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Abstract 25 

Leveraging on the experience gained by designing and assembling a prototype experimental 26 

apparatus reusing CO2to produce methane in a reaction with H2, we are developing an 27 

alternative innovative cost effective and contaminant resistant synthetic strategy based on the 28 

replacement of the solid phase catalysiswith a homogeneous gas phase processgoing through 29 

the forming CO2
2+

 molecular dications.  30 

Keywords: methanation reactor;CO2 waste;free methane; catalyst; plasma, dications. 31 

 32 

Introduction 33 

As reported during the 2
nd

 SMARTCATs general meeting of the COST Action CM1404 we 34 

are carrying out a research aiming at re-using CO2 and implementing a validated laboratory 35 

technology based on an experimental prototype apparatus (called ProGeo) producing carbon 36 

neutral methane through the chemical conversion of CO2 waste flue gases using renewable 37 

energies.  38 

The research is being carried out in collaboration by researchers of the laboratories of the 39 

University of Perugia and of ENEA (the Italian National Agency for New Technologies, 40 

Energy and Sustainable Economic Development of Frascati) with the support of a cluster of 41 

Small and Medium-sized Enterprises (SME)s coordinated by the Master-up srl company.In 42 

particular, the project leverages a) on the expertise of the Departments of Chemistry, Biology 43 

and Biotechnology and of Civil and Environmental Engineering of the University of Perugia 44 

on the experimental and theoretical treatment of elementary reactive and non reactive 45 

molecular processes [1-8] and b) on the engineering capabilities of designing, building and 46 

experimenting innovative apparatuses of ENEA [9] researchers with the support of the above 47 

mentioned SMEs specialized in the field of molecular science software modeling.Such 48 
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collaboration has been incubated by the networking activities of some COST actions [10,11] 49 

and of some virtual communities of the European Grid Infrastructure EGI.eu [12, 13]. 50 

The first purpose of this paper is to illustrate how the developed distributed computing 51 

machinery (i.e. the collaborative (workflowed) sharing of high level accurate and approximate 52 

ab initio and empirical calculations of the electronic structure of the involved molecular 53 

systems, the fitting and, as an alternative, force field formulations of the related potential 54 

energy surfaces together with accurate quantum, quantum-classical, quasi-classical 55 

dynamicalcalculations of the detailed properties of the system plus their integration with 56 

statistical averaging of the detailed properties over the unobserved parameters as well as their 57 

combination in multi-scale treatments) has provided a solid ground for a converging 58 

comparison of experimental and computational investigationsof the methane formation from 59 

CO2usingsolid state catalyzed processes. 60 

The second purpose of the paper is to illustrate how the progress made in the above 61 

mentioned research line has prompted a new one based on the use of the Synchrotron and the 62 

Free Electron Laser light sources to investigate the possibility of developing routes alternative 63 

to solid state catalyzed techniques. In particular, details are given on how CO2 hydrogenation 64 

can occur via plasma generation by either electrical discharges or by vacuum ultraviolet 65 

(VUV) excitations of a CO2 + H2 gas mixture.  66 

Accordingly, the paper is articulated as follows: 67 

in section 2 structure and performances of the methanation reactor are illustrated; 68 

in section 3 the computer simulation of the involved processes is analysed; 69 

in section 4 the research lines driving the evolution of the apparatus towards a pure gas phase 70 

one are discussed. 71 

 72 

 73 
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2. The present methanation reactor  74 

Experimental measurements of methane yields of ProGeo have been carried out using CO2 75 

bottles (some measurements have been performed alsousing CO2 produced (in the ratio of 1.9 76 

kg per litre) from grapes fermentation of Marsala, a famous wine of the region where 77 

Garibaldi got ashore when starting the unification of Italy, kindly provided by IRVO (Istituto 78 

Regionale Vini e Oli)). The measurements show a complete compatibility with the catalyser 79 

used for the methanation process in ProGeo. The used catalyser is KATALCOJM 11-4MR a 80 

commercial product of the Johnson Matthey company (made of silicate hydrous aluminum, 81 

silicon oxide, nickel, nickel oxide, magnesium oxide, graphite porous small cylinders of 82 

average diameter 3.1 mm and height 3.6 mm containing metallic nickel) whose 2500X 83 

micrography is shown in Fig. 1. 84 

The ProGeo reactor is designed for an exit CH4 maximum flux of 1 Nm
3
/h.  As shown in 85 

Figure 2, it is articulated in twin columns (twin flow channels) externally cooled thanks to 86 

shared laminar elements in order to dissipate the heat produced by the exothermicity of the 87 

reaction (∆H298K=-164.9 kJ mol
-1

). Design parameters of the reactor are:  88 

GHSV (Gas Hourly Space Velocity) (ml h
-1

 gr
-1

) and SV (Space Velocity) (h
-1

). 89 

Another useful parameter is the ratio between the total flux of gas and the exposed surface of 90 

the catalyser indicated as GHCS (Gas Hourly Catalyst Surface) (cm h
-1

).  91 

The value of the reactor parameters of the present version of the ProGeo apparatus are: GHSV 92 

= 3200 ml h
-1

gr
-1

 and SV = 2100 h
-1

 leading to a GHCS parameter of 155 cm h
-1

. 93 

The resulting features of the present ProGeo apparatus shown in Fig. 2 are: 94 

- External diameter of the single channel 60 mm; 95 

- Catalysed total length 660 mm; 96 

- Maximum inlet flux (H2+CO2) 6 Nm
3
/h; 97 
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- Reference Molar ratio (CO2/H2) 1/5; 98 

- Maximum outlet flux (CH4) 1 Nm
3
/h. 99 

Experimental measurements have been carried out by varying: 100 

- the CO2/H2 molar ratio from a minimum of 1/4 to a maximum of 1/5.5;  101 

- the reactor temperature from a minimum of 220 °C to a maximum of 450 °C; 102 

- the H2 flux from a minimum of 0.8 Nm
3
/h to a un maximum of 2.5 Nm

3
/h; 103 

- the pressure from a minimum of 1 bar to a maximum of 2 bar. 104 

A key element for a quantitative measurement of the reaction yield is the regular monitoring 105 

of the temperature both along the central axis of each channel (maximum temperature) and 106 

along the peripheral axis  (minimum temperature). In Figure 3 the location and labels of the 107 

channel thermocouples (6 axial and 3 peripheral) are shown as dots together with the cross 108 

section of the twin columns. 109 

The methanation reactions occur mainly on the top segment of the reactor close to the inlet 110 

(90% in the first 200 mm). Accordingly, most of the produced heat is detected by the central 111 

thermocouples (T5, T6 and T14, T15). The average of the measured percentage of produced 112 

methane is plotted as a function of the molar ratio and temperature in Fig. 4. As is apparent 113 

from the Figure, the threshold temperature is 240°C and the range of temperature of optimal 114 

yield is 300 - 350°C. The molar ratio has a significant impact on the percentage of produced 115 

methane with the optimum value of the CO2 / H2 ratio being 1/5.  116 

 117 

3. Computational simulation of methane production from the CO2+H2 reaction with 118 

solid phase catalysis 119 

In our laboratory the initial rationalization of the processes involved in producing methane via 120 

the Sabatier reaction (i.e. by making H2+CO2 react on a catalytic surface [14]) has been 121 
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performed by following the flowchart of ZACROS [15], a Kinetic Monte Carlo (KMC) 122 

[16,17] software package written in Fortran 2003. ZACROS leverages on the Graph-123 

Theoretical KMC methodology coupled with both cluster expansion Hamiltonians for the ad-124 

layer energetics and the Brønsted-Evans-Polanyi relations for the activation energies of 125 

elementary events [16]. ZACROS enables researchers in the areas of Computational Catalysis 126 

and Surface Science to perform dynamic modelling of adsorption, desorption, surface 127 

diffusion, and reaction processes on heterogeneous catalysts. Although in our traditional 128 

GEMS (Grid Empowered Molecular Simulator) [18] approach based on distributed 129 

computing platforms the rates (r) of elementary processes are computed by running molecular 130 

dynamics calculations based on Potential Energy Surfaces (PES)s originating from ab initio 131 

treatments, in the version of ZACROS implemented by us, for all the elementary steps 132 

potentially participating in the mechanism, the values of r to be used are taken from the 133 

literature and are usually given the following Transition State (TS) theory formulation [19,20] 134 

r = A ⋅exp −
E

a

k
B
T









      (1) 135 

in which A is a pre-exponential factor (quantifying the propensity of the system to cross from 136 

TS to products) while the exponential term brings in the information on the PES of the related 137 

elementary process (either forward “f” or backward “b”) as the energy difference Ea between 138 

the stationary point of the potential Minimum Energy Path (MEP) at the transition state and 139 

that associated with the reactant asymptote with �� being the usual Boltzmann constant and � 140 

the temperature. The lowest approximation level formulates the pre-exponential factor as 141 

���/� where � is the Plank constant.  142 

In the adsorption of gaseous species, however, the most frequently used expression for the 143 

rate of reaction is the well known Hertz-Knudsen equation: 144 
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r
i

ad = S
0,i

⋅ A
site

p
i

2πm
i
k

B
T

     (2) 145 

where ��,	 is the sticking coefficient (for which we take the value 1 in this work),
�	�
 is the 146 

area of the adsorption site, �	  is the partial pressure of species � and �	 its mass.  147 

A more accurate formulation of the rate coefficients makes use of the partition function for 148 

both, the intermediate state (incorporating so far the information about the remaining degrees 149 

of freedom) and the reactants: 150 

A =
k

B
T

h











Q
≠

Q
r









     (3) 151 

where �� is the transition state partition function and �� the partition function of reactant 152 

species. 153 

Each partition function is calculated considering that rotations and translations are frustrated 154 

(hindered), due to the fact that they are adsorbed, and therefore can be assimilated to 155 

vibrational degrees of freedom. In that case, the vibrational partition function takes the form: 156 

Q
vib,X

=
exp

−hν
k

2k
B
T











1− exp
−hν

k

k
B
T











k
∏      (4) 157 

where Qvib,X is the total vibrational partition function of the speciesX, and �� is the frequency 158 

of the vibrational mode k. 159 

In this way ZACROS can also simulate desorption/reaction spectra at a given temperature 160 

providing so far a rationale for designing kinetic mechanisms and understanding experimental 161 

data. 162 



 8

The elementary processes considered for the simulations are given in refs. [21,22] together 163 

with the numerical value of the related parameters. Hexagonal periodic default lattice will be 164 

the one of our choice for the Ziff, Gulari and Barshad (ZGB) reference model [23] as well as 165 

for the Sabatier Process. 166 

An important outcome of our calculations is illustrated in Fig. 5 (see also ref. [19]) in which, 167 

in contrast with the suggestion of ref. [21] of a dominance of the CO* decomposition, it is 168 

apparent from the analysis of the ZACROS calculations that the dominant process leading to 169 

the production of CH4 is the hydrogenation of CO. This has suggested us to investigate 170 

possible alternative gas phase processes producing CO. For this reason, we decided to 171 

investigate the possibility of inducing CO2 dissociation and producing CO+O and CO
+
+O

+
 172 

neutral and ionic chemical pairs reacting with hydrogen, respectively, via a plasma generation 173 

either by electrical discharges or by vacuum ultraviolet (VUV) photons on a CO2+H2 gas 174 

mixture as will be discussed in the next section. 175 

 176 

4. Methane production from the CO2+H2reaction without solid phase catalysis 177 

 The investigations carried out on our ProGeo 20kW apparatus [22] based on the well 178 

known Sabatier reaction: 179 

CO2 + 4 H2� CH4 + 2 H2O  ∆H
°
298 = -165 kJ mol

-1
  (5) 180 

at moderately high pressure (2-3 atm) and high temperature (200-300°C) with the use of a 181 

solid phase catalyst (nickel, ruthenium, or alumina) has prompted us to further progress (as 182 

will be illustrated in detail in this section) to use either low cost or renewable energy to reuse 183 

waste CO2 to produce methane in a circular economy scheme [22]. To this end we have 184 

undertaken the investigation of a new methanation pathway aimed at avoiding the use of the 185 

solid phase catalysis, by exploring mechanisms involving a plasma generation by electrical 186 

discharges or by vacuum ultraviolet (VUV) photons on a CO2+H2 gas mixture.This effort is 187 
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based on the since long established expertise of our laboratories in promotingand modeling 188 

molecular processes (atomic hydrogen and excited metastable species generation by electrical 189 

discharge [24-26] to study gas phase processes induced under controlled conditions) and in 190 

fully characterizing the microscopic dynamics of elementary reactions by experimentally 191 

determining related main kinetic parameters such as rate constants, cross sections, 192 

intermolecular potentials, structure, and energy of the transition state, reaction pathways, 193 

etc.Furthermore, we can perform high resolution experiments in single collision conditions 194 

using crossed molecular beam apparatuses and studying plasma induced gas phase reactions 195 

both by microwave and RF (Radio Frequency) discharges [24-26] and by synchrotron 196 

radiation [27-29]. In particular the mentioned experiments are performed on the crossed 197 

molecular beams apparatus of the Perugia University [30,31] to measure PIES (Penning 198 

Ionization Electron Spectroscopy) data, and on the ARPES (Angle Resolved PhotoEmission 199 

Spectroscopy) end station at the GasPhase Beamline of the Elettra Synchrotron Radiation 200 

Facility (Trieste) [32,33] (more details are given later in the specific subsection). 201 

The need of avoiding the use of the solid phase catalyst to perform reaction (5) and 202 

investigating possible alternative microscopic reaction mechanisms occurring in the 203 

homogeneous gas phase, is motivated by concurrency of reaction (5) and the following two 204 

main reactions: 205 

CO + 3 H2� CH4 + H2O  ∆H
°
298 = -206,1 kJ mol

-1
  (6) 206 

CO + H2O � H2 + CO2  ∆H
°
298 = +41 kJ mol

-1
   (7) 207 

as well as by the wish of avoiding unwanted reactions, like the (8), (9), (10), and (11) listed 208 

below, 209 

CO2 + 2 H2� C + 2 H2O  ∆H
°
298 = -90,1 kJ mol

-1
  (8) 210 

2 CO � C + CO2   ∆H
°
298 = -172,4 kJ mol

-1
  (9) 211 

CO + H2� C + H2O   ∆H
°
298 = -131,3 kJ mol

-1
  (10) 212 
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CH4� C + 2 H2   ∆H
°
298 = +74,8 kJ mol

-1
  (11) 213 

responsible for a rapid loss of catalytic activity. Further reservations on the use of a Ni based 214 

solid phase catalyst are related to the environmental and safety issues associated with the 215 

possible formation of Ni(CO)4 that is  a highly toxic gaseous species produced when Ni is 216 

exposed to a gas mixture containing high pressure CO as typical of experimental conditions 217 

commonly used to maximize the yield of CH4 in the methanation reaction.  218 

For this purpose we have undertaken the study of the Sabatier reaction (5) in a homogeneous 219 

gas phase environment by generating and characterizing controlled plasmas via electrical 220 

discharges and VUV photons on a pure CO2 and CO2+H2 gaseous mixture a technology in 221 

which our research group is leader since early 1990 [24,34,35]. In our experimental 222 

apparatuses (described in the next section) the energy pumped in the produced plasma can be 223 

controlled using both electrons and photons. In the first case we use an inhouse electrical 224 

microwave or RF discharge. In the second case we use a tunable synchrotron radiation. At the 225 

same time we can control and characterize the chemistry of the generated plasmas by studying 226 

the microscopic dynamics of the elementary chemical reactions because in molecular beam 227 

techniques [38-40] they occur in single collision regime (see again below in the specific 228 

subsection). 229 

 230 

4.1. Experimental methods 231 

As already mentioned, a first attempt to produce plasmas containing carbon dioxide, has been 232 

made in our laboratory using a microwave discharge beam source operating in pure CO2 and 233 

in an approximately 50-50% CO2-H2 mixture at a global pressure of about 1600 Pa. The 234 

microwave discharge is produced in a cylindrical quartz tube (10 cm in length and 2 cm in 235 

diameter) in a brass resonance cavity (water cooled) working at 2450 MHz [24,34,35]. The 236 

applied microwave power was varied in the range 70-200 W with a reflected power lower 237 
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than 5%. A preliminary characterization of the produced plasma has been performed using the 238 

crossed molecular beam apparatus shown in Figure 6. Such an apparatus, usually devoted to 239 

the study of the microscopic dynamics of autoionization reactions induced by excited 240 

metastable species (also called Penning Ionization or Chemi-ionization reactions), for the 241 

experiment considered here was used by keeping the secondary beam switched off. In this 242 

way it was possible to detect only the main chemical species flowing out of the plasma 243 

microwave discharge source as an effusive molecular beam. Such an analysis was performed 244 

using the mass spectrometry characterization of the beam by means of a quadrupole mass 245 

filter located below the crossing beams region. Measured data is consistent with that 246 

previously recorded by Dobrea et al. [39,40] who found a large dissociation rate of carbon 247 

dioxide, according to reactions (12) and (13) below, in the case of the plasma discharge in 248 

pure CO2 with respect to the one measured in CO2+H2 gas mixture. 249 

CO2 + e
-→ CO + O      (12) 250 

O + O → O2       (13) 251 

The CO2 dissociation percentage, χ (determined by keeping the inlet gas pressure at a constant 252 

value of 1600 Pa) was obtained by recording the CO2
+
 intensities Ii and If (measured with the 253 

microwave discharge off and on, respectively) using the following relationship: 254 

χ =
I

i
− I

f

I
i

⋅100      (14) 255 

The values of χ amounted to about 27% in the case of the plasma discharge in pure CO2, and 256 

lowered to about 19% in the case of CO2+H2 gas mixture at an applied microwave power of 257 

100 W. The measured values increased up to 52% (for plasma in pure CO2) and 36% (in 258 

plasma in CO2+H2 mixture) when the microwave power was doubled to about 200 W. 259 

Measured data is reported in Table 1 and compared with that of refs. [39,40].  260 

Then the same apparatus of Figure 6 was used to measure plasma-assisted CO2 conversion 261 

into hydrocarbons as an alternative way of producing synthetic fuel (this technique has been 262 
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recently applied by Welzel et al. [41] who determined the experimental conditions suited to 263 

give a 20% yield for CH4 formation. We better characterized the chemistry of the produced 264 

plasmas by investigating the detail of the chemical reactions induced by the ionic species that 265 

can be formed in such gaseous environments using VUV photons as a source of energy to 266 

induce excitation and ionization processes responsible for the plasma generation. The 267 

experiment was performed at the ELETTRA Synchrotron Light Laboratory (Trieste, Italy), 268 

using the ARPES end station at the Gas Phase having a very high photon intensity and a 269 

tunable wavelength. Details of the beam-line and of the end station have been already 270 

reported elsewhere [42,43] and the characteristics of the apparatus used for the experiment are 271 

discussed in detail in refs. [44,45]. Specific features of the experiment reported here are: i) the 272 

use of a synchrotron radiation tunable energy source, working in the energy range of 35-50 273 

eV with a resolution of about 1.5 meV; ii) the detection of all produced charged particles 274 

(electrons and ions) in the generated plasma, recording them in a time resolved measurements 275 

in which we are able to extract the spatial momentum components of final ions by using the 276 

electron-ion-ion coincidence technique coupled with an ion position sensitive detector (see 277 

below). 278 

Figure 7 shows: i) on the left hand side panel, a scheme of the main part of the experimental 279 

apparatus based on the electron-ion-ion coincidence technique, and, as an example, the 280 

coincidence plot recorded in the double photoionization experiment of carbon dioxide at a 281 

photon energy of 44 eV (in such a panel are also shown the recorded mass spectra of the 282 

product ions at the same photon energy); ii) on the right hand side panel, a picture of such a 283 

device. As can be seen from the Figure, the monochromatic synchrotron light beam crosses at 284 

right angles an effusive molecular beam of CO2 neutral precursors, and the product ions are 285 

then detected in coincidence with photoelectrons. The coincidence electron-ion-ion extraction 286 

and detection system consists in a time of flight (TOF) mass spectrometer equipped with an 287 
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ion position sensitive detector (stack of three micro-channel-plates with a multi-anode array 288 

arranged in 32 rows and 32 columns). As mentioned above, such a detector has been 289 

especially designed in order to properly measure the spatial momentum components of the 290 

ionic products [46].  291 

Carbon dioxide was supplied from a commercial cylinder at room temperature (99.99% 292 

nominal purity) to a needle effusive beam source. An adjustable leak valve along the input gas 293 

pipe line was used in order to control the gas flow, which was monitored by checking the 294 

pressure in the main vacuum chamber. 295 

 296 

4.2. The chemical role of CO2 in the generated plasma 297 

 When using excitation energies higher than 35 eV, it is possible to induce ionization 298 

phenomena in gaseous mixtures containing carbon dioxide with the production of CO
+
, O

+
 299 

and CO2
2+

 ions (as a matter of fact plasmas constitute over 99% of the known matter of the 300 

Universe). Indeed, the formation of doubly charged positive ions in gas phase using VUV 301 

photons or energetic electrons as ionizing source is routine in a number of laboratory 302 

experiments able to reproduce the physical conditions of the upper atmosphere of some 303 

planets of the Solar System (such as Mars, Venus, and Titan) [27-29, 49-52]. Once these ionic 304 

species are produced in metastable states, after their typical lifetime they can, dissociate into 305 

ionic fragments having a high kinetic energy content due to the strong Coulomb repulsion 306 

characterizing the low stability of their electronic structure. This so called “Coulomb 307 

explosion” of molecular dications provides their fragments with a large amount of translation 308 

energy (several eV) that enhances the chemical reactivity of the plasma with the following 309 

consequences on the properties of a gas mixtures: i) the chemical behavior is radically 310 

changed because the removed electrons may change sensibly the electronic configuration of 311 

the neutral species and modify its chemical reactivity; ii) the interaction is much more intense 312 
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than the neutral-neutral one, making more likely collision events and increasing the chemical 313 

reactivity in plasma environments; iii), the formation of fragment ions with large kinetic 314 

energy increase chemical reactivity. 315 

In particular our experiments with a plasma containing CO2 confirmed the carbon dioxide 316 

dissociation paths singled out by previous studies [53-56] and quantified the following ones 317 

allowed to indicates that the following main processes are possible with their respective 318 

threshold energies:  319 

CO2 + hν→ (CO2
+
)
* 
+ e

-→ CO
+
 + O

*
+ e

-→ CO
+
 + O

+
 + 2e

-
 hν≥ 35.6 eV     (15) 320 

  → CO2
2+ 

+ 2e
-
      hν ≥ 37.3 eV     (16) 321 

  → (CO2
2+

)
*
long lived+ 2e

-→ CO
+
 + O

+
 + 2e

-
  hν ≥ 38.7 eV     (17) 322 

together with relative threshold energies. In particular, reaction (15) is an indirect process 323 

occurring below the double photoionization threshold of 37.34 eV, via the formation an 324 

excited state of the (CO2
+
)

*
 monocation, followed by the production of an intermediate 325 

autoionizing oxygen atom O
*
. Reaction (16) produces a stable CO2

2+
 dication. Reaction (17) 326 

mainly occurs via the formation of a long lived dication with lifetime τ≥ 3.1 µs, 327 

corresponding to the production of CO2
2+

 ions in the ground X
3Σ+

g electronic state with an 328 

internal energy below the threshold towards the Coulomb explosion [53-56]. 329 

 Figure 8 shows the relative cross sections measured in the investigated photon energy 330 

range for reactions (15), (16), and (17) recorded using the electron-ion-ion coincidence 331 

technique discussed in the previous section. The analysis of data, collected at each 332 

investigated photon energy, is based on the density distribution evaluation of coincidences in 333 

the measured coincidence spectra, such as the one reported in the left panel of Fig. 7. On such 334 

an analysis, the total counts (recorded at each investigated photon energy) corresponding to 335 

the ion pair peak coming out from the same reaction gives the relative cross section for the 336 

three investigated reaction channels of Fig. 8. At the same time, the KER (Kinetic Energy 337 
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Released) of product ions can be evaluated by analyzing the dimension and the shape of the 338 

recorded peaks using the method suggested by Lundqvist et al. [57]. This procedure, applied 339 

to the CO
+
/O

+
 coincidences signal related to reactions (15), (16) and (17), has allowed us to 340 

evaluate the KER distributions of all product ions for different values of the investigated 341 

photon energy (36.0, 39.0, 41.0, 44.0 and 49.0 eV). The results shown in Fig. 9 tell us that the 342 

KER value for the O
+
 ions ranges between 1.0 and 5.0 eV, while the CO

+
 KER can reach 3.0 343 

eV or more and, changes the maximum value depending on the investigated photon energies. 344 

These results demonstrate that the chemical reactivity of plasmas containing CO2 is strongly 345 

increased by the presence of CO
+
 and O

+
 ions having a very high kinetic energy. In particular, 346 

the fast CO
+
 ions, are expected to react with molecular and atomic hydrogen (both produced 347 

in a plasma generated by a microwave discharge in a gaseous CO2+H2 mixture [24-26, 348 

39,40]) playing a pivotal role in the plasma-assisted CO2 conversion on CH4 fuel. In this 349 

respect, it has to be noted that Knott et al. measured reactive cross section for the CO
+
+H2→ 350 

HCO
+
+H reaction, obtaining a related rate constant value ranging between 1.6 x10

-9
 and 351 

3.0x10
-9

 cm
3
 s

-1
 in the collision energy range of 0.01 – 3.0 eV, indicating a pronounced 352 

decline at elevated collision energies, higher than 7.0 eV [58]. An analogous situation has 353 

been recorded by Farrar and coworkers in their study of H2
+
+CO proton transfer reaction 354 

producing HCO
+
 in the 0.74 - 9.25 eV collision energy range [59]: at higher energies, the 355 

cross section drops rapidly whereas, at low energies, the HCO
+
 products are highly excited, 356 

with 90% of the available energy in internal excitation.  357 

A first consideration can be made regarding the production of a low energy CO2-H2 358 

plasma. In such a case, it has to be noted that, by using CO
+
 ions coming from the Coulomb 359 

explosion of CO2
2+

 molecular dication, a projectile reactive species is available with a 360 

translational energy content of about 2.0-2.5 eV (see Fig.9). This means that in our plasma the 361 

CO
+
+H2 reaction, also favored by a stronger long range trapping attraction, can occur with a 362 
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rate constant value higher than those of neutral-neutral reactions (having in most cases typical 363 

rate constant values of about 10
-10

-10
-12

 cm
3
 s

-1
 [60]). In the case of the production of high 364 

energy CO2-H2 plasmas, further considerations can be made, in order to take into account that 365 

the CO
+
+H2 measured cross section shows a strong decrease when the collision energy 366 

becomes higher than 7 eV [58]. In this case, Knott et al. explain their results by invoking a 367 

dissociation process of the HCO
+
 product with a threshold beyond 7.0 eV. In fact, since CO

+
 368 

(
2
Σ simmetry) has a predissociating state close to 8.0 eV (vertical) [61] and the vertical 369 

transition to the first excited state of H2 (
3
Σ

+
u) represents a step of about 9.0 eV, the CO

+
+H2 370 

collision should result in an excitation of CO
+
 rather than of H2. We fully agree with such 371 

authors and it is important to note that the possible predissociation of CO
+
 appears to be 372 

energetically accessible at lower energies (about 5 eV) as demostrated by more recent 373 

calculations by Okada and Iwata [62]. Furthermore, Nobes and Radom in 1981 [63] first 374 

calculated the energy profile for the fast isomerization reaction between HCO
+
 and COH

+
 375 

demonstrating a higher stability for HCO
+
 and a triangular structure of the [HCO]

+
 376 

intermediate complex. This corroborates the absence of H2
+
+CO and CO+H

+
+H possible 377 

competitive products in the CO
+
+H2 reaction for which Knott et al. [58] have recorded only 378 

HCO
+
 ions with any evidence of both H2

+
 and H

+
 products. In their analysis such authors, 379 

following ref. [61], did not consider the possibility of the HCO
+
 with the rupture of the C---O 380 

bond, because their relatively low investigated collision energy range. Moreover, such a 381 

dissociation process is energetically allowed and can occur in high energy CO2-H2 plasmas, 382 

where the formed HCO
+
 ions are compatible with electron attachment dissociation processes 383 

towards the production of CH+O neutral reactive species, as demonstrated since 1972 by 384 

McGregor and Berry [64].  385 

Finally, the efficient conversion of CO
+
 and CO2

+
 ions into HCO

+
 by collisions with 386 

H2 and H reactive partners (all these species can be formed in a CO2-H2 plasma), with the 387 
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HOC
+
↔COH

+
 isomerization, has been experimentally observed by Gerlich and coworkers 388 

[65, 66] and by Tosi et al. [67], corroborating the observation that in plasma environments 389 

HCO
+
 results a very stable species as it is confirmed by astronomical observations indicating 390 

HCO
+
 as one of the most important ions in dense molecular clouds [68,69].  391 

In conclusion, it appears that the production of a CO2-H2 plasma by a microwave discharge 392 

allowed us to generate: i) a large dissociation of carbon dioxide, according to reactions (12) 393 

and (13) (see data of Table 1); and ii) CO2
+
, CO2

2+
, CO

+
 and O

+
ionic species (see reactions 394 

(15)-(17) and Figures 8 and 9) able to react with atomic and molecular hydrogen in order to 395 

produce HCO
+
 ions. All such experimental evidences are compatible with the possible 396 

formation of CH and CH+ species, being the first hydrogenation step on the carbon atom, for 397 

a plasma-assisted CO2 conversion into hydrocarbons as an alternative transformation route in 398 

synthetic fuel processing. 399 

Further experimental work is in progress in our laboratory in order to investigate such 400 

possibility, and to optimize the experimental conditions in an attempt to perform the CO2 401 

hydrogenation reaction (5) via an alternative microscopic mechanism with respect to the use 402 

of the solid catalyst. 403 

 404 

5. Conclusions 405 

 The reported concerted efforts of University, ENEA and SMEs researchers in 406 

investigating engineering and distributed computing have shown in this paper to what extent 407 

the advances in basic research on plasmas are amenable to the assembling of an experimental 408 

prototype applying the Sabatier reaction to a homogenous gas phase catalytic environment 409 

and to the activation of a circular process turning waste CO2 flue gases into methane. The 410 

measurements performed have not only shown the viability of the proposed solution but have 411 

also allowed the extension of computer simulations to a family of innovative mechanisms. 412 



 18

Furthermore, as a result of the investigation, useful indications have ben obtained on how to 413 

proceed to develop alternative solutions to the present Ni catalysed Progeo apparatus by 414 

resorting to a gas-phase-only process for the reduction of CO2 to CH4.In this work new results 415 

obtained by electrical discharges into CO2-H2 gas mixtures by using molecular beam 416 

technique at different pressure regimes has been presented. Such results together with VUV 417 

CO2 photoionization data collected by synchrotron radiation are then of great help in 418 

identifying the microscopic mechanisms to be exploited. Finally, the production of a CO2-H2 419 

plasma by a microwave discharge allowed us to generate a large dissociation of carbon 420 

dioxide, and to produce CO2
+
, CO2

2+
, CO

+
 and O

+
 ionic species able to react with atomic and 421 

molecular hydrogen in order to produce HCO
+
 ions. All such experimental evidences are 422 

compatible with the possible formation of CH and CH+ species, representing the first 423 

hydrogenation step on the carbon atom, for a plasma-assisted CO2 conversion into 424 

hydrocarbons. This is an alternative transformation route in synthetic fuel processing that we 425 

shall investigate further to the end of grounding Progeo on more robust methanation 426 

processes. 427 
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Table 1 – The percentage of CO2 dissociation in microwave discharge plasma source 642 

produced in pure CO2 and in a 1:1 CO2/H2 gaseous mixture for different values of applied 643 

microwave power. The percentage values are calculated using the simple equation (2), and are 644 

collected working at a constant pressure of 1600 Pa into the plasma source (see text). The data 645 

are compared with those previously collected by Dobrea et al. in an analogous experiment 646 

performed at a constant pressure of about 600 Pa [41,42]. 647 

 648 

Microwave discharge 

power (W) 

% of CO2 dissociation in pure 

CO2 plasma
 

% of CO2 dissociation in a 

1:1 CO2/H2 plasma mixture
 

 This work ref. [14] This work refs. [39,40] 

70 19±4 --- 11±4 --- 

100 27±3 23 19±3 14 

150 40±3 --- 28±3 --- 

200 51±2 48 36±2 33 

 649 

 650 

 651 

  652 
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Figure captions 653 

 654 

Fig. 1. 2500X micrography of the commercial catalyser KATALCOJM 11-4MR (by courtesy 655 

of University of Rome Tor Vergata, Rome, Italy). 656 

 657 

Fig. 2. A picture of the twin columns of the ProGeo reactor. 658 

 659 

Fig. 3. Cross section of the reactor twin columns and locations of the related thermocouples 660 

(red dots). On the right hand side the labels of the thermocouples. 661 

 662 

Fig. 4. Average measured percentage of the methane produced in our experiments plotted as a 663 

function of the molar ratio and of the temperature with a pressure of 2 bar.  664 

 665 

Fig. 5. Relative contributions of the different elementary channels to the production of 666 

methane evaluated from the minimum energy path of the PES (triangle) and from the 667 

ZACROS simulation (diamonds, squares, reverse triangles for the different temperatures 668 

connected by solid lines). The green triangle is the value suggested in ref.[24]. 669 

 670 

Fig. 6.The crossed molecular beam apparatus (mainly used in Penning ionization studies and 671 

adapted for plasmas generation containing carbon dioxide) in which the secondary beam was 672 

maintained off in order to detect the main chemical species coming out as an effusive 673 

molecular beam from the plasma microwave discharge source (see text). 674 

 675 
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Fig. 7.The electron-ion extraction and detection system used for the electron-ion-ion 676 

coincidence measurements to characterize the charged species produced in the CO2 plasma by 677 

tunable synchrotron radiation. Left panel: a scheme of the set-up with a typical coincidence 678 

spectrum recorded by the double photoionization of CO2 at a photon energy of 44 eV (see 679 

text). Right panel: a picture of such a device. 680 

 681 

Fig. 8.Measured cross sections for the three main processes observed in the CO2 plasma 682 

generation by using synchrotron radiation in the energy range of 34-50 eV and the electron-683 

ion-ion coincidence technique (see text). 684 

 685 

Fig.9.Kinetic energy distributions for CO
+
 and O

+
 fragment ions originating by Coulomb 686 

explosion of CO2
2+

 dication produced in the CO2 plasma by tunable synchrotron radiation. 687 

  688 
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