
HAL Id: hal-01319768
https://ut3-toulouseinp.hal.science/hal-01319768

Submitted on 23 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delete-free Reachability Analysis for Temporal and
Hierarchical Planning (full version)
Arthur Bit-Monnot, David E. Smith, Minh Do

To cite this version:
Arthur Bit-Monnot, David E. Smith, Minh Do. Delete-free Reachability Analysis for Temporal and Hi-
erarchical Planning (full version). ICAPS Workshop on Heuristics and Search for Domain-independent
Planning (HSDIP), Jun 2016, London, United Kingdom. �hal-01319768�

https://ut3-toulouseinp.hal.science/hal-01319768
https://hal.archives-ouvertes.fr

Delete-free Reachability Analysis for Temporal and Hierarchical Planning

Arthur Bit-Monnot
LAAS-CNRS, Université de Toulouse

Toulouse, France
arthur.bit-monnot@laas.fr

David E. Smith and Minh Do
NASA Ames Research Center

Moffet Field, CA, USA
{david.smith, minh.do}@nasa.gov

Abstract

Reachability analysis is a crucial part of the heuristic com-
putation for many state of the art classical and temporal plan-
ners. In this paper, we study the difficulty that arises in assess-
ing the reachability of actions in planning problems contain-
ing sets of interdependent actions, notably including prob-
lems with required concurrency as well as hierarchical plan-
ning problems. In temporal planners, this complication has
been addressed by augmenting a delete-free relaxation with
additional relaxations, but this can result in weak pruning of
the search space. To overcome this problem, we describe a
more sophisticated method for reachability analysis that uses
Dijkstra’s algorithm for propagation of times through a reach-
ability graph, combined with a pruning mechanism that rec-
ognizes unachievable cycles.
We also extend our approach to handle hierarchical planning
problems, in which an action and its subactions are naturally
interdependent. Evaluations were conducted on a diverse set
of temporal domains using FAPE, a constraint-based tempo-
ral and hierarchical planner.

1 Introduction
Reachability analysis is crucial in computing heuristics
guiding many classical and temporal planners. This is typi-
cally done by relaxing the action delete lists and construct-
ing the reachability graph. This graph is then used as a basis
to extract a relaxed plan, which serves as a non-admissible
heuristic estimate of the actual plan reaching the goals from
the current state. Due to the relaxation, the reachability anal-
ysis is optimistic and can also provide a lower-bound on the
actual “cost” of reaching the goals.

Temporal planning poses some additional challenges for
reachability analysis due to the temporal objective function
of minimizing the plan’s makespan. This objective func-
tion leads to the requirements on the heuristic guidance to
not only estimate the total cost but also the earliest time at
which goals can be achieved. This can be accomplished on
the reachability graph by labeling: (1) propositions by the
minimum time of the effects that can achieve them; and (2)
actions by the maximum time of the propositions they re-
quire as conditions. Since the reachability graph construc-
tion process progresses as time increases, when all start con-
ditions are reachable, a given action a is eligible to be added
to the graph. However, there is the additional problem that

A
y

x

B
y

x

Figure 1: Two actions: A with a start effect y and an end condition
x, and B with a start condition y and an end effect x.

a’s end conditions must also be reachable, although they do
not need to be reachable until the end time of a. To see why
this is a problem for the conventional way of building the
reachability graph, consider the two actions in Figure 1: ac-
tion B achieves the end condition for action A, but requires
a start effect of A before it can start. Thus, B cannot start
before A, but A cannot end until after B has ended. This
means that A is not fully reachable until B is reachable, but
B is not reachable unless A is reachable. Whether this turns
out to be possible depends on whether B fits inside of A.
In this example, the reasoning is simple enough, but more
generally, B might be a complex chain of actions.

Planners such as COLIN (Coles et al. 2012) and
POPF (Coles et al. 2010) address this problem by splitting
durative actions into instantaneous start and end events, and
forcing a time delay between the start and end events. In our
example, the start of A would be reachable, leading to the
start of B being reachable, which leads to the end of B be-
ing reachable, and finally the end of A being reachable. This
approach therefore concludes that A is reachable. Unfortu-
nately, the same conclusion is reached in COLIN or POPF
even when B does not fit inside of A, because this “action-
splitting” approach allows A to “stretch” beyond its actual
duration. While this is a satisfactory relaxation for problems
with few interdependencies, it does not provide very good
heuristic guidance for problems that involve a lot of action
nesting, such as hierarchical style container actions that ex-
pand into subactions.

In this paper, we first present an approach to reachabil-
ity analysis for durative actions that addresses the nesting
problem described above. We use Dijkstra’s algorithm for
propagation of times through a reachability graph, together
with a pruning mechanism that recognizes unachievable cy-
cles. In the second part, we study some of the difficulties

that arise when performing reachability analysis in hierar-
chical planning and show that those challenges are similar
to the ones encountered in temporal planning. We devise a
compilation procedure that exposes the hierarchical features
as additional conditions and effects in durative actions. The
compiled problem is used as an input for reachability analy-
sis of hierarchical planning problems.

2 Preliminaries
We first describe the temporal action model and other basic
elements used throughout the rest of the paper.

2.1 Temporal Planning Model
In PDDL 2.2, a planning problem P is represented by a tuple
P =̇ 〈V, I, T,G,A〉 where:

• V is a set of propositions.

• I is the initial state: a complete set of assignments of
value T or F to all propositions in V .

• T is a set of timed-initial-literals, which are tuples
〈[t] f := v〉 with f ∈ V and t ∈ R+ is the wall-clock
time at which f will be assigned the Boolean value v.

• G ⊆ V is a goal state: a set of propositions that need to
be true when the plan finishes executing.

• A is a set of durative actions, each of the form
a =̇ 〈Da, Ca, Ea〉 where:

– Da is a set of constraints on the duration of the action.
The actual duration of an action is referred to as da and
takes a value in R+ that is consistent with Da.

– Ca is the set of conditions. Each p ∈ Ca is of the form
〈(stp, etp) f = T〉 where stp and etp indicate the start
and end time of the condition p relative to the action’s
start time. When stp = etp = 0 or stp = etp = da
then p is an instantaneous at-start or at-end condition.
When stp = 0 and etp = da then p is an overall dura-
tive condition. f ∈ V is a proposition that must be true
over the specified time period.

– Ea is a set of instantaneous effects, each e ∈ Ea is
of the form 〈[te] f := v〉 where te =̇ 0 or te =̇ da is
the relative time at which the at-start or at-end effect e
occurs.

A plan π of P is a set of tuples 〈ta, a, da〉, in which an
action a ∈ A is associated to a wall-clock start time ta and
a duration da that satisfies the constraints in Da. π is valid
if it is executable in I and achieves all goals in G.

Beyond PDDL 2.2: We extend the temporal action model in
PDDL2.2 to allow conditions expressed over sub-intervals
of actions, and effects at arbitrary time points during an
action. These features turn out to be particularly useful for
encoding many temporal planning applications. We do this
by allowing the times stp and etp of a condition p or te of
an effect e to take an arbitrary value in [0, da].

Discrete time model: Unlike PDDL 2.2, which assumes the
continuous time model, we assume the discrete time model

in which time changes in discrete steps. This is not essential
to our approach, but simplifies the presentation. We there-
fore represent the durative conditions 〈(stp, etp) f = T〉 in
PDDL 2.2 as a sequence of consecutive instantaneous con-
ditions 〈[t] f = T〉 with stp ≤ t ≤ etp. For the rest of
this paper, we will assume that all action conditions and ef-
fects occur at discrete time-steps t specified as either t = δ
(at a constant duration δ after the start time of action a) or
t = da − δ (at a constant duration δ before the end time of
action a).

2.2 Delete-free Elementary Actions

To estimate when each fact can be achieved, our reachabil-
ity analysis utilizes elementary actions, which are artificial
actions created from the original temporal actions defined
in the domain description. Elementary actions contain: (1)
only a single ‘add’ effect and (2) the minimal set of con-
ditions required to achieve that effect. Specifically, given
a temporal action a, the set of elementary actions for a is
created by:

1. Removing all ‘delete’ effects of a.

2. For each ‘add’ effect e = 〈[te] f := T〉, creating a new
elementary action ae with e as the only effect of ae.

3. Adding each condition p ∈ Ca to ae with an optimistic
timing constraint on when p is needed. By optimistic, we
mean requiring each p ∈ Ca as late as possible with re-
spect to the time at which e is achieved. Let lbda

and ubda

be the lower and upper bounds on the duration da of a and
dae

be the duration of ae, then this maximum lateness can
be achieved by fixing the value of dae

:

• If te = δ, then set dae = ubda

• If te = da − δ′, then set dae
= lbda

Figure 2 shows an example of a move action for a rover
and its two elementary actions: a1 = moveFree(r, l, l′)
represents the start effect e1 = 〈[1] free(l) := T〉 and a2 =
moveAt(r, l, l′) represents the end effect e2 = 〈[d]at(l′) :=
T〉. Since te1 = 1, we fix the duration of moveFree(r, l, l′)
to be the upper-bound value of the duration d of the original
action move(r, l, l′) and thus da1 = 50. On the other hand,
da2 is set to be the lower-bound value 40 of d.

For easier illustration, an elementary action a is repre-
sented graphically by an action node a with (1) an outgoing
effect edge a

X−→ f representing its effect 〈[X] f := v〉; and
(2) one incoming condition edge f −Y−−→ a for each condition
〈[Y] f = T〉 ∈ Ca. The reachability graph is a pair 〈N,E〉
with N a set of action and fluent nodes and E a set of con-
dition and effect edges for all elementary actions. The edges
from fluents to actions encode the necessary delay between
the conditions of an action and the action. The semantics
is different for edges from actions to fluents, as each edge
a

X−→ f represents one possible action choice a for achiev-
ing the fluent f .

move(r,l,l’)
conditions: [0] at(r, l)

[d−1] free(l′)
effects: [1] free(l)

[1] ¬at(r, l)
[d] ¬free(l′)
[d] at(r, l′)

duration constraints: 40 ≤ d ≤ 50

(a) Original action model

moveFree(r,l,l’)
conditions: [0] at(r, l)

[49] free(l′)

effects: [1] free(l)

(b) Elementary action for the add ef-
fect 〈[1] free(l)〉

moveAt(r,l,l’)
conditions: [0] at(r, l)

[39] free(l′)

effects: [40] at(r, l′)

(c) Elementary action for the add ef-
fect 〈[d] at(r, l′)〉

Figure 2: Action to move a rover r from location l to l′ and its two elementary actions. The rover frees its original location one
time unit after departing and requires its target location to be free one time unit before arriving.

3 Reachability Analysis
3.1 Definitions
An elementary action a is applicable once all of its pre-
conditions are met. An action with an effect f is called an
achiever of f . A fluent f becomes achievable after one of
its achievers a becomes applicable, with the achievable time
depending on the starting time of a and the time constraint
on the effect of a that enables f . As a consequence of using
the delete-free elementary actions, once a fluent is achiev-
able at time t or an action is applicable at time t, it stays
achievable/applicable at all subsequent time points.

Action a is applicable at time t (denoted by
applicable(a, t)) if for all conditions p = 〈[X]f = T〉 ∈ Ca,
p is achievable at time tp = t + X (denoted by
achievable(p, tp)). Similarly, a fact f is achievable at
time t (i.e., achievable(f, t)) if there exist one achiever a
of f such that a has an effect e = 〈[X] f := v〉 and a is
applicable at time ta = t−X (i.e., applicable(a, ta)).

We define as the earliest appearance of action a (denoted
by ea(a)), the smallest t for which applicable(a, t) = T.
Similarly, the earliest appearance of a fluent f is the small-
est t for which achievable(f, t) = T. The computation of
ea(a) and ea(f) has traditionally been done by following
the dynamic programming update rules below:

Initialization: ∀f ∈ I : ea(f) = 0
∀f /∈ I : ea(f) = ∞
∀a ∈ A : ea(a) = ∞

Updating: ∀a ∈ A : ea(a) = max
〈[X] f=T〉∈Ca

ea(f)−X

∀f ∈ V : ea(f) = min
〈[X] f :=T〉∈Ea

ea(a) +X

When the updating rules above are properly applied re-
peatedly, the collective values of ea(f) and ea(a) will reach
a fix-point. We use ea∗(f) and ea∗(a) to denote the final
values of ea(f) and ea(a) for all fluents f and actions a. If
ea∗(f) < ∞ or ea∗(a) < ∞, we say that f or a is reach-
able, denoted by reachable(f) = T and reachable(a) = T.

Intuitively, if an action or a fluent is not reachable by ap-
plying elementary actions, then it can not be achieved using
the original action model. Therefore, a fluent cannot be true
at a time earlier than ea∗(f) and a reachable action A can
never be executed at a time earlier than ea∗(A).

3.2 Causal Loops in Temporal Planning

A∅

B∅
x∅ y∅

1

12

-10

0

(a)

A0

B1

x9 y1

1

8

-10

0

(b)

Figure 3: Two reachability graphs built from the actions of
Figure 1. A is an action with a duration of 10 time units,
an end condition 〈[10] x = T〉 and a start effect 〈[1] y :=
T〉. B has the start condition 〈[0] y = T〉 and the end effect
〈[dB] x := T〉. The duration of B, dB , is respectively set to
12 and 8 in graphs (a) and (b). Each node is annotated in red
with its earliest appearance time or ∅ if it is not reachable.

Let us consider what would happen when applying the
dynamic programming rules to the reachability graphs of
Figure 3. In Figure 3a, where B does not ‘fit’ into A, it
would behave as expected: the positive cycle would main-
tain all the nodes with an infinite earliest start (i.e. unreach-
able). On the other hand, Figure 3b depicts a self-supporting
causal loop where the effect y of A allows B to produce x
early enough to achieve the end condition of A. Such self-
supporting causal loops can be identified as cycles of neg-
ative or zero length in the reachability graph. If the cycle
is of negative length, as in Figure 3b, the earliest appear-
ances would be infinitely updated towards −∞. In the case
of a zero length cycle, the dynamic programming rules fail
to detect that an update is needed to mark the node as reach-
able.

Temporal planning problems with such causal loops
are identified by Cooper, Maris, and Régnier (2013) as
temporally-cyclic problems and are characterized by sets
of interdependent actions. The difficulty in handling them
has been avoided in state of the art temporal planners by
ignoring any condition that might be achieved through a
self-supporting causal loop. In POPF (Coles et al. 2010),
the reachability model is built by splitting durative actions
into an instantaneous start-action and an instantaneous end-
action, with the start-action using only the ‘at-start’ con-
ditions. Applied to our example in Figure 2, this would

roughly result in ignoring the 〈[49] free(l′) = T〉 condition
of moveFree(r, l, l′). This additional relaxation leads to
reachability models that disregard any condition that could
lead to a self-supporting causal loop.

Self supporting causal loops always contain an after-
condition : a condition in Ca that appears at the same time
or later than the effect of an elementary action a (Cooper,
Maris, and Régnier 2013). To make the identification of
after-conditions easier, we assume that a condition 〈[X]f =
T〉 is an after-condition iff X > 0. This restriction means
that any negative edge in the reachability graph represents
an after-condition. If necessary, this can be enforced by ar-
tificially shifting the start of all elementary actions to be one
time unit before their effect.

3.3 Reachability Analysis with Causal Loops
To handle after-conditions during reachability analysis, as
detailed in Algorithm 1, we alternate two steps: (1) a first
step propagates achievement times while ignoring all after-
conditions, performed by a Dijkstra pass on the graph lim-
ited to positive edges; then (2) a second step that enforces
all after-conditions, represented by negative edges, that were
ignored in the first step. Those two steps are complemented
with a pruning mechanism that repeatedly detects nodes in
positive cycles.

Algorithm 1 begins by selecting a set of assumed reach-
able nodes from which to start the propagation process (lines
2-10). The obvious candidates are fluents appearing in the
initial state I and in timed initial literals T . We also opti-
mistically select all actions that have no before-conditions,
i.e., actions where every condition is an after-condition. As-
sumed reachable nodes are inserted into a priority queue Q
of 〈n, t〉 pairs where n is a node of the reachability graph
and t is a candidate time for its earliest appearance.

We then iteratively extend the initial set of assumed reach-
able nodes with all fluents that have an assumed reachable
achiever and all actions whose every before-condition is as-
sumed reachable. This is done by a Dijkstra-like propaga-
tion (line 13), that extracts the nodes in Q in the order of in-
creasing appearance time. Those extracted nodes are marked
as reachable and their successors are inserted into Q. The al-
gorithm slightly differs from Dijkstra’s as it ensures that an
action node is enqueued only if all of its before-conditions
have been already marked reachable (lines 36-38).

As a second step, we revise our optimistic assumptions by
incorporating the ignored after-conditions:

• Line 16 removes from the graph any action a with an
after-condition on an unreachable fluent f . More specif-
ically, the RECURSIVELYREMOVE procedure marks its
parameter as unreachable and removes it from the graph.
This removal process is recursive: if a removed action a is
the only achiever for a fluent f then f is removed as well
(and as a consequence all actions depending on f will also
be removed). Furthermore, if the first achiever of a fluent
is removed from the graph and there is at least one other
achiever for it, then the fluent is added back to Q with an
updated earliest appearance.

• Line 18 takes an after-condition of an action a on a reach-

Algorithm 1 Algorithm for identifying reachable nodes in a
reachability graph and computing their earliest appearance.

1: 〈N,E〉 ← Reachability Graph
2: Q← ∅ . Priority queue of 〈node, time〉 ordered by

increasing time
3: for all n ∈ N do
4: reachable(n)← F
5: if n is an action with no before-conditions then
6: Q← Q ∪ {〈n, 0〉}
7: for all 〈[t] f := T〉 ∈ T do . timed initial literals
8: Q← Q ∪ {〈f, t〉}
9: for all f := T ∈ I do . initial state

10: Q← Q ∪ {〈f, 0〉}
11:
12: while Q non empty do
13: DIJKSTRAPASS

14: for all f δ−→ a ∈ after-condition edges do
15: if ¬reachable(f) then
16: 〈N,E〉 ← RECURSIVELYREMOVE(a)
17: else if ea(a) < ea(f) + δ then
18: Q← Q ∪ {〈a, ea(f) + δ〉}
19: for n ∈ N do
20: if n is late then
21: 〈N,E〉 ← RECURSIVELYREMOVE(n)

22:
23: procedure DIJKSTRAPASS
24: while Q non empty do
25: 〈n, t〉 ← pop(Q)
26: if n already expanded in this pass then
27: continue
28: if reachable(n) ∧ ea(n) ≥ t then
29: continue
30: reachable(n)← T
31: ea(n)← t

32: if n is an action with an effect edge n
δ−→ f then

33: Q← {〈f, t+ δ〉}
34: else
35: for all a conditioned on n do
36: if all before cond. of a are reach. then
37: t′ ← max

f
δ−→a∈E

ea(f) + δ

38: Q← Q ∪ {〈a, t′〉}

able fluent f and enforces the minimal delay δ between
ea(f) and ea(a). If the current delay is not sufficient, a is
added to Q and will be reconsidered upon the next Dijk-
stra pass.
Finally, late nodes are marked unreachable and removed

from the graph (line 21). We say that a node n is late if for
any non-late node n′, ea(n′)+dmax < ea(n) where dmax

is the highest delay on any edge of the graph. In practice, this
means that nodes are partitioned into non-late nodes and late
nodes, these two sets being separated by a temporal gap of
at least dmax. The intuition, as demonstrated in the next
section, is that the earliest appearance of a late node is being
pushed back due to unachievable cycles.

The two-step process is repeated to take into account the
newly updated reachability information. In the subsequent
runs, the Dijkstra algorithm will start propagating the up-
dated nodes from the previous run, with lines 28-29 mak-
ing sure that the earliest appearance values ea(n) are never
decreased to an overly optimistic value. The algorithm de-
tects a fix-point and exits if the queue is empty, meaning that
after-conditions did not trigger any change.

3.4 Analysis and Related Models
We now explore some of the characteristics of Algorithm 1.
The first Dijkstra pass acts as an optimistic initialization: it
identifies a set of possibly reachable nodes and assigns them
earliest appearance times. All operations after this first pass
will only (i) shrink the set of reachable nodes; and (ii) in-
crease the earliest appearance times.

Proposition 3.1. If a node n is reachable, then ea(n) con-
verges towards ea∗(n). If a node n′ is not reachable then
ea(n′) either remains at∞ or diverges towards∞ until it is
removed from the graph.

Proof (sketch). A node n is reachable if there is either a path
from initial facts to n or n is part of a self-supporting causal
loop (i.e. cycle of negative or zero length). Consequently re-
peated propagations will eventually converge. On the other
hand, an unreachable node either depends on an unreachable
node or is involved only in causal cycles of strictly positive
length (such as the one depicted in Figure 3a). If the node
was ever assumed reachable, its earliest appearance will thus
be increased until it is removed from the graph.

Proposition 3.2. If a node is late, then it is not reachable.

Proof (Sketch). The intuition is that the gap between non-
late and late nodes appeared because late nodes are delay-
ing each other due to positive causal cycles. We first show
that any late node delayed to its current time is due to a de-
pendency on another late node: because the temporal gap
is bigger than all edges in the graph, a non-late node could
not have influenced a late node. It follows that any late node
depends on at least one other late node. Furthermore a late
node necessarily participates in a positive cycle or depends
on a late node that does. From there, one can show that at
least one node n in this group is involved only in positive
cycles. Any other possibility (path from timed initial literals
or negative cycle) would have resulted in n being less than
dmax away from a non-late node.

It follows from propositions 3.1 and 3.2 that Algorithm 1
produces a reachability model R∞ that contains a node n
and its earliest appearance ea∗(n) iff n is reachable in the
relaxed problem. In the worst case, computing this model
has a pseudo-polynomial complexity since there may be as
many as dmax iterations of the algorithm (dmax being the
highest delay in the graph). The cost of each iteration is
dominated by the Dijkstra pass of O(|N |× log(|N |)+ |E|).

Discussion: One might consider computing various approx-
imations of R∞ by limiting the number of iterations to a
fixed number K, making the algorithm strongly polynomial

and producing a reachability model RK . In the special case
where K = 1, this is equivalent to performing a single Dijk-
stra pass and removing all actions with an unreachable after-
condition. Increasing K would allow us to better estimate
the earliest appearances and detect additional late nodes.

Another simplification is to ignore all negative edges of
the reachability graph, which can be done by stopping Algo-
rithm 1 after the first Dijkstra pass. In practice, this model
simply ignores after-conditions and it has all the characteris-
tics of the temporal planning graph of POPF: (1) the separa-
tion of durative actions into at-start and at-end instantaneous
actions is done by the transformation into elementary ac-
tions; (2) the minimal delay between matching at-start and
at-end actions is enforced by the presence of start conditions
in the elementary actions representing the end effects; and
(3) any end condition appearing in the elementary action of
a start effect would be ignored because it would be an after-
condition. Since it is a direct adaptation of the techniques
used in POPF to our more complex action representation, we
call this model Rpopf.

It is interesting to note that Rpopf and R∞ are equivalent
on all problems with no after-conditions. Classical planning
obviously falls in this category as well as any PDDL model
with no at-start effect or no at-end condition. In fact, on
such problems Rpopf and R∞ are equivalent to building a
temporal planning graph, with no significant computational
overhead.

4 Extending to Hierarchical Models
While hierarchical planning is a dominant approach for
modeling and solving real-world planning applications, it
still mostly requires manual work to model and control its
search space. In planners such as SHOP2 (Nau et al. 2003),
this is done by manually annotating methods with additional
preconditions that are checked before introducing a method
into the plan. This approach allows for early dead-end de-
tection and has proven to be extremely efficient for solv-
ing complex problems. Nonetheless, it does have important
drawbacks. First, manual annotation requires significant do-
main modeling efforts and can easily lead to modeling errors
and incomplete domain descriptions. Second, conditions
on methods can only be efficiently tested on fully defined
states. For that reason, HTN planners usually restrict them-
selves to finding totally-ordered plans, which do not work
for planning problems with required concurrency. Reach-
ability analysis thus constitutes a critical step to improve
the performance of partially-ordered hierarchical planners,
which can find plans with required concurrency, and also re-
duce the laborious domain engineering effort for HTN plan-
ners that only find totally-ordered plans.

The main difficulty of automated reachability analysis for
hierarchical problems lies in the interactions between causal
and hierarchical constraints. HTN planning has three main
characteristics: (1) a method must eventually have all its
subtasks achieved; (2) a method or operator can only ap-
pear in a plan if it is refining an existing task of the plan; and
(3) all conditions of operators and methods must be causally
supported by earlier effects. While there are known tech-

niques to check (3), integrating (1) and (2) causes interde-
pendent actions and remains a difficult issue.

In this section, we propose a transformation of operators
and methods to expose those hierarchical constraints as ad-
ditional conditions and effects. This allows us to perform
the reachability analysis proposed in the previous section on
models integrating hierarchical and causal information.

4.1 Hierarchical Model
We extend the temporal planning model from Section 2.1 to
support the definition of hierarchical problems. A temporal
planning problem P is extended to contain:

• a set T of task symbols

• a set of goal tasks GT . A goal task gτ ∈ GT is of the
form 〈[stτ , etτ] τ〉 where stτ and etτ are timepoints tak-
ing value in R+ and τ ∈ T is a task symbol. The goal task
gτ states that the plan should contain an action achieving
the task τ and spanning the temporal interval [stτ , etτ].

Each action a ∈ A is associated to a task symbol τa ∈ T ,
representing the task achieved by a and a set of subtasks
Sa. A subtask is denoted by 〈[stτ , etτ] τ〉 where τ is a task
symbol and stτ and etτ are timepoints. The intuition is that
for each subtask 〈[stτ , etτ] τ〉 ∈ Sa, a requires an action
achieving τ and executing over the interval [stτ , etτ]. This
model does not make any distinction between methods and
operators as it is usually done in HTN planning. To make
this distinction, one could simply partition A into actions
with no effects (i.e. methods) and actions with no subtasks
(i.e. operators).

In addition to the requirements of Section 2.1, we con-
sider the following conditions for a plan π to be valid:

• for any task gτ = 〈[stτ , etτ] τ〉 appearing in GT or as a
subtask of an action in π, there is an action in π achieving
gτ . An action 〈ta, a, da〉 ∈ π is said to achieve gτ if
τ = τa, stτ = ta and etτ = ta + da.

• for any action 〈ta, a, da〉 ∈ π, there is a task gτ appear-
ing in GT or as a subtasks of an action in π such that a
achieves gτ .

The latter condition is a consequence of the search mech-
anism of HTN planners in which every action is introduced
to fulfill a given pending task. When combined with the
former, it results in interdependencies as a method both re-
quires the presence of actions fulfilling its subtasks and en-
ables their presence.

4.2 Flattening Transformation
We now propose a compilation of a hierarchical problem
into the temporal model of Section 2.1. This flattening pro-
cedure is meant to allow a reachability analysis on causal
models that retain the hierarchical constraints from the orig-
inal problem.

For each task τ ∈ T from the hierarchical model, the set
of propositions V is extended with three new propositions
started(τ), ended(τ) and required(τ). They respectively
represent that an action achieving τ starts, finishes or is re-
quired to fulfill a pending task τ .

put-on-table-from-stack(x)
task: put-on-table(x)

conditions: ∅
effects: ∅

subtasks: [d1, d2] unstack(x)
[d3, d4] put-down(x)

constraints: 0 < d1 < d2 < d3 < d4 < d

(a) A high level action (or method) to move a block x from the
top of a stack to the table.

put-on-table-from-stack(x) (flattened model)
conditions: [0] required(put-on-table(x))

[d1] started(unstack(x))
[d2] ended(unstack(x))
[d3] started(put-down(x))
[d4] ended(put-down(x))

effects: [0] started(put-on-table(x))
[d1] required(unstack(x))
[d3] required(put-down(x))
[d] ended(put-on-table(x))

constraints: 0 < d1 < d2 < d3 < d4 < d

(b) The flattened action after compiling away its hierarchical
properties.

Figure 4

A hierarchical action a ∈ A is transformed into a ‘flat’
action aflat with:

• all conditions, effects and constraints of a

• one additional condition 〈[0] required(τa) = T〉
• one additional at-start effect 〈[0] started(τa) := T〉 and

one additional at-end effect 〈[da] ended(τa) := T〉
• for each subtask 〈[stτ , etτ] τ〉 of a:

– two additional conditions 〈[stτ] started(τ) = T〉 and
〈[etτ] ended(τ) = T〉

– one additional effect 〈[stτ] required(τ) := T〉
For each goal task 〈[stτ , etτ] τ〉 ∈ GT , a timed initial

literal 〈[stτ] required(τ) := T〉 is added to T and a goal
ended(τ) is added to G.

It is important to note that the resulting ‘flat’ problem is
a relaxation of the original one. Indeed, a given subtask
〈[stτ , etτ] τ〉 yields two conditions 〈[stτ] started(τ) = T〉
and 〈[etτ] ended(τ) = T〉. Those two conditions can be ful-
filled by distinct actions, thus ignoring temporal constraints
on the unique action that should have achieved the subtask
in the original model. This relaxed transformation is sim-
ply meant to expose hierarchical features of the problem to
reachability analysis. Actions resulting from this compila-
tion step can be split into elementary actions and added to a
reachability graph (Section 3).

An example of this transformation is given in Figure 4b.
The problem has interdependencies as the presence of the
put-on-table-from-stack method both requires and allows

the presence of its unstack and put-down subactions. In-
deed, an unstack(x) action would have a start condition
〈[0] required(unstack(x)) = T〉 which is achieved by the
method put-on-table-from-stack. Concurrently, this method
has the condition 〈[d1] started(unstack(x)) = T〉 which
would be achieved as a start effect of the unstack(x) action.

5 Empirical Evaluation
We implemented our reachability analysis technique within
FAPE, a partial-order temporal planner (Dvorak et al.
2014a). FAPE takes problems modeled in ANML (Smith,
Frank, and Cushing 2008). ANML natively supports: (1)
conditions and effects at arbitrary time points and over ar-
bitrary intervals within an action; and (2) hierarchical struc-
tures. FAPE supports most of the features of ANML and is
capable of both hierarchical and generative planning.

Like other partial-order planners, FAPE searches for a
plan by fixing flaws in partial plans until no flaws remain.
Every time a partial plan p is extracted from the open queue,
reachability analysis is performed and provides an updated
set of impossible actions and fluents. If it can be verified
that from p: (1) all goals are reachable, and (2) all unrefined
tasks have a possible refinement, then we expand p by fixing
one of its flaws. If this is not the case, p is a dead-end and
is discarded. Reachability results are also used to filter out
flaw resolvers involving impossible actions or fluents.

We evaluate our reachability analysis technique on several
temporal domains with and without hierarchical decomposi-
tion, the former involving many instances of required con-
currency and interdependent actions. The satellite, rovers,
tms, logisitcs and hiking domains are direct translations of
the eponymous domains from the International Planning
Competition (IPC) into ANML. The domain files were man-
ually translated while the translation of problem instances
was automated. The handover domain is a robotics prob-
lem presented in (Dvorak et al. 2014b) and the docks do-
main is the dock worker domain from (Ghallab, Nau, and
Traverso 2004). Hierarchical versions of the domains have
their names appended with ‘-hier’. All experiments were
conducted on an Intel Xeon E3 with 3GB of memory and a
30 minutes timeout.

Table 1 and Figure 5 present the number of problems
solved using different reachability models. R∞ outper-
forms the other configurations: solving the highest number
of problems on all but one domain. R5 and R1 are respec-
tively second and third best performers while Rpopf does not
provide significant pruning of the search space; the compu-
tational overhead makes it perform slightly worse than no
reachability checks (denoted by ∅). As expected, on tempo-
rally simple problems (non-hierarchical domains in our test
set), all configurations show similar performance.

Table 2 presents the percentage of actions detected as un-
reachable by different configurations. As expected, R∞, R5,
R1 and Rpopf perform identically on temporally simple prob-
lems. However, Rpopf is largely outperformed on all but one
hierarchical domains.The good performance of R1 with re-
spect to Rpopf shows that a single iteration is often sufficient
to capture most of the problematic after-conditions. How-
ever, on more complex problems such as hiking-hier and

R∞ R5 R1 Rpopf ∅
satellite (20) 14 14 14 14 15
satellite-hier (20) 17 17 17 17 16
rovers (40) 25 25 25 25 25
rovers-hier (40) 22 22 22 22 22
tms-hier (20) 7 7 7 7 7
logistics (28) 8 8 8 8 8
logistics-hier (28) 28 28 28 6 9
hiking-hier (20) 20 17 16 15 17
handover-hier (20) 16 16 16 7 7
docks-hier (18) 17 13 12 7 7
Total (254) 174 167 165 128 133

Table 1: Number of solved tasks for various domains with a
30 minutes timeout. The best result is shown in bold. The
number of problem instances is given in parenthesis.

0

20

40

60

80

100

120

140

160

180

1 10 100 1000

S
o
lv
ed

T
a
sk
s

Search Time (s)

R∞
R5

R1

Rpopf

∅

Figure 5: Number of solved tasks by each configuration
within a given time amount.

R∞ R5 R1 Rpopf ∅
satellite 0.0 0.0 0.0 0.0 0.0
satellite-hier 14.1 14.1 14.1 14.1 0.0
rovers 43.5 43.5 43.5 43.5 0.0
rovers-hier 72.6 72.6 72.6 27.1 0.0
tms-hier 87.9 87.9 87.9 0.0 0.0
logistics 34.5 34.5 34.5 34.5 0.0
logistics-hier 94.6 94.6 94.6 15.5 0.0
hiking-hier 38.1 36.5 36.5 0.0 0.0
handover-hier 99.2 99.2 99.2 3.5 0.0
docks-hier 85.2 52.6 52.6 0.0 0.0

Table 2: Percentage of ground actions detected as unreach-
able from the initial state. For each problem instance, the
percentage is obtained by comparing the number of ground
actions detected as unreachable from the initial state with the
original number of ground actions. Those values are then
averaged over all instances of a domain.

docks-hier, more iterations are beneficial both in terms of
detected unreachable actions and solved problems.

R∞ R5 R1 Rpopf ∅
satellite 100 (1) 100 100 100 –
satellite-hier 100 (2) 100 100 100 –
rovers 100 (1) 100 100 100 –
rovers-hier 100 (4) 99.2 56.7 54.2 –
tms-hier 100 (6) 69.3 14.2 14.2 –
logistics 100 (1) 100 100 100 –
logistics-hier 100 (2) 100 2.8 2.8 –
hiking-hier 100 (9) 100 71.7 71.7 –
handover-hier 100 (43) 98.2 5.7 5.7 –
docks-hier 100 (37) 73.0 29.8 29.8 –

Table 3: Average admissible makespans for different reach-
ability models. Those are computed by taking the earliest
appearance of the latest satisfied goal from the initial state,
and normalizing on the value computed for R∞. For R∞,
we also indicate the average number of iterations needed to
converge on the first propagation of each instance (in paren-
thesis).

Table 3 presents the value that would have been taken
by the admissible hmax heuristic with different reachabil-
ity models. On all but one hierarchical model, both R1 and
Rpopf largely underestimate the makespan of a solution. In-
deed, not propagating after-conditions makes them miss im-
portant causal aspect of the problems. Those can take as
much as 43 iterations to be initially propagated by R∞. The
subsequent propagations are typically faster because they
are made incrementally. As expected, a single iteration was
needed to converge on all temporally simple problems.

Note that the current usage of our approach in FAPE is
limited to restricting the search space. While it proves ex-
tremely useful on a wide variety of problems, one could
contemplate using the available data structures to extract a
heuristic value. The extraction of a relaxed plan has proven
to be an effective heuristic in many planners. Earliest possi-
ble times ea∗(a) and ea∗(f) could also be used as admis-
sible estimates when considering makespan optimization.
However, FAPE’s constraint-based algorithm, with POCL
and lifted representation, is not yet suitable for this.

6 Related Work
The problem of required concurrency in temporal planning
has been analyzed by Cushing et al. (2007). The authors
distinguish temporally expressive problems that feature re-
quired concurrency from temporally simple problems that
do not. Temporally expressive problems are further stud-
ied by Cooper, Maris, and Régnier (2013) who identify
temporally-cyclic problems in which sets of actions can be
interdependent. While the 7th and 8th International Plan-
ning Competitions (IPC) included problems with required
concurrency, none of those had interdependent actions. In
fact, even top performers in the temporal track of the IPC,
including Temporal Fast Downward (Eyerich, Mattmüller,
and Röger 2012) and YAHSP3 (Vidal 2014), cannot solve
problems with interdependent actions.

In classical planners such as FF (Hoffmann and Nebel

2001), the most widely used reachability analysis involves
building a Relaxed Planning Graph (RPG) from delete-free
actions. CRIKEY3 (Coles et al. 2008), extended this tech-
nique to support temporal problems with interdependencies
by splitting durative actions into at-start and at-end snap ac-
tions. The resulting Temporal RPG is used by CRIKEY3 and
its successors POPF (Coles et al. 2010), COLIN (Coles et al.
2012) and OPTIC (Benton, Coles, and Coles 2012) both for
reachability analysis and heuristic computation.

Cooper, Maris, and Régnier (2014) discuss another relax-
ation of temporal planning problems into monotone prob-
lems that can be solved in polynomial time. This relaxation
is orthogonal to the delete-free relaxation and could also be
used for reachability analysis. A key part of this relaxation is
the removal of any condition that might be achieved by more
than one action; this is likely to lead to poor performance on
HTN planning problems where the difficulty is precisely to
choose which action to support a given task.

HTN planning systems in the line of SHOP2 (Nau et al.
2003), avoid the need for reachability analysis by (1) man-
ually annotating methods with conditions of applicability;
and (2) requiring a total order between all operators, to en-
sure a method’s conditions can be tested on fully defined
states. While this technique has proven to be extremely use-
ful on many practical problems, it increases the required
domain-engineering effort as well as the risk of introduc-
ing modeling errors. Even temporal HTN planners such as
SIADEX (Castillo et al. 2006) only partially remove the need
for total-order between operators and cannot solve problems
with required concurrency.

The recent development of hybrid hierarchical and gen-
erative planners such as PANDA (Schattenberg 2009) and
FAPE (Dvorak et al. 2014a) has motivated the need for au-
tomated search guidance for hierarchical problems. Along
these lines, Bercher, Keen, and Biundo (2014) and Elkawk-
agy et al. (2012) proposed techniques for evaluating the re-
maining search effort in hierarchical problems by exploiting
landmarks and task decomposition graphs. However, hier-
archical and causal constraints are still mainly considered
independently, resulting in limited heuristic guidance.

Our work shares some conceptual similarities with An-
gelic Hierarchical Planning (Marthi, Russell, and Wolfe
2007), which performs automated analysis of sequential hi-
erarchical problems in order to infer upper and lower bounds
of the set of reachable states. Those sets are used in a hierar-
chical planner to detect when a task network is always refin-
able to a solution plan or when it is a dead-end. Those tech-
niques are however only applicable to sequential hierarchi-
cal planning. While our technique only focuses on dead-end
detection, we consider more general hierarchical problems,
featuring concurrency and partial-ordering.

A translation of some hierarchical features of ANML into
PDDL was proposed by Smith, Frank, and Cushing (2008)
and a complete translation of a restricted class of HTN prob-
lems into PDDL was proposed by Alford, Kuter, and Nau
(2009). Unlike the exact translations described in those
works, we introduce a relaxed translation applicable to any
HTN problem for the purpose of reachability analysis. This
simpler transformation allows us to avoid the discovery by

Alford et al. (2014) that heuristics based on delete-free re-
laxation require further relaxation to allow tractability when
dealing with hierarchical problems.

7 Conclusion
In this paper, we developed a technique to perform more ac-
curate reachability analysis for temporal planning problems
involving interdependent actions. This technique allows us
to do a better job of recognizing impossible actions and es-
timating the earliest start times for actions and fluents. We
also showed how interdependencies naturally arise in hierar-
chical planning problems and introduced a simple relaxation
of those problems into temporal planning to enable reacha-
bility analysis on hierarchical planning problems.

Our method has been implemented in FAPE, a constraint-
based temporal planner for the ANML language. We evalu-
ated the effectiveness of the technique for pruning the search
space in both hierarchical and generative planning prob-
lems. When compared to state of the art techniques, we
showed that our algorithm provides notable improvements
on temporally complex problems while having no computa-
tional overhead on temporally simple ones. This character-
istic makes our method suitable for reachability analysis in
a wide range of temporal as well as hierarchical problems.

Acknowledgements. We would like to thank Malik Ghal-
lab and Félix Ingrand for their valuable comments on early
versions of this paper. This work was supported in part by
the EDSYS Doctoral School of the University of Toulouse,
Stinger Ghaffarian Technologies (SGT) Incorporated, the
EU MUMMER project funded by the H2020 program under
grant agreement No 688147, the NASA Safe Autonomous
Systems Operations (SASO) project, and the NASA Au-
tonomous Systems and Operations Project.

References
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2014.
On the Feasibility of Planning Graph Style Heuristics for
HTN Planning. In Proc. of the 24th Int. Conf. on Automated
Planning and Scheduling (ICAPS).
Alford, R.; Kuter, U.; and Nau, D. S. 2009. Translating
HTNs to PDDL: A Small Amount of Domain Knowledge
Can Go a Long Way. In Proc. of the 21st Int. Joint Conf. on
Artificial Intelligence (IJCAI).
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. Proc. of the 22th Int. Conf. on Automated Planning
and Scheduling (ICAPS).
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid Planning
Heuristics Based on Task Decomposition Graphs. In Proc. of
the Seventh Annual Symp. on Combinatorial Search (SOCS).

Castillo, L. A.; Fernández-Olivares, J.; Garcı́a-Pérez, Ó.;
and Palao, F. 2006. Efficiently Handling Temporal Knowl-
edge in an HTN Planner. In Proc. of the 16th Int. Conf. on
Automated Planning and Scheduling (ICAPS), 63–72.

Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with Problems Requiring Temporal Coordination. Proc. of
the 22th AAAI Conf. on Artificial Intelligence.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proc. of the
20th Int. Conf. on Automated Planning and Scheduling
(ICAPS), 42–49.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012.
COLIN: Planning with Continuous Linear Numeric Change.
Journal of Artificial Intelligence Research (JAIR) 44:1–96.
Cooper, M.; Maris, F.; and Régnier, P. 2013. Managing
Temporal Cycles in Planning Problems Requiring Concur-
rency. Computational Intelligence 29(1):111–128.
Cooper, M.; Maris, F.; and Régnier, P. 2014. Monotone
temporal planning: Tractability, extensions and applications.
Journal of Artificial Intelligence Research 50:447–485.
Cushing, W.; Kambhampati, S.; Weld, D. S.; et al. 2007.
When is temporal planning really temporal? In Proc. of the
20th Int. Joint Conf. on Artifical Intelligence, 1852–1859.
Dvorak, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014a. Planning and Acting with Temporal and
Hierarchical Decomposition Models. In Proc. of the 26th
IEEE Int. Conf. on Tools with Artificial Intelligence, ICTAI,
115–121.
Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014b. A Flexible ANML Actor and Planner in Robotics.
In Planning and Robotics (PlanRob) Workshop (ICAPS).
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving Hierarchical Planning Performance by
the Use of Landmarks. In Proc. of the 26th AAAI Conf. on
Artificial Intelligence.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2012. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. Springer Tracts in Advanced Robotics.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Elsevier.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 253–302.
Marthi, B.; Russell, S.; and Wolfe, J. 2007. Angelic Seman-
tics for High-Level Actions. In Proc. of the 17th Int. Conf.
on Automated Planning and Scheduling (ICAPS).
Nau, D.; Au, T.-c.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning
System. Journal of Artificial Intelligence Research (JAIR)
20:379–404.
Schattenberg, B. 2009. Hybrid planning & scheduling.
Ph.D. Dissertation, University of Ulm.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The ANML
language. In The ICAPS Workshop on Knowledge Engineer-
ing for Planning and Scheduling (KEPS).
Vidal, V. 2014. YAHSP3 and YAHSP3-MT in the 8th Inter-
national Planning Competition. In 8th International Plan-
ning Competition (IPC-2014).

