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Introduction

Starting from the celebrated symmetry result by Serrin [START_REF] Serrin | A symmetry problem in potential theory[END_REF], a huge literature is devoted to the study of overdetermined boundary value problems of various kind, both for interior and exterior problems, and for a large variety of differential operators and overdetermined conditions. With no attempt of completeness, see [START_REF] Bianchini | An overdetermined problem for the anisotropic capacity[END_REF][START_REF] Brandolini | Serrin-type overdetermined problems: an alternative proof[END_REF][START_REF] Brock | A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative[END_REF][START_REF] Brock | Some new symmetry results for elliptic problems on the sphere and in Euclidean space[END_REF][START_REF] Crasta | On the Dirichlet and Serrin problems for the inhomogeneous infinity Laplacian in convex domains: regularity and geometric results[END_REF][START_REF] Fragalà | Symmetry results for overdetermined problems on convex domains via Brunn-Minkowski inequalities[END_REF][START_REF] Fragalà | Partially overdetermined elliptic boundary value problems[END_REF][START_REF] Fragalà | Overdetermined problems with possibly degenerate ellipticity, a geometric approach[END_REF][START_REF] Garofalo | A symmetry result related to some overdetermined boundary value problems[END_REF][START_REF] Kawohl | Overdetermined problems and the p-Laplacian[END_REF][START_REF] Reichel | Radial symmetry by moving planes for semilinear elliptic BVPs on annuli and other non-convex domains, Elliptic and parabolic problems (Pont-à-Mousson[END_REF][START_REF] Reichel | Radial symmetry for elliptic boundary-value problems on exterior domains[END_REF][START_REF] Shahgholian | Diversifications of Serrin's and related symmetry problems[END_REF][START_REF] Silvestre | Overdetermined problems for fully nonlinear elliptic equations[END_REF][START_REF] Vogel | Symmetry and regularity for general regions having a solution to certain overdetermined boundary value problems[END_REF] and references therein.

In this setting we feel a bit surprising that no symmetry result is available, to the best of our knowledge, for overdetermined problems set on polygons. This seems to be an interesting topic especially from the point of view of Calculus of Variations. In fact, polygons which support solutions to certain overdetermined problems turn out to be stationary, in the sense of shape derivation, for some some long-standing open problems in shape optimization; among these, let us mention the minimization of the principal frequency among polygons with a given number of sides under an area constraint, for which the regular gon is conjectured to be optimal [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]Section 3.3], or the minimization of the p-capacity among convex planar sets under a perimeter constraint, for which the expected solution is a degenerate polygon, i.e. a line segment [START_REF] Bucur | Optimal convex shapes for concave functionals[END_REF]Remark 2.4].

In this paper we give a first contribution to the study of overdetermined problems on polygons, by considering the case of triangles. As a model case, we start from the torsion problem as in Serrin's paper, namely we consider the Dirichlet problem

-∆u = 1 in T, u = 0 on ∂T, (1.1) 
where we fix the space dimension to be n = 2, and T lies in the class T of (nondegenerate) triangles. We overdetermine problem (1.1) with one of the following setting of boundary conditions of integral type for |∇u| on ∂T :

A i+1 A i i 2 -|x -A i | |∇u(x)| 2 dx = 0 ∀i ∈ {1, 2, 3} , (1.2) 
A i+1 A i i 2 -|x -A i | |∇u(x)| 2 dx = κ i 2 f (θ i ) -f (θ i+1 ) ∀i ∈ {1, 2, 3} , (1.3) 
where A i are the vertices of T , i is the length of the side [A i A i+1 ], κ is a positive constant, and

f (θ) := cot θ + 1 sin θ . (1.4)
Conditions (1.2) and (1.3) are very natural candidates to yield symmetry. Indeed, as we will show in Section 2, they correspond precisely to the stationarity conditions for the torsional rigidity respectively under a volume and a perimeter constraint, when one rotates a side of T around its midpoint. Since the equilateral triangle is known to be the unique maximizer of torsional rigidity among triangles of given volume or perimeter, it is reasonable to expect it may be also the unique "critical" triangle.

These arguments can be repeated if the torsion functional is replaced by the principal frequency, namely we may consider in place of (1.1) the Dirichlet problem

-∆u = λ 1 (T )u in T, u = 0 on ∂T, T u 2 dx = 1, (1.5) 
where λ 1 (T ) is the first Dirichlet eigenvalue of the laplacian.

For both problems (1.1) and (1.5), we prove the following Serrin-type result:

Theorem 1.1 (triangular symmetry, interior case). Let T ∈ T , and let u be the unique solution to (1.1) or to (1.5). Then:

-u satisfies the overdetermined boundary condition (1.2) if and only if T is equilateral.

-u satisfies the overdetermined boundary condition (1.3) for some κ ≥ 0 if and only if T is equilateral.

Our approach is based on a reflection argument, and is reminiscent of Serrin's proof in the use of Hopf's boundary point principle. In particular, similarly as shown by Reichel in [START_REF] Reichel | Radial symmetry for elliptic boundary-value problems on exterior domains[END_REF] for Serrin's result, our symmetry statement can be extended to the case of exterior problems. However, this extension is a partial one, in the sense that it only concerns the overdetermined boundary condition (1.2). To be more precise, for a fixed exponent p ∈ (1, 2), denote by ∆ p the p-laplace operator, and consider the p-capacitary problem

∆ p u = 0 in R 2 \ T, u = 1 on ∂T, lim |x|→∞ u(x) = 0. (1.6) 
We have: 3) holds only on one side of the triangle, then the angles adjacent to such a side must be equal, so that the triangle is isosceles with the selected side as a basis. Thus, in order to obtain that T is equilateral, it is enough to impose the overdetermined condition (1.2) (respectively, (1.3)) on two sides of the triangle. This refinement can be interpreted as a symmetry result for a partially overdetermined boundary value problem, in the spirit of [START_REF] Fragalà | Partially overdetermined elliptic boundary value problems[END_REF]. As a second case of study, we overdetermine problems (1.1), or (1.5), or (1.6), with a different setting of boundary conditions, which looks as well quite natural, as they correspond to the stationarity conditions for the associated energy functional, respectively under a volume and a perimeter constraint, when one makes a side of T move in a parallel way to itself (cf. Section 2). They read

A i+1 A i |∇u(x)| 2 dx = κ i ∀i ∈ {1, 2, 3} , (1.7) 
A i+1 A i |∇u(x)| 2 dx = κ f (θ i ) + f (θ i+1 ) ∀i ∈ {1, 2, 3} , (1.8) 
where κ is a positive constant, f (θ) is given by (1.4), and as above we intend that the term |∇u(x)| 2 is changed into |∇u(x)| p when dealing with problem (1.6).

In contrast to conditions (1.2)-(1.3), conditions (1.7)-(1.8) do not yield symmetry. The difference is in fact even more drastic, since the last setting of conditions turns out to be always satisfied. We have indeed: Theorem 1.6 (triangular equidistribution). Let T ∈ T , let u be the unique solution to (1.1), (1.5), or (1.6), and let F be respectively the torsional rigidity, the first Dirichlet eigenvalue of the Laplacian, and the p-capacity. Then

-u satisfies (1.7), with κ = |α| 2 
F (T ) Vol(T ) -u satisfies (1.8), with κ = |α| F (T ) Per(T ) ,
where α is the homogeneity degree of F under domain dilation (divided by (p -1) in case of problem (1.6)).

Only in the case of the first Laplacian Dirichlet eigenvalue and just for condition (1.7), Theorem 1.6 was proved by Christianson in the recent paper [START_REF] Christianson | Equidistribution of Neumann data mass on triangles[END_REF], by using a completely different approach. Our proof seems to be more direct, and has the advantage to work the same way in all the cases covered by the statement, and possibly even in more general situations, such as for instance the cases of p-torsion function and first Dirichlet eigenvalue of the p-Laplacian. (Avoiding the technicalities related to more sophisticated versions of maximum principles is the reason why we preferred to present problems (1.1) and (1.5) in their linear version).

To extend our results to quadrilaterals or polygons with an arbitrary number of sides seems to require some different idea and remains by now a challenging open problem.

Stationarity conditions

In this section we consider scale invariant energies defined on the class K 2 of convex bodies with nonempty interior in R 2 , and we show that the equalities (1.2)-(1.3) and (1.7)-(1.8) correspond respectively to the stationarity conditions for such energies, when the perturbed domain is a triangle and the perturbation consists in rotating one side around its midpoint and in moving it in a parallel way to itself.

To be more precise, we fix the following setting:

Definition 2.1 (energy functionals). Let Ω ∈ K 2 . Let F be either the torsional rigidity, or the first eigenvalue of the Laplacian, or the p-capacity (1 < p < 2), defined respectively as

τ (Ω) := -inf u∈H 1 0 (Ω) Ω |∇u| 2 -2 u dx , λ 1 (Ω) := inf u∈H 1 0 (Ω)\{0} Ω |∇u| 2 dx Ω |u| 2 dx , Cap p (Ω) := inf R 2 |∇u| p dx : u ∈ Ẇ 1,p (R 2 ) , u = 1 on Ω ,
where Ẇ 1,p (R 2 ) denotes the closure of space of the space of smooth compactly supported functions with respect to the norm R 2 |∇u| p dx. We denote by α the homogeneity degree of F under dilations, so that

α =      4 if F = τ -2 if F = λ 1 2 -p if F = Cap p .
Moreover, we denote by u Ω respectively either the torsion function, or the first Dirichlet eigenfunction of the Laplacian, of the p-capacitary potential of Ω, namely the solution to the Euler-Lagrange equation of F given in (1.1), (1.5), (1.6).

Next we introduce the two family of deformations we are going to consider for triangles. Definition 2.2 (rotation around the midpoint). Given T ∈ T with vertices A 1 , A 2 and A 3 , and t ∈ R small enough, we denote by {T t } the triangle with vertices A t 1 , A t 2 , A t 3 , obtained by keeping fixed A 3 =: A t 3 and replacing A 1 and A 2 by A t 1 and A t 2 in such a way that (see Figure 1): • the line determined by A t 1 and A t 2 is a rotation on an angle t of the line determined by A 1 and A 2 around the midpoint M of the side [A 1 , A 2 ]; • A t 1 and A t 2 lie respectively on the lines determined by A 3 , A 1 and A 3 , A 2 ; • the direction of the rotation is determined by the convention that, for t > 0, A t 2 lies on the segment [A 2 , A 3 ], while for t < 0, A t 1 lies on the segment

[A 1 , A 3 ]. T A 1 A 2 A 3 = A t 3 A t 2 A t 1 M 0 > t T A 1 A 2 A 3 = A t 3 A t 2 A t 1 0 < t Figure 1.
The rotating around the midpoint (on the left) and the parallel movement of a side (on the right). We are now ready to identify stationary triangles:

Definition 2.3 (parallel movement). Given T ∈ T with vertices

Proposition 2.4. Let E Vol (T ) and E Per (T ) be defined by The above statement is obtained as a direct consequence of Lemmas 2.6 and Lemma 2.7 below. In turn, to obtain such results, we need a more general first derivation formula, which is valid for suitable perturbations of convex domains, as stated in Lemma 2.5 below. Let us recall that, for any Ω ∈ K 2 , the gradient of the function u Ω in Definition 2.1 is well defined on ∂Ω and belongs to L p (∂Ω) [START_REF] Dahlberg | Estimates of harmonic measure[END_REF][START_REF] Lewis | Regularity and free boundary regularity for the p Laplacian in Lipschitz and C 1 domains[END_REF]. Here and throughout the remaining of the paper, we mean that the exponent p equals 2 when dealing with the interior problems (1.1) and (1.5).

E Vol (Ω) := F (Ω) 1 α Vol(Ω) 1/2 , E Per (Ω) := F (Ω)

Lemma 2.5 (Shape derivatives with respect to generic perturbations).

Let Ω ∈ K 2 , with unit outer normal n Ω , and let

Ω t = Φ t (Ω), where t ∈ [0, T ) → Φ t ∈ W 1,∞ (R 2 ) is differentiable at t = 0, with Φ 0 (x) = x and d dt t=0 Φ t (x) = V (x). Let F and u Ω be as in Definition 2.1. Then d dt t=0 F (Ω t ) = (sign α) (p -1) ∂Ω V • n Ω |∇u Ω | p dH 1 . (2.2)
Proof. When F = τ , the statement can be deduced by applying the duality approach developed in [START_REF] Bouchitté | Shape derivatives for minima of integral functionals[END_REF] for shape derivative of minima of integral functionals (cf. in particular [2, Theorems 3.7 and Example 3.9], and see also [START_REF] Bouchitté | A variational method for second order shape derivatives[END_REF]Section 7.2]). When F = λ 1 , we refer to [19, Section 5.9.3]. When F = Cap p , one can adapt the duality approach in [START_REF] Bouchitté | Shape derivatives for minima of integral functionals[END_REF], by showing that [2, Theorems 3.3 and 3.7] continue to hold for the exterior problem of p-capacity and give directly (2.2). However, for the sake of completeness, we give here a formal derivation of (2.2), by sketching a proof along the more classical line adopted in [START_REF] Fragalà | On an isoperimetric inequality for capacity conjectured by Pólya and Szegő[END_REF] to compute the shape derivative ot the 2-capacity of convex bodies in R 3 .

Let u t be the p-capacitary potential on Ω t , that is

-div(|∇u t | p-2 ∇u t ) = 0 in R 2 \ Ω t , u t = 1 on ∂Ω t .
By arguing in a similar way as in the Appendix of [START_REF] Fragalà | On an isoperimetric inequality for capacity conjectured by Pólya and Szegő[END_REF], we see that the map R t → u t ∈ W 1,p loc (R 2 \ Ω) is differentiable in t = 0. Denoting by u the derivative of u t at t = 0 and formally differentiating the equation for u t , we get that u is a solution of

-div |∇u| p-2 ∇u + (p -2)|∇u| p-4 (∇u • ∇u )∇u = 0 in R 2 \ Ω, u = -V • ∇u on ∂Ω. (2.3) Let now ψ ∈ C ∞ c (R 2
) be a smooth function such that ψ ≡ 1 in a neighborhood of Ω. Testing (2.3) with u -ψ and integrating by parts we get

Ω c |∇u| p-2 ∇u • ∇(u -ψ) dx = -(p -2) Ω c |∇u| p-4 (∇u • ∇u )(∇u • ∇(u -ψ)) dx = -(p -2) Ω c |∇u| p-2 (∇u • ∇u ) dx + (p -2) Ω c |∇u| p-4 (∇u • ∇u )(∇u • ∇ψ) dx, which gives (p -1) Ω c |∇u| p-2 ∇u • ∇u dx = Ω c |∇u| p-2 ∇u • ∇ψ + (p -2)|∇u| p-4 (∇u • ∇u )(∇u • ∇ψ) dx.
(2.4) On the other hand, denoting by n t the unit outer normal to Ω t , we have

Cap p (Ω t ) = Ω c t |∇u t | p dx = - ∂Ωt |∇u t | p-2 ∂u t ∂n t ψ dH 1 = Ω c t |∇u t | p-2 ∇u t • ∇ψ dx.
Taking the derivative in t = 0, exlpoiting (2.4) and integrating by parts, we obtain

d dt t=0 Cap p (Ω t ) = Ω c |∇u| p-2 ∇u • ∇ψ + (p -2)|∇u| p-4 (∇u • ∇u )(∇u • ∇ψ) dx = (p -1) Ω c |∇u| p-2 ∇u • ∇u dx = -(p -1) ∂Ω |∇u| p-2 (∇u • n Ω )u dH 1 = (p -1) ∂Ω |∇u| p-2 (∇u • n Ω )(V • ∇u) dH 1 ,
which is precisely (2.2), since ∇u = |∇u| n Ω on ∂Ω. Actually let us recall from [START_REF] Lewis | Regularity and free boundary regularity for the p Laplacian in Lipschitz and C 1 domains[END_REF] that the gradient ∇u Ω (y) has (non-tangential) limits as y → x ∈ ∂Ω for H 1 -a.e. x ∈ ∂Ω (see also [START_REF] Colesanti | The Hadamard variational formula and the Minkowski problem for p-capacity[END_REF]Lemma 2.13]), and that, denoting such limits by ∇u Ω (x), we have |∇u Ω | ∈ L p (∂Ω, dH 1 ).

Lemma 2.6 (Shape derivatives with respect to side rotations). Let F be as in Definition 2.1.

Let T ∈ T and let {T t } be as in Definition 2.2. Then

d dt t=0 F (T t ) = (sign α) (p -1) M A 1 |x -M | |∇u T | p dH 1 (x) - A 2 M |x -M | |∇u T | p dH 1 (x) = (sign α) (p -1) A 2 A 1 1 2 -|x -A 1 | |∇u T | p dH 1 (x), (2.5) 
d dt t=0 Vol (T t ) = 0, (2.6) 
d dt t=0 Per (T t ) = 1 2 (f (θ 1 ) -f (θ 2 )), where f (θ) = cot θ + 1 sin θ . (2.7) 
Proof. If Φ t : R 2 → R 2 is a one-parameter family of diffeomorphisms such that Φ t (T ) = T t , then by an elementary geometic argument we see that for every

x ∈ [A 1 , A 2 ] such that |x -M | < 1 2 min 1, 1 + sin t cos θ 1 sin(θ 1 -t) , 1 - sin t cos θ 2 sin(θ 2 + t) ,
we have Vol (T t ) = 1 .

Φ t (x) • n T (x) =        |x -M | sin t sin θ 1 sin(θ 1 -t) 1 + sin t cos θ 1 sin(θ 1 -t) -1 if x ∈ [A 1 , M ], -|x -M | sin t sin θ 2 sin(θ 2 + t) 1 - sin t cos θ 2 sin(θ 2 + t) -1 if x ∈ [M, A 2 ]. Then V (x) := d dt t=0 Φ t (x) satisfies V (x) • n T (x) = |x -M | if x ∈ [A 1 , M ], -|x -M | if x ∈ [M, A 2 ].
(2.9)

d dt t=0 Per (T t ) = f (θ 1 ) + f (θ 2 ).
(2.10)

Proof. Notice that the perturbation described in Definition 2.3 corresponds to the diffeomorphism Φ t (x) = h+t h x, where without loss of generality we suppose A 3 = 0 and we set h to be the distance from

A 3 to the side [A 1 , A 2 ]. Thus V (x) = x/h and V (x) • n T (x) ≡ 1 on [A 1 , A 2 ]
, so we get (2.8), while (2.9) and (2.10) follow directly by the equalities

Per (T t ) = Per (T ) + t f (θ 1 ) + f (θ 2 )
and Vol (T t ) = Vol (T ) + t 1 + o(t).

3. Proof of Theorems 1.1 and 1.2

We will prove Theorems 1.1 and 1.2 by a reflection argument. We first give the geometric construction, which is the same for the cases of interior or exterior domains, and then we will treat them separately. Geometric construction. Suppose by contradiction that T has two different inner angles θ 1 < θ 2 . Let M be the midpoint of the side [A 1 , A 2 ] and let L M be the line passing through M and orthogonal to the side [A 1 , A 2 ]. Without loss of generality we can suppose that M = 0, L M is the y-axis {x = 0}, A 1 = (-1 /2, 0), A 2 = ( 1 /2, 0) and A 3 = (x 3 , y 3 ) with x 3 > 0 and y 3 > 0 (see Figure 2). Let N be the intersection of L M with the side [A 1 , A 3 ]. We denote by Ω int the interior of the triangle with vertices M, N and A 2 and by Ω ext the unbounded domain {x > 0} \ T . For any function u : R 2 → R we consider the reflection ũ : R 2 → R of u defined by ũ(x, y) = u(-x, y).

A 1 A 2 A 3 M N L M θ 1 θ 2 Ω int Ω ext

Figure 2. Construction of the reflected domain

Proof of Theorem 1.1. We carry out the argument for the torsion function, namely the solution u T to (1.1), being the case of the first eigenfunction of the Dirichlet Laplacian completely analogous. By elliptic regularity, u T is C 1,α up to the boundary of T (except at the vertices), and by the strong maximum principle we have that u T > 0 in T (see for instance [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). We now consider the reflection ũT of u T . We notice that ∆(u T -ũT ) = 0 in Ω int , while on the boundary ∂Ω int we have:

ũT = u T on [N, M ] ∪ [M, A 2 ] and 0 = ũT < u T on [N, A 2 ].
Thus, u T -ũT > 0 in Ω int and by Hopf's boundary point lemma

|∇u T | > |∇ũ T | on [M, A 2 ]. (3.1) 
Multiplying this inequality by |x -M | and integrating on the segment [M, A 2 ], we get

A 2 M |x -M | |∇u T | 2 dH 1 (x) > A 2 M |x -M | |∇ũ T | 2 dH 1 (x) = M A 1 |x -M | |∇u T | 2 dH 1 (x) , (3.2) 
which implies

A 2 A 1 1 2 -|x -A 1 | |∇u T | 2 dH 1 (x) < 0 . (3.3)
This is clearly in contradiction with (1.2), and also with (1.3) since θ 1 < θ 2 and the function θ → f (θ) is monotone decreasing on (0, π).

Proof of Theorem 1.2. Let now u T : R 2 \ T → R be the p-capacitary potential of T . By a reflection argument with respect to each side, we get that u T is C 1,α up to the boundary of T (except at the vertices). By the strong maximum principle for p-harmonic functions, we have the strict inequality u T < 1 on the open set Ω ext = R 2 \T (see [START_REF] Manfredi | p-harmonic functions in the plane[END_REF]). We notice that ∆ p ũT = 0 = ∆ p u T in Ω ext , while on the boundary ∂Ω ext we have: By the strong comparison principle for p-harmonic functions (see [START_REF] Manfredi | p-harmonic functions in the plane[END_REF]) we get that ũT < u T in Ω ext . As a consequence, by Hopf's principle for p-harmonic functions (see for instance Let T ∈ T . We observe that, if {T t } is the one-parameter family of triangles given by Definition 2.3, for every t the triangle T t is homothetic to T . Then, since the functionals E Vol (T ) and E Per (T ) from The derivatives appearing in the above equations can be explicitly computed by using formulas (2.8)-(2.9)-(2.10) in Lemma 2.6. This way we see that the two equalities (4.1) correspond exactly to (1.7) and (1.8), the value of κ being given as in the statement of Theorem 1.6. Since T is an arbitrary triangle, our proof is achieved.

Remark 1 . 5 .

 15 Problem (1.6) overdetermined by (1.3) (with |∇u| 2 replaced by |∇u| p ) remains interestingly open. This discrepancy with respect to the overdetermined problems (1.1)-(1.3) and (1.5)-(1.3) covered by Theorems 1.1 should not surprise the attentive reader. Indeed, while condition (1.2) represents a "discrete" analogous to the stationarity condition under volume constraint which for smooth domains reads |∇u| = c, condition (1.3) should be assimilated to the stationarity condition under perimeter constraint which for smooth domains reads |∇u| = c(H), being c a function of the boundary mean curvature H. This latter overdetermined condition, treated by Serrin in [26,Theorem 3], can be successfully handled by the moving planes method only under a specific monotonicity assumption on c, and the favourable sign of the monotonicity changes when passing from interior to exterior problems.

  ũT = u T on L M ∪ [M, A 2 ] and ũT < u T = 1 on [N, A 3 ] ∪ [A 2 , A 3 ].

[23, Chapter 5 , 2 M 2 M 2 A 1 1 2 4 .

 522214 Section 5.5]) we obtain|∇ũ T | > |∇u T | on [M, A 2 ].(3.4)Then, similarly as in the case of interior problems, integrating this inequality we getM A 1 |x -M | |∇u T | p dH 1 (x) = A |x -M | |∇ũ T | p dH 1 (x) > A |x -M | |∇u T | p dH 1 (x),(3.5)which impliesA -|x -A 1 | |∇u T | p dH 1 (x) Proof of Theorem 1.6

  (2.1) are invariant under dilations, it holds d dt t=0 E Vol (T t ) = 0 and d dt t=0 E Per (T t ) = 0 . (4.1)

  A 1 , A 2 and A 3 , and t ∈ R small enough, we denote by {T t } the triangle with vertices A t 1 , A t 2 , A t 3 , obtained by keeping fixed A 3 =: A t 3 and replacing A 1 and A 2 by A t 1 and A t 2 in such a way that (see Figure ... ): • the line determined by A t 1 and A t 2 is parallel to the side [A 1 , A 2 ] and at distance |t| from [A 1 , A 2 ]; • A t 1 and A t 2 lie respectively on the lines determined by A 3 , A 1 and A 3 , A 2 ; • the direction of the movement is determined by the convention that, for t > 0, A t 2 and A t 1 do not lie to the segment [A 2 , A 3 ] and to the segment [A 1 , A 3 ] respectively.

  Vol (T ) and E Per (T ) with respect to the perturbations {T t } as in Definition 2.2, if and only if u T satisfies respectively (1.2) and (1.3). (ii) A triangle T ∈ T is stationary for E Vol (T ) and E Per (T ) with respect to the perturbations {T t } as in Definition 2.3, if and only if u T satisfies respectively (1.7) and (1.8).

	1		
	α Per(Ω)	,	(2.1)

with F as in Definition 2.1.

(i) A triangle T ∈ T is stationary for E

  Lemma 2.7 (Shape derivatives with respect to parallel movements). Let F be as in Definition 2.1. Let T ∈ T and let {T t } be as in Definition 2.3. Then

	d dt t=0	F (T t ) = (sign α) (p -1)	A 1 A 2	|∇u| p dH 1 .	(2.8)
			d					
			dt t=0					
	Now, applying Lemma 2.5 to this family Φ t , we get (2.5).		
	On the other hand, through elementary geometric arguments, we see that
	Per (T t ) = Per (T ) -1 +	1 sin θ 1 2 sin(θ 1 -t)	+	1 sin θ 2 2 sin(θ 2 + t)	+	1 sin t 2 sin(θ 1 -t)	-	1 sin t 2 sin(θ 2 + t)
	Vol (T t ) = Vol (T ) + o(t),						
	which immediately give (2.6) and (2.7).					
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