W (u, g, 1) = Wo(u, zo,7) + rd+2/ max{u(z),0} dz,
BT(ZO

where zp € 9{u > 0} and 0 < r < dist(zg,d), and we notice that for non-negative functions
u € HY(B1) we have W (u, zg,7) = W (u,zg,7). In particular, we set

W(u,0,r) = W(u,r) and W(u,1) = W(u),

and we recall the scaling property

Wi(u,xzo,7) = W(tpg,), where up gz (z)= W.
For any u € H'(€) the following identity holds for zog € d{u > 0} and 0 < r < dist(xq, 9Q)
d d+2 1
—W(u,zg,r) = i (W (zr.29,1) = W (tr.zy, 1)] + / |2 Vit gy — 2t o |> dHE, (2.1)
dr r r Jon,
where 2z, (7) = |2]? Uz, (\%I) (see for instance [16]).

2.3. Global homogeneous solutions of the obstacle problem. Wa say that the function
up : R = R is a blow-up limit of u in the point zg, if
uo = lim uyr, 4, for some sequence (ry), with lim r, =0,
n—oo n—oo
where the converegnce is locally uniform and strong in H llo C(]Rd). Thanks to work of Caffarelli (see
[2]), it is well known that wug is a global homogeneous solution of the obstacle problem. Precisely,
up € KU K4 (introduced in (1.1)) and (1.3)). Moreover, we claim that

_ . Wd .
W<Q)_8d(d+2) : O for every Q € K, and W(q)

Wd
= m =: O4 for every q € K5.
(2.2)
Indeed, for every Q4 € K we have AQ4q = 2trA = % and so an integration by parts gives
1
Wo(Qa) = / IVQal* - 2/ Qh=— [ QuAQa= —5 [ Qa
By 0B1 B1 B
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Since @ 4 is positive and denoting (a;;); the coefficients of the matrix A, we get

— 1 1 [ & trA
W(Qa) =W(Qa) = Wo(Qa) + 5, Qa = 2/31 Qo= /B Zaii:r?d:n: =2 z2dr = 0.

2 )5 2 Jn

Analogously, for any ¢, € K, we have Ag, = 2[v|?> = % on the set {z - v > 0}, so that

et 1 v[? 2 Wq
Wiq) = Wig) = Wolqw +/ qV:/ qI/:/ rgdr = ————— =06,.
(a) (av) o(av) By 2 /p, 2 Jingegsop 16d(d+2)

2.4. Regular and singular free boundaries. We recall that, as observed by Weiss [17], a
consequence of is that if u € H'(€2) is a nonnegative minimizer of £ in the open set Q C R¢
and xg € €, then the function r — W(u,xo,r) is nondecreasing (in its domain of definition
0 < r < dist(xg,092)) and there exists the limit

Ou(xo) == lim W (u, zg,r) = inf W (u,zo,r) = lim W (uyz,) - (2.3)
r—0 r>0 r—0
Moreover, if ¢ is a blow-up limit of the minimizer v in xg, then
W(q) = lim W(uy, z,) = Ou(zo).
n—oo
Since we have that ¢ € L UK, there are only two possible values for the energy density 0, (xo):
Oy(xg) = O4 or Ou(zp) = O.
Hence we can redefine the regular and the singular part of the free boundary 0{u > 0} N Q as
Reg(u) ={x € 0{u >0} NQ: O,(z) = O4},
Sing(u) = {x € {u >0} NQ: O,(x) = B}.

By definition the free boundary 0{u > 0}N2 is a disjoint union of Reg(u) and Sing(u). Moreover,
by the definition of the density and the fact that zo — W (u, zg, r) is continuous, the function
xo — ©y(z0) is upper semicontinuous. This, together with and the fact that all the blow-up
limits are in L U K4, finally gives the following characterization of Reg(u) and Sing(u):

e the set Reg(u) is a relatively open subset of the free boundary d{u > 0}, and every
blow-up limit at a point of Reg(u) is of the form g, for some ¢, € K;

e the set Sing(u) is closed, and every blow-up limit at a point of Sing(u) is of the form @ 4,
for some Q4 € K.

2.5. Eigenvalues and eigenfunctions on subdomains of the sphere. Let S C S ! be an
open set. Let 0 < A\ < Ay < --- < A < ... be the eigenvalues (counted with multiplicity)
of the spherical Laplace-Beltrami operator with Dirichlet conditions on 05 and {¢;};>1 be the
corresponding eigenfunctions, that is the solutions of the problem

— Aga-1¢pj =Njp; in S,  ¢;=0 on I8, /S¢§(9)dﬂd—1(9)=1. (2.4)

Any function ¢ € HZ(S) can be decomposed as 9(f) = > 521 ¢j®j(0). The following lemma
compares the energies of 2-homogeneous and a-homogeneous functions by means of the Fourier
decomposition of their common values on dBj.

Lemma 2.1. Let ¢ € H}(S) and consider the 2-homogeneous extension ¢(r,0) = r?y(0) and the

a-homogeneous extension ¢(r,0) = r*p(6) respectively of 1 to By, for some o > 2. Set
a—2
€q i= ita and Ao i =ala+d—2). (2.5)

Then the following inequality holds

Wo(®) — (1= 2a)Wole) = g2 —5 > (=) + Aa). (2:6)
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Proof. Since ||¢;l|2am,) = 1 and [[Vedjlr29p,) = Aj for every j € {0} UN, the energy of the
a-homogeneous function @(r,0) = r*)(0) can be written as

o0 1

Wo@) =2 ¢ ( / rhdr / R [aPr?0 2] 2TV - 2 / 6 d?—t‘“)
j=1 0 5 s
= I\d+20—2

When o = 2 and o(r,0) = r21(0), we get

536§(44—A 2).

7j=1
We now notice that for every A we have
2 4 2 — -2 -2
( a? + A _2>_(1_8a)< +)\_2>: A2 -a) +(O< Ja(a +d )’
d+ 20— 2 d+2 (d+a)(d+2a—2) (d+a)(d+2a—2)
which concludes the proof of Lemma, O

The above lemma, in particular, shows that if the decomosition of 1 involves only eigenfunctions
corresponding to eigenvalues A\; > A, then the a-homogeneous extension ¢ has a strictly lower
energy than the two-homogeneous extension ¢. In order to choose appropriately o we will need
some additional information on the spectrum of the Laplacian on S. We recall that the function
¢; S — R is a solution of the first equation in if and only if its a;-homogeneous extension
©i(r,0) = r*¢;(#) is harmonic in the cone {(r,0) € RT x dB; : 6 € S}, where the homogeneity
a; is uniquely determined by the identity \; = (o +d — 2).

The spectrum on the sphere S !. By the fact that the homogeneous harmonic functions
in R? are necessarily polynomials, we have that:

e \; = 0 and the corresponding eigenfunction is the constant ¢, = [0B;|~%/? = (dwy) /2.

o \y == )Agy1 = d—1, the corresponding homogeneity constants are ag = -+ = 441 =
1 and the corresponding eigenspace coincides with the space of linear functions in R
e \jio= = Ad(d+3)/2 = 2d, the corresponding homogeneity constants are agyo =

@q(a+3)/2 = 2. The corresponding eigenspace has dimension d(d — 1)/2 and is generated
by the (restrictions to SY~! of the) two-homogeneous harmonic polynomials:
Fog={Qa: R R : Qu(x) =z - Az, A symmetric with tr4 = 0}.
o If j > d(d+3)/2 (that is A\j > 2d), then A\; > 3(3+d —2) =3(d+1).
The spectrum on the half-sphere 0B;” = {2, > 0} N 9B;. We notice that the odd extension
(with respect to the plane {z4 = 0}) of any eigenfunction ¢; on the half-sphere B; is an

eigenfunction on the entire sphere dB1, which is zero on the equator {x4 = 0} N dB;. Thus, one
can easily deduce that:

e \; = d — 1 and the corresponding eigenfunction is ¢ (z) = fgd.

e )y = --- = )\g = 2d, the corresponding homogeneity constants are ag = -+ = ag = 2
and the corresponding eigenspace Fsyy has dimension (d — 1) and is generated by the
polynomials

Qj(x) = xqrj_1, for every j=2,...,d.

e If j > d (that is A\j > 2d), then A\; > 3(3+d —2) =3(d + 1).
The spectrum on the spherical cap S5 = 0B1N{xy > —0}. We first notice that the spectrum
{Aj(0)}j>1 of the spherical cap Ss varies continuously with respect to 6. Thus, for § > 0 small
enough (smaller than some dimensional constant), we have

e )\;(0) is simple (isolated) eigenvalue and A;(§) < d — 1;

o d—1< \(0) <2d, for every j =2,...,d;
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e )\;(6) > 3d, for every j > d.
Moreover, a standard separation of variables argument gives that:

e the first eigenfunction ¢ on Ss is positive and depends only on the first variable x4, that

is ¢1(x) = d1(za)-
e the eigenfunctions ¢a, ..., ¢4 correspond to the same eigenvalue A2(d) = --- = \y(d) and
there is a function ¢ = ¢(x4) such that

¢j(x) = xj_1(xq) forevery j=2,...,d.

3. THE EPIPERIMETRIC INEQUALITY AT FLAT POINTS: PROOF OF THEOREM Q
In order to prove Theorem [2] we decompose the function z as
2= Qv+,

where ¢,(z) = (z-v)% and v € R? to be chosen later. We then replace the 2-homogeneous
function ¢(r,0) = r2¢(#) by an a-homogeneous function @(r,0) = r*¢(f), for some o > 2. The
final competitor will be of the form

h=q + o,
and € = g, will be given by
a—2
o= . 3.1
c d+ o (3:-1)

We notice that the competitor i is non-negative in Bi, thus we only need to prove the inequality
W(h) -0y —(1—¢) (’W(z) . e+) <0. (3.2)

We divide the proof into three steps.

Step 1. Using the properties of g,, we first reduce the inequality (3.2)) to a comparison of the
energy of ¢ to the one of . Precisely, in Subsection (3.1} we prove the inequality

W) =04 — (1) (W(2) - 61) < Wo(@) — (1~ &)Wo(%). (33)

Step 2. In Subsection [3.2] we prove that we can choose ¢, in such a way that the function ¢ := c—g,
does not contain modes of the first d eigenvalues on the spherical cap Ss,. Precisely, we prove
the following claim. For every dg > 0 there exists 6 > 0 such that

for every ¢ € Hg(Ss,) satisfying ¢ — Gey/2llL20B,) < 9 there exists v € R? such that
uy € H(Ss,) and / c(0)¢;(0) dH1(0) = / 4 (0)p;(0) dHTL(0), for every j=1,....d,

50 S5

(3.4)
where ¢1,. .., dq are the first d, orthonormal in L?(0B;), eigenfunctions of the Laplace-Beltrami
operator on Ss, with Dirichlet boundary conditions on 95Ss,.

Step 3. In Subsection [3.3] we use Lemmal[2.I]and the choice of v from Step 2 to prove the inequality
Wo(p) — (1 —&)Wo(p) <0, (35)

which together with (3.3)) gives (3.2]).

3.1. Decomposition of the energy. We prove (3.3) in the following lemma:

Lemma 3.1. Let o > 2, e, as in (3.1), v = (v1,...,vq) € R and q,(z) = (z - 1/)3 Suppose that
¢ € HY(0By), ¢(r,0) = r?¢(0) and H(r,0) = r*¢(0). Then

(Wig+0)—0+) = (1=ca) (W(a, +9) = 01 ) < Wo(®) — (1 - )W) (36)
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Proof. Suppose, without loss of generality that, ¢, (z) = coq(x), where for the sake of simplicity
we set ¢ := q,, /2 € K. Notice that for every ¢ € H'(B;) we have

~ 1
W(Coq+¢)—@+zc(2)/ |V€I|2—203/ q2+60/ q—2/ q
B OB, B B

+200< Vq-Vw—2/ q¢>+/ IV|? — 2 v+

B 0By B 0B1 B1
7_M (_ A o — > W

= 5 /qu+200 . q?ﬂJr/aB1 q Y 2/9qu¢ + o<w>+/BIw

= —(eo— 120, + Wo(¥) + 1/1—00/ ¥,
B B

where we used that O, = % fBl q, Aq = %XBIL and 0,q = 2q. If y = ¢ = r? ¢, then we have

/131¢_60/19;¢: dJlra ( 881¢—%/an¢> = diaﬁ(cb),

and we can write the energy of cgg + ¢ in the form

W (coa +2) — 01 = —(co — 10 +Wol@) + ().

Applying the above estimate to ¢ and ¢ and thanks to the definition of ¢, we get

W(cog+ @) — 04 — (1 —ea)(W(cog + ¢) — O4)

N 1 1—¢,
— —zaleo = 14 + Wa(p) (1 Wil + (1 — g ) H(6)
= —ealco — 1)2@—1- + Wo (@) — (1 —ea)Wo(ep),
which concludes the proof of Lemma |3.1 O

3.2. Choice of v. In this section we prove the claim ([3.4)), which is a straightforward consequence
of the following lemma.

Lemma 3.2. Given &y > 0, we denote by Ss, the set {xq > —do} N OBy and by ¢1,...,¢Pq the
first d eigenfunctions on the set Ss,. Then the function

F:R? - R? Fv) = 30 P ” ,
SR FW) (/Sq¢1 /Séowd)

is a C diffeomorphism in a neighbourhood U C R? of %d.

)

Proof of Lemma [3.2. We first notice that F is a C! function in a neighborhood of e4/2, because
the function R? x R? 3 (z,y) — (2 -y)2 is C. We now calculate the partial derivatives of
F = (Fy,...,Fy) in eq/2. Using the fact that the first eigenfunction depends only on one varibale,
¢1 = ¢1(zq), and that the higher eigenfunctions can be written in the form ¢;(z) = z;_1¢(zq),
for every j = 2,...,d (see Subsection , we get that

Fi(v)= / qv(x) $1(xq) dx and F;(v) = / @ (z)zj1p(xg)de, Vj=2,...,d.
0B 0B

Setting 0B, = {x4 > 0} N dB; we have

Of 19y = / 2261 (2q) dz > 0,
8B

0 V4 ]

0F,

—(eq/2 —/ xqrid1(xg)de =0, Vj=1,...,d—1.
ayj ) 8B;r J )
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where the positivity of the first term follows from the positivity of ¢, while the second term is
zero since x; is odd. Moreover, for every j =2,...,dand i = 1,...,d, we have

OF,
8%‘

Sii1
(ea/2) :/ Tix4Tj-19(Tq) dx:5i(j1)/ 2rq(zq) dv = )/ (1 = z3)zad(zq) de,
oB; aB; d—1 Japf
where we used the fact that z; and z; are odd for the first equality, and [ 3:]2 = ﬁ Z;l;% i x? =
-+ [(1 — 22). By the positivity of ¢ and the fact that limgs,_ [|¢ — ey 298,y = 0, for
dimensional constants ¢; and co (which is due to the fact that on the half-sphere anr the

eigenfunctions are of the form ¢;(x) = coxqgxj_1 for j = 2,...,d) we get that for 5y small enough
DF(eq/2) is an invertible matrix and so, by the inverse function theorem there is a neighborhood
of e4/2 on which F is a C*! diffeomorphism. O

3.3. Homogeneity improvement of ¢. We prove (3.5). Indeed, by the fact that the Fourier
expansion of ¢(#) := ¢(0) — ¢, (0) does not contain the first d modes ¢1,..., ¢4 on the spherical
cap S5, (claim (3.4])), we obtain that the function ¢ can be expanded in Fourier series as

o
»(0) = Z cj¢;(0) on the spherical cap S5, = 0B1 N{xq > —dp}.
j=d+1
Thus, by Lemma [2.1| we get

o0

Z (=X + )\Q)C?,

j=d-+1

~ Ea
Wi — (1 —ea)W( = —
where \; are the eigenvalue of the Dirichlet Laplacian on S5, and Ay = a(a + d —2). On the
other hand, for 69 > 0 small enough, we have that A\; > 3d, for j > d+ 1 (see Subsection , SO
that —\; + Ao < 0 whenever a > 2 and o(a + d —2) < 3d. . Thus, choosing for instance

5 o—2 1

= — d = =
a3 o T dta 2445

we conclude the proof of (3.5) and Theorem

4. THE EPIPERIMETRIC INEQUALITY FOR SINGULAR POINTS: PROOF OF THEOREM

We can assume without loss of generality that W (z) — © > 0, since otherwise the statement is
true with h = z. Given any two-homogeneous function z(r,6) = r2 ¢(#), we can decompose it in
Fourier series on the sphere 0B as

c0) = cit(0) =g + D Gé0) + D Géi0) + D ().
j=1 {j:Aj=d—1} {i:2=2d} {j:2;>2d}
Therefore z can be decomposed in a unique way as
2=q +Qa+ o, (4.1)

where

(i) v € R? is such that ¢,(z) = (¢ - v) contains in its Forurier expansion precisely the sum
PORCTOF
{_] : /\j :d—l}

ii) A is a symmetric matrix depending on the coefficients c;, corresponding to the eigenvalues
J
Aj=0,d—1,2d, and Qa(z) =z - Ax;
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(iii) ¢ is a two-homogeneous function, in polar coordinates o(r,0) = r2¢(6), containing only
higher modes on 0B, that is the trace ¢ can be written in the form

$0) = > ce0), (4.2)
{j : /\j >2d}
where {¢;};en are the eigenfunctions of the spherical laplacian as in (2.4) with S = 0B;.
Indeed, in order to obtain the decomposition (4.1)) we first notice that the term corresponding to

the d — 1 modes in the Fourier expansion of z on the sphere is a linear function. Precisely, there
is v/ € R? such that
Z cj¢;(0) =01, for every 0 € 0B.
{j: Aj=d—1}

On the other hand, given v € 9B7, the term corresponding to the linear modes in the Fourier
expansion of g, is of the form cy(x - v), where ¢4 > 0 is a dimensional constant. We now choose
v :=1'/cq. Thus, the expansion of the function z — g, does not contain linear modes and so, it
can be uniquely decomposed as z — q, = Q4 + , where Q4 contains the constant and quadratic
modes and ¢ contains all the other higher modes. Thus, we obtain (4.1)).

Notice that, in the above representation A might not be positive definite. Let B be a symmetric
positive definite matrix and Qp(x) = x - Bz. Then, z can be rewritten as

Z::%/+(QB'+(QA'_(QB)+‘¢'
We then replace the 2-homogeneous function 1 := (Qa— Qp)+ ¢ by an a-homogeneous function
v with the same boundary values as ¥. We will choose o > 2 such that
o—2 9 gl
= =< (CulVaslaom,) (43)

where C} is the dimensional constant from the inequality (4.8]) and 7 is the constant from (1.2]).
Subsequently we will choose € to be small enough, but yet depending only on the dimension.
Finally, the competitor h is given by

ES

h=q+Qp+1.

Since inf{y,0} < inf{qﬁ, 0} and ¢, + @p > 0, by the choice of B, h is non-negative in B; and so
we only need to prove the inequality

W(h) <W(z)—e(W(z) —0)"".

The proof of Theorem [1] will be carried out in four steps.

Step 1. In Subsection 4.1l we set ¢y = 4 Z v? and b=4trB and we prove the identity

J=1"]
W(h) =0 = (1-ca) (W(2) - ©) (4.4)
= =S (L=b=c0)’ + (1= 1)) O+ Wo() — (1 - £a) Wo ().

Step 2. We now choose Qp. If A is positive definite (Q4 > 0), then we choose B = A. If Q4
changes sign, then up to a change of coordinates we can assume that there exist a; > 0 for every
j=1,...,d such that

Zaﬂ: + Z a;T j, ad2@>ZaJ,

j=k+1
where the last inequality being due to the fact that Q4 is L?(0B1)-close to the set of admissible

blow-ups K. We set
Z a7} - (Z“J) (4.5)

j=k+1 Jj=1
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where the last inequality, that is the positive definiteness of B, depends on ag > 45 > Z =1 G-
In Subsection we then prove that there exists a dimensional constant Coy > 0 such that

k
Wo(¥) — (1 — ea)Wo(¥) < €2C Z IVooll7 (0B1)" (4.6)

d+1)

Step 3. In Subsection we prove that there are dimensional constants C3 > 0 and v € [0,1)
such that

Za < C3HV9¢”L2(0B (47)

j=1
In the supplementary Subsection we show that this estimate can be improved in several ways:

- in dimension two (4.7]) holds with v = 0;
- the dimensional constants v can be replaced by a (smaller) constant 7y, this time depending on
d and k. In the two extremal cases £k = 0 and k = d — 1 the constant is zero.

Step 4. In Subsection we prove that there is a dimensional constant Cy, such that
W(z) = © < Cu|[ Vool 72, (4.8)
Conclusion of the proof. The proof of Theorem [l| now follows directly by (4.4), (4.6)), (4.7) and

(4.8). Indeed, by (4.6) and (4.7) we get that

Wo(1) = (1 — ea)Wo(¥) < €2Cy Za Vo172 (08,

d~|—1
€a
< Ozcsuwcblrm&) 6@+ 1) IVo?lEzom:

By the definition of ¢, and (4.8)) we get

Wo(1) — (1 — ea)Wo(¥) < 520427HV6¢||L2(631)02C3HV9¢H%(21831 6(d )CVHV(";S”L2 o) IVooli20m,)
= o] (00507 — ——— ) [Va0l242
=ely | eCalsCy 6(d+1) H 0¢HL2 (0By)
<0. (4.9)

The last inequality is justified since the previous quantity is negative for € small enough depending
only on the dimension. Finally, by (4.4), (4.9)), the definition of £, and (4.8) we obtain

W(h) -0 < (1—z4) (W(z) — ©) = (1 ~ e CY V00| om, ) (W(z) - ©)
< (1 — e (W(z) - @)7) (W(z) - 0),
which is precisely . We now proceed with the proof of , , and .

4.1. Decomposition of the energy. We prove the following lemma, which implies easily (4.4]).

Lemma 4.1. Let « > 2 and ¢4 = d+a, let 0 # v = (v1,...,v4) € RY, g (2) = (z-v)2,

o = 42?:1 1/]2; let B be a symmetric matriz with and b = 4trB # 0 and Qp(x) = = - Bz.

Suppose that ¢ € HY(OB1), ¢(r,0) = r2¢(0) and (r,0) = r*¢(0). Then
Wia+Qs+3)—0—(1-ca)(Wla+Qp+) - ©)

- _%a (A =b—co)® + (1= )% O+ Wo(@) — (1 —ea)Wo(p).
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Proof. We Q = %QB. Thus, we have @ € K. In particular, AQ = 1/2 in B; and W (Q) = 0. We
notice that for every function n € H'(B1), we have

W(bQ—i—n)—GZbQWO(Q)+Wo(n)+2b< VQ-Vn—2/ Qn)—i—b/ Q—i—/ n—©6
B1 0By B1 By

:b2Wo(Q)+Wo(77)2b/ nAQ+b/ Q+/ n— 0,
B1 B1 B1
which gives

WOQ+1) -6 = —(1—6)2@+W0(77)+(1—b)/B 0. (4.10)

We set g = %qy. Thus ¢ € K4+ and W(q) = ©4 = %fBl q. Setting n = coq + v in (4.10) we
obtain

W(bQ + cog + 1) — © = —(1 — b)O + Wo(cog + ) + (1 — b)/B (coq + )

= —(1=b)*0 + gWo(q) + Wo(v)
+2c0< Blvq-w—2/831qw> +(1—b)/Bl(ch+w)

©
=—(1-b)%0 — c§— + Wo(y) — 2 Ag+ (1 —b)co® + (1 —b
(1020 = 5+ Wo(w) 200 [ g (1= 0@ + (1) [ v

—b—o¢ 2 o 2
__(-b 0>2+(1 6+ Wol) + B, (4.11)

where in the last line we set
5= -0 [ v-a v
B By

Taking ¢ to be the a-homogeneous extension of 1, we get that ﬁ(z/;) — (1 —€4)B(®) = 0, which
concludes the proof of the lemma. O

4.2. Homogeneity improvement of . In this subsection we prove the inequality .

We first notice that if ()4 is non-negative, then we can choose Qp = Q4 and Z§:1 a? = 0.
Thus, follows directly by Lemma and the fact that for the eigenvalues on the sphere
Aj > 2d implies A\j > 3(d + 1).

In the rest of this subsection, we assume that ()4 changes sign and Q)p is given by . In
particular, Q4 — @Qp is a homogeneous polynomial of second degree with AQ4 — Qp = 0, so it is
an element of the eigenspace Fs4, corresponding to the eigenvalue 2d. We choose ¢2 € Foq and
¢ € R such that

Qa — Qp = c2¢2, where ¢3(0) dH1(0) = 1.
0B;
Thus, on 0By we can write 1 as

Y(0) = caa(0) + 6(0) = caa(0) + > ¢t (6).

{j:Xj>2d}
Applying Lemma [2.I] we have
~ o €a 2 . 2
Wo(¥) — (1 —ea)Wo(y) = m((@ —2)(d+a)e; + | Z (=A; + Aa)%’)
{j: x;>2d}
2(d+a)? 5  eq

= —57C5 + Z (—/\j+)\a)c?
(d+2a—2) d+2{j:)\j>2d}
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)
Choosing the constant € small enough, the equation (4.3) implies that 2 < o < 2’ by the fact
that A; > 2d = \; > 3(d + 1) (see Subsection we have
{ eyl LB Ty, de2
by 3d+1)2\""2) 7 6d+1)

Hence, the right-hand side in the previous equality can be estimated by

whenever \; > 2d.

7, 3((1—1—3)2 2 Ea 2
Wo($h) — (1 — ca)Wo () < = 2 A2
(d+2) 2 6(d+1) {jg;d} 7%

— 6§(d+3)2 Ea
DN ABl(QA - Qp)* - ST /831 Vs> (4.12)

It order to estimate the first term in the right-hand side, we notice that Q 4— Qg = ( Zle aj):c?l—

Z§:1 ajx? , hence its L2-norm is a degree 2 homogeneous polynomial in (a1, ..., ax) (with coeffi-

cients depending only on d). Hence there exists a dimensional constant Cy such that

k
/ (Qa—Qp)* <Cy) aj.
j=1

0By

Together with (4.12)), this gives (4.6]).

4.3. The higher modes control Z?:l ajz. In this section we prove the inequality (4.7) from
Step 3. Since the trace ¢(#) is positive on 0B; and can be written as

k d
c(0) = (=Y a3+ D a;63) +a(0) +6(6) > 0,
j=1

j=k+1
we get that
k d d
»(0) > <Zaj0]2- — Z aj9]2~>+ > (a19% - 2932‘)+>
j=1 j=k+1 J=2

on the half-sphere 9B; N {q, = 0}. Thus, we get
ai o 2 : 2
»(0) > Zel on the set U, N{q, =0}, where U, = {9 €0B; : a160] > 229]-}.
i=2

Notice that that for a; small enough we have

1 _ _ _
i(d — Dwg_1v/ar ™t <H N U,,) < 2(d — Dwg_1/ar™
Thus, we obtain

- d+3)/2
¢? > Cgaty/ar’™" = Cda§ R
0B1
for a dimensional constant Cy > 0. Without loss of generality we can suppose that

1 1
a%E%Zagnga?,

<
I
—

<
I
—

and so, we get

I

d+3)/4
/ Vool > 2d [ ¢ >24Ceal™V > Cy ( a;)( /
8Bl 831

Jj=1

d—
which gives (4.7)) with v = 113 and a dimensional constant C'.
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4.4. The higher modes control W(z) — O. In this section we prove the inequality (4.8]) from
the final Step 4. Using the decomposition z = ¢, + Q4 + ¥ and the identity (4.11]) we get, with
1 = r? ¢ and using /. 9B, ¢ = 0 since it contains only high modes,

o (A =b—c)+ (-0 1 / 5 oo co/
W(z)—0 = 5 @+d+2 aBl(Wasﬁl 2d¢?) T aB;rgZ)
1 2 2 o
®+d—}—2 (|V9¢>| 2d¢) d—{—2/¢93?—¢7

where the last inequality follows by the fact that

(1—b—co)>+ (1 —b)? , for every b,co€R.

NS

By the Cauchy-Schwarz inequality, we have

2
co c 1 2
— < 20O - -

5 ‘aBl| 2 C% 2 2
<lo+ ¢* =20 +8d o2,
4 (d+2)0 Jyp, 4 0B,
Thus, we get
1
1474 0< — Voo|? — 2d¢?) + 8d? 2
(-0 g [ (Voo 267 5 | o

1 1
< Voo|? + 8d> @? < ( +4d) / Vod|?,
d+2 Jsp, Vool 0B1 d+2 oB1 [Vodl

where the last inequality is due to the fact that ¢ contains only modes ¢; corresponding to
eigenvalues \; > 2d. This gives (4.8) where the constant C4 can be choosen as Cy = 1+ 4d.

4.5. Improvement of the decay rate. This subsection is dedicated to the improvement of the
inequality (4.7]). The main result, contained in the following lemma, is more general and holds in
any dimension.

Lemma 4.2. Suppose that 0 < k < d and

0<a, i=1,...,k,
Za]x + Z a;x ], where { aj for every j

i 0<a; <1 forevery j=k+1,...,d.

Let ¢ € HY(OB1) be of zero mean, that is o(0) dHI1(0) = 0, and such that
0B1

¢ >Qa on the half-sphere {{ € 0By : £-v > 0},

determined by some unit vector v € 0Bj.

k
Then, there are dimensional constants C > 0 and § > 0 such that zfz a]2~ <4, then

j=1
k
Za? d|’v9¢||L2(6Bl)’ (4.13)
j=1
where
0, if k=0,
d—k
=1,...,d—2
Yk T hid’ for every k e, d—2,
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Remark 4.3. The above lemma is to be applied to the traces ¢ of the solutions u of an obstacle
problem, which can be written in the form ¢(6) = Q(0) + g, (0) + ¢(0). We notice that, although
one might think that k& corresponds precisely to point of the k-th stratum, we do not know a
way to deduce the precise form of Q)4 just from looking at the blow-up limits of w. This means
that even if the blow up Qp is such that dim(ker B) = k, we still cannot infer anything on the
structure of B. It follows that this result cannot be applied to improve the regularity of the
singular sets of d{u > 0}, except in dimension two, where 79 = v; = 0. This corresponds to the
assumption of Weiss on the projection of ¢ on the set of admissible blow-ups C, which again finds
application only in dimension two.

Proof of Lemma [£.2] If k = 0, then the inequality is trivial and so, we can suppose that kE>1.

Suppose that 1 < k < d—1. Without loss of generality we can suppose al Z

Setting X' = (21,...,2y), X" = (T41,...,2q) and || - || = || - [|z2(9,), We have
d
(3ot = 3 ) |2 oret - 3 ) | = ot 178,
i=k+1 + i=k+1 +

PT\H

k
S (RN B RN |

We now notice that
Gl’X’|2 o ]X"|2 > %’X/P on the set Ua1 — {X _ (X/,X”) c (“)Bl . %’X/‘Q > \X’/‘2}7
and for a; small enough we get

1 _ _
§kzwk\/a1d F<HN U, < 2kwp/ar? "
In particular,

d—k+4 k d—k+4
4

> Caa, * 2 Ca( D a?)
=1

2
[ inf{QAaO}H%?(aBl) = H(“1|X,’2 - ‘X/,’2)+‘ L2(0By)

Now, since @) 4 is even and ngbH%Q 0B = ﬁHVgngH%Q op,) We obtain the claimed inequality

Za < Cd”v9¢‘|[d,2k8+§1)

=1

Suppose that k = d — 1. We argue by contradiction. Suppose that there are a sequence of
functions ¢, : 9B1 — R of zero mean and vectors v, € 9By and (al, ..., ak) such that

én(0) > a0 ontheset {§€ 0By :03=0, 0-v, >0},

k k
1 o\ 1/2 ,
al > <% Z |a?, 2) and Z |ad | > n”VGan%?(aBl)'

7=1 Jj=1
Thus, the sequence of functions v, := ¢, /a’ is such that lim ”v/l,Z)nH%Q(a By =0 and
n—00 1

Yn(0) > 607 ontheset {#€dB; :03=0, 0-v, >0},

which is in contradiction with the trace inequality

/ YEdHI? < c/ (Ve |? +2) dH*
{04=0}N0B1 8B
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4.6. On the sharpness of the non-homogeneous estimate in Theorem[1] We conclude this
section with an example, which shows that in dimension higher than three one cannot estimate
the distance to the cone K by just using the energy of the higher modes ¢ to the power one.
Indeed, such an estimate would be in contradiction with inequality below. In particular,
Example [1] shows that for general traces in higher dimension our method cannot be improved.

Example 1. Consider the non-negative trace ¢ : 9B1 — RT given by

=
_ 2 g2
c(0) = =1 jg_l 0; — ety
- +

Notice that, since c is even its Fourier expansion on the sphere 0By does not contain linear terms.
As in the proof of Theorem (1|, the trace ¢ can be uniquely decomposed as c(0) = Q(0)+ ¢(0), where
Q is a homogeneous polynomial of second degree and ¢ contains only higher modes, that is

6O)= > co;(0).

{5:A;>2d}
We claim that
vaqu;;laBl < distr2(98,)(Q, K). (4.14)
In order to prove we set
1 d—1 ) 1 d—1 )
P9) = =0 2 0 — b3 and  R(9) = |eb; — -1 2 -

+

and we notice that c(0) = P(0) — R(0). It is easy to check that the term R has the following
asymptotic behavior when the parameter € is small:

_ d-1
IRlL<@py=¢, HT{R>0})~e2 . [IVoR|re(m,) ~ VE
d+3 dt1
HRHL2(8B1) ~E 4 and HVGRHB(E)BI) ~E 4.
The function R can be decomposed as
€o
R 0 - +C 9 - 0 ’
6)= s+ a2(0) — 616)

where
e ¢y € R corresponds to the first (constant) mode of the Fourier expansion of R on 0B and
can be estimated in terms of € as

<

1 / d—1 at3
cg=—- | RAH™'<|R <e'n

e ¢9(0) is an eigenfunction of the Laplacian on the sphere corresponding to the eigenvalue
2d and ||¢2||12(aB,) = 1 and the constant c; € R can be estimated as

ea] < ’/ R

e the function ¢ is precisely the one from the decomposition of ¢, contains only higher modes
and satisfies the following estimate:

IVodll20m,) < IVoRlr20m,) + 2l Vod2ll2(0m,) St e 20 ST

On the other hand, the L?>(0B1) distance from Q = P — co — cagha to the cone K of nonnegative
homogeneous polynomials of second degree has the behavior

distr2(pp,) (P — cp — Ca02, IC) ~ distr2(pp,) (P, IC) ~E.

<||[Rllz20m1) S€ 5

~
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Thus, we finally get the claimed inequality (4.14))

4
IVodl 73 (o, S € ~ distr2(om,) (P — ¢ — 02¢2,/C>-

5. UNIQUENESS OF BLOW-UP AND REGULARITY OF FREE BOUNDARY

In this Section we prove Theorems [3| and 4] focusing on the statement 2 of each result. We
show in detail how the logarithmic estimates follow from the “modified” epiperimetric inequality
of Theorem [I| and we prefer to skip the analogous estimates on the Holder continuity at regular
points, since this is the main improvement of the present paper and since the proof of the latter
is a simpler version of the estimates below and it is already contained in [16, Theorem 4 and 5].

Proposition 5.1. Let Q C R? be an open set and v € H'(Q) a minimizer of £. Then for every
compact set Qo € Q, there is a constant C := C(d,Qy, Q) > 0 such that for every free boundary
point xg € Sing(u) N Qg, the following decay holds

| Uag,t — uz075|]L1(3Bl) <C(- log(t))JQ;vW forall 0< s <t<dist(Q,00). (5.1)

Proof. Step 1 (closeness of the blow ups for a given point xo). Let xzy € Qo and let ry €
(0, dist (€29, 02)] be such that the epiperimetric inequality of Theorem [l| can be applied to the
rescaling uz, ,» for every r < rg. We claim that

_ 1=
||ttt — uw07s||L1(aBl) < C(—log(t/rg)) > forall 0<s<t<rg.
We assume zg = 0 without loss of generality and
e(r) = W(u,r) — 0,(0).

By the monotonicity formula (2.1) and the epiperimetric inequality of Theorem |1} there exists a
radius rp > 0 such that for every r < rg

d d+2
() = = (W(e) = ©,(0) = e(r) + F(r) = ~e(r)7 +2£(r) (5.2)
where v € (0,1) is a dimensional constant and
1
flr) = / |z - Vu, — 2u.|* dH.
T JoB,
We obtain that
d -1 1 d c 1
= —cl = () —Z>—— > ,
dr (’ye(r)’Y ¢ ogr) e(r)H+y dre(r) r e(r)““*f(r) 20 (5:3)

and this in turn implies that —e(r)™7 — c¢ylogr is an increasing function of r, namely that e(r)
decays as

e(r) < (e(ro)” 7 + eylogrg — eylog 7“)_71 < (—cy log(r/ro))%l. (5.4)

For any 0 < s < t < rg we estimate the L' distance between the blow ups at scale s and ¢ through
the Cauchy-Schwarz inequality and the monotonicity formula ([2.1))

t
1

/ lug — us| dH < / =z - Vu, — 2u,| drdH4!
0By 8By Js T

t 1/2
< (dwq) 1/2/ ! (1/ |z - Vu, — 2u,|? d’Hd_l) dr
S 0B,

T T

(59" [ ()"

< (%) " (1) — 10g()"/2(e(t) — efs))2. 5.5
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Let 0 < s'/2 < t1/2 < 7y such that s/rg € 272,272, t/rg € 2727, 27%) for some j < i and
applying the previous estimate (5.4) to the exponentially dyadic decomposition, we obtain

/ |Ut - ’U,S‘ deil S / ’Ut - U2,2j+1ro‘ deil
0By 0B

i—1

+ i —us| dHIT 4 / . —u,_ ‘d?'-ld’l

/631 Ug_2 ro u kg_l - u2 2k+1r0 u2 QkTO

<03 (1o (2%) — 10 (272)) 7 (e(2 o) — (27 m))
k=j

< szk/ze(rgkm)lm < 022(171/7)1{/2 (5.6)
k=j k=j

< G < O og(t/r0) T
where C is a dimensional constant that may vary from line to line.

Step 2 (uniform smallness of monotonic quantity for xo € Sing(u) N Q). We claim that for
every € > 0 there exists rg > 0 such that

e(ug,y) <e for every x € Sing(u) N Qq, 7 < ro.

Assume by contradiction that there exists a sequence x; — ¢ and r, — 0 such that ¢ <
e(ug, r,) for any k € N. By the monotonicity of W, for any p > 0 and k large enough

e < W(u,zg, re) — 04(0) < W(u,xg, p) — W(u, xo, p) + W(u,xo, p) — 04(0).

In turn, the right-hand side can be made arbitrarily small by choosing first p sufficiently small
(to make the difference of the last two terms small) and then k sufficiently large.

Step 3 (uniform scale for the application of the epiperimetric inequality at xog € Sing(u) N Q).
We claim that for every € > 0 there exists g > 0 such that

distp2(ugr, K) < ¢ for every x € Sing(u) N Qo, r < 7.

(notice that this statement holds also if in place of the L2-distance we consider the H!-distance).
Assume by contradiction that there exists € > 0 a sequence x — x¢ and r, — 0 such that

e < distp2(ug, ., K) for any k € N. (5.7)

Since the sequence {uy, ,, tken is uniformly bounded in H?, it converges strongly in H! up
to a (not relabelled) subsequence to ug. Moreover, thanks to Step 2, the limit ug must satisfy
W (up, zo, 1) = 0,(0), so that it belongs to K. This contradicts (5.7)).

Step 4 (conclusion). We can now conclude the proof of the Proposition.
We observe that for every ro > 0 and ¢ < 73, we have log(t/ro) < 2logt. From Step 1 and 3,
we deduce that there exists 79 > 0 such that for all 0 < s < t < 73, ¥ € Sing(u) N QY

1—y

[|vag,t — ua?o,SHLl(aBl) < C(—log(t)) = .
From (5.5)) we have

([Uag,t —

L1 @8y < O(=log(ro))'/ ?e(dist(Q, 02)) /2

xo,rg

and the right hand side is estimated by C(— log(ro))_?7 for a constant C' depending only on
d,rg, e(dist(p, 00)), dist(Qg, 0Q2).
U

As a consequence of the previous proposition we can prove the uniqueness of the blow up
Theorem [3, with a logarithmic rate of convergence of the blow up sequence at each point of the
singular set (and uniform in any compact set inside the domain).
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Proof of Theorem [4. We notice that

Qo= Qul <) [ 1Qui(@) -~ Quulo) a0
0B,
By the triangular inequality

[Qz, — Quyll 11 (0B1) < [tz r — Quy | 21 (0By) T |ty — uxz,rHLl 8By) + |ty — QxQHLl (8B1)
Recalling that u € Cb! and that Vu(x1) = 0, we estimate the term in the middle with

Huil?l7 — Ugs, 7”||L1 (0B1) / / |VU o +7“l'+t($2 _-751))H332 —l’1| dtd?—[(x)

r2

(5.8)
(r+ |xg — x1|) |x2 — 21|

r2

< Clluller1(B, (20))

1—
We choose r = |x1 — z2|(— log|z1 — m2|)_TVA/ and we assume that 7o satisfies the inequality
1—
|ro|(—log |1"0|)_TvV < dist (29, 02). By Theorem |3 we see that

L1y
[ Qa:1HL1(8B1) + [ty r — szHLl(BB1) < C(—log(r)) =

— 7V Jog(—log w1 — za))
(5.9)

= C(—logl|zy — 2| —

Noticing that the inequality a — 22 log a > a/2 holds for a greater than a given agp > 0 (depending
only on 7 and therefore on d), we apply this inequality to a = —log |x1 — x2| to get
1=y
Hum,r — Quy HLl(E)B1) + Hum,r - ng”Ll(aBl) < C(=logl|ry —xa]) 27 .
Putting together the previous inequalities, we find (|1.6]).
The conclusion follows then by standard arguments (see for instance [§]) by applying the
Whitney extension theorem (which holds also for C*!°¢ functions [6]) and the implicit function
theorem. g

5.1. Proof of Theorem [5| We notice that if u € H'(Q) is a minimizer of &, or A, then it is
locally W2 by the results of [12] and moreover it is an almost-minimizer of the functional £
with a constant C' depending only on ||g||co.~(q), ¢q and [Jully;, 2.0

loc

We say that u € H'(Q) is an almost minimizer of £ if there exists a constant C' > 0 such that
for every ball B,(zg) C 2 and for every v € H(B, (o)) which agrees with u on 9B, ()

/ [[Vul® + ¢(z0) max{u,0}] dz < (1+ CT”)/ [[Vo]? + g(z0) max{v,0}] dz. (5.10)
B, (zo By (z0)

In the following we show that the statement of Theorem [5| in particular the logarithmic esti-
mate, holds true also if we drop the assumption that u € VV?OCOO(Q) is a minimizer of &; or A,
and we only assume the almost minimality.

The main modifications with respect to the arguments of Section [5| appear in Proposition
and we outline them below.

Up to a rescaling, we may assume that g(xg) = 1. Applying the epiperimetric inequality of
Theorem [If to u, 4,, we find that has to be modified for almost monotonicity to get
Letr) > T2 (W(er) — 0u(0) — er) + (1) = Do) — 1 ap(r)

(where e(r) := W (u,, 1) — ©,(0) and the notation is the same as in Section [5]) for some constants
co,c1 > 0.

We define now &(r) = e(r) + 2a~'c;r® and we notice that from the previous inequality and

since a'*7 + b1t > 277(a + b)) for any a,b>0

&) 2 Le() L 21 2 Lelr) + er ™ 4 26()
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For r sufficiently small, the previous inequality implies that

&(r) = Se(r)T + 2f(r)

From the previous inequality, we see that é(r) satisfies the same inequality that e(r) solved in
(5.2)). Hence, with the same argument as in (5.3]), we see that é satisfies the same estimate as e
in (5.4)

e(r)+2a7ter® = é(r) < (—cy log(r/ro))%.

This inequality implies that, up to a constant, also e(r) satisfies a logarithmic estimate and we

can carry out the rest of the proof of Proposition and of Theorems [3] and [4] O
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