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bstract

Olive mill wastewater was treated by an aerobic bio-process at different values of pH (with or without addition of lime), for 45 days on a
aboratory scale, to evaluate the reduction of the organic load. The lipid content showed an appreciable change in relation to the applied treatment
oth for total lipids and for the different fractions (neutral lipids, monoglycerides and phospholipids). 13C NMR spectroscopy was performed on

nitial and final samples both raw and after lipid extraction. The main spectral differences were observed in the C-alkyl region (0–50 ppm), in the

O-alkyl/N-alkyl region (50–110 ppm), and in the C-carboxylic (160–200 ppm) region, providing information on the alterations occurring in the
ifferent biochemical entities composing this complex biomatrix (e.g. lipids and carbohydrates) according to the treatment.

2007 Elsevier B.V. All rights reserved.

; 13C

v
w
t
t
t
d
m
[

a
e
c
s

eywords: Olive mill wastewater; Aerobic bio-process; Lime treatment; Lipids

. Introduction

Olive mill wastewater (OMW) is the term given to the main
iquid by-product generated during the production of virgin
live oils. It is composed partly of the water originally con-
ained in the olives and partly of any other water added during
he production process, especially if a three-phase decanter is
sed [1]. OMW is an acidic matrix (pH 4–5.5) made up of
ater (83–96%), sugars (1.0–8.0%), nitrogenous substances

0.5–2.4%), organic acids (0.5–1.5%), pectins, mucilage and
annins (1.0–1.5%), lipids (0.02–1.0%) and inorganic substances
0.5–2.0%) [2–4]. OMW shows poor biodegradability, high
hytotoxicity due in particular to the presence of phenolic com-

ounds [5–7], free fatty acids (FFA) [1] and inorganic salts
notably potassium) [8–10] and a high microbial load in the
orm of bacteria, yeasts and fungi [11]. Specifically, the C2–C8
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NMR spectroscopy

olatile fatty acids (VFA) come from microbial metabolism,
hereas the C16–C18 long-chain fatty acids (LCFA) come from

he oil originally present in the olives, both showing phyto-
oxic effects and toxic effects towards microorganisms [1]. For
hese reasons, OMW have a rather high biochemical oxygen
emand (BOD) and chemical oxygen demand (COD), which
akes their disposal difficult in view of current regulations

12].
Preliminary treatment of OMW is recommended before its

gricultural use. A number of ways to process OMW have been
mployed in recent years, and can be divided into physico-
hemical and biological methods. Physico-chemical methods
uch as decantation, flocculation, ultrafiltration, thermal concen-
ration or incineration can be very expensive and do not solve
he problem completely since the sludge resulting from the pro-
ess must be disposed of too [13]. Biological methods based

n composting or anaerobic and aerobic digestion lead to the
roduction of proteins, poly-hydroxy-�-butyrates, exopolysac-
harides, etc. [14,15]. The latter methods have clear benefits due
o the potential utilisation of their bio-products [13].

mailto:hafidi@ucam.ac.ma
dx.doi.org/10.1016/j.jhazmat.2007.10.105
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Table 1
Physico-chemical characteristics of the raw OMW

Parameter Value

pH 4.85 ± 0.01
Total solids (TS) (g/L) 190.45 ± 1.47
Total organic carbon (% TS) 44.43 ± 1.99
Total Kjeldahl nitrogen (% TS) 0.62 ± 0.01
C/N ratio 71.66
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hemical oxygen demand (g/L) 234 ± 4
otal phenols (g/L) 0.79 ± 0.11
otal lipids (mg/g TS) 50.99 ± 1.21

Since OMW contains variable quantities of residual oil,
epending on the extraction process efficiency, and since this
ffluent is a putative candidate as a potentially suitable liquid
rowth medium for microorganisms [16], particularly during its
torage either in tanks or aerated lagoons [17], it appears useful
o see how the lipid content varies over time.

The aim of the present work was to follow the lipid fraction
f the treated olive mill wastewater by chromatography and 13C
MR spectroscopy, to study the lowering of the potential toxic-

ty of these effluents as reported by D’Annibale et al. [18] during
he aerobic treatment.

. Materials and methods

.1. Samples and treatments

Liquid effluent was taken from a modern three-phase cen-
rifugation olive-oil production unit in the Marrakech area
Morocco). The physico-chemical characteristics of the raw
MW are represented in Table 1. It was submitted to differ-

nt treatments (T1 and T2) for 45 days with three replicates for
ach treatment. Treatments were carried out in glass crystallising
ishes. The volume of effluent used was 2 L/dish.

For T1, ammonium nitrate (NH4NO3) was added to bring
he C/N ratio to 50.5, the pH was not adjusted (initial value
.85). Treatment T2 involved bringing the C/N ratio to 48.08
ith NH4NO3 and bringing the pH to 6.18 by addition of

ime Ca(OH)2. For both treatments, run at ambient temperature
∼25 ◦C), aeration was achieved by bubbling compressed air
hrough the liquids. After homogenisation, samples were taken
f the initial effluent at time 0 (after addition of ammonium
itrate for T1 and T2 and lime for T2), then after 15, 30 and
nally 45 days. Before studying the organic matter, samples were
ialysed (Spectra Por membrane MWCO 1000 Da) to eliminate
he excess salts, then freeze dried.

.2. Analysis methods

.2.1. Standard chemical analyses
All chemical analyses were repeated in triplicate and the

alues reported here are the means. The pH was measured at
mbient temperature according to the method of Rodier [19].

he total solids content was measured by drying at 105 ◦C for
4 h. The total organic carbon (TOC) was determined using
nne’s method based on potassium dichromate, as described
y Aubert [20]. Total Kjeldahl nitrogen (TKN) was determined

i
t
t
t
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sing the standard French procedure AFNOR T90-110 [21].
hemical oxygen demand (COD) was assayed by the method
f Rodier [22]. Total phenols were extracted and purified with
thyl acetate, as reported in Macheix et al. [23] and were assayed
ccording to Folin-Cioccalteu [24]. The total phenol concentra-
ion was determined using a standard solution of cafeic acid
20 mg per 100 mL methanol). The total lipid concentration was
etermined using the method of Folch et al. [25].

.2.2. Lipid assay

.2.2.1. Extraction. Lipid was extracted from 5 to 10 g of fresh
MW using the method of Folch et al. [25]. This involved

he OMW being macerated with 60 mL of a 2/1, v/v chloro-
orm/methanol mixture for 24 h at 4 ◦C. The supernatant was
hen recovered and filtered through a Durieux filter. This was
epeated twice more to ensure maximum recovery of the lipid.
he pooled supernatants were then shaken with 60 mL of 1%
aCl to separate the methanol from the chloroform phase con-

aining the lipid. The chloroform phase was then dried over anhy-
rous sodium sulfate (Na2SO4) and the total lipid content was
etermined after evaporation of the chloroform phase at 40 ◦C.

.2.2.2. Lipid speciation. The separation of neutral lipids (NL),
onoglycerides (MN) and phospholipids (PL) was achieved

y chromatography on a silica column (Sep-Pak Plus Silica,
aters, Milford, Massachusets) after elution with 25 mL chloro-

orm, 5 mL of a 49/1 chloroform/methanol mixture and 30 mL of
ure methanol, respectively [26]. The different fractions of lipid
btained were weighed after evaporation to dryness. All sol-
ents used, anhydrous and of analytical quality, were provided
y Carlo Erba-S.D.S., F-13124 Peypin.

.2.3. 13C nuclear magnetic resonance (13C NMR)
13C NMR spectra were obtained on the initial and final OMW

nd their solvent-treated residues for the two treatments by
issolution of about 150 mg in 3 mL 0.5 M NaOD. The spec-
ra were recorded on a Bruker WB-AM 300 spectrometer at
5.4 MHz with a 10 mm probe head. Chemical shifts (δ) are
eported in ppm, relative to 3-(trimethylsilyl)-propane sulfonic
cid sodium salt as external reference. To suppress nuclear
verhauser enhancement, a pulse program with inverse gated
roton decoupling was used. Spectra were acquired with a rep-
tition time between impulsions of 2.8 s, a sweep width of
6 700 Hz and a pulse width of 5 �s (35◦). 50 000–60 000 FID
les were accumulated. The FIDs were treated with a 50 Hz line-
roadening function. Integration of the spectra was performed
ith Bruker Win NMR software.

. Results and discussion

.1. Levels of total lipids and of the different lipid fractions

The variation of the levels of total lipids during processes 1
nd 2 is presented in Fig. 1. It can be noted that there is a steady

ncrease in total lipids for process 1: the levels rose from 50.99
o 64.59 mg/g TS after 45 days of treatment. This can be related
o the exponential growth phase of the microbial community
hat occurs during biological treatment [27]. For treatment 2 the
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Fig. 2. 13C NMR spectra of OMW before and after solvent lipid extraction at
initial and final stages of treatment 1. (a) 0 days before solvent lipid extraction; (b)
45 days before solvent lipid extraction; (c) 0 days after solvent lipid extraction;
(d) 45 days after solvent lipid extraction.
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ig. 1. Concentrations of total lipids at different stages of treatment 1 (T1) and
reatment 2 (T2).

evel of total lipids decreased, falling from 50.80 mg/g TS at the
tart of treatment to 45.19 mg/g TS at the end. This decrease is
ue to the regularly reported decomposition of the lipids of plant
nd microbial origin [28,29].

The concentrations of the different lipid fractions (NL, PL and
N) at different stages of treatments 1 and 2 are presented in

able 2. It can be seen that notable differences occur in the initial
ipid profile between processes 1 and 2, in particular, strong
osses of phospholipid which is more sensitive to lime-induced
ydrolysis (1.43 mg/g TS vs. 7.37 mg/g TS). The products of
his hydrolysis can be partly found in the strong increase of the

N group observed in process 2.
Concerning the evolution of the groups of lipids with time,

he variations in the neutral lipids, mainly composed of triglyc-
rides, follows that of total lipid, i.e. an increase for treatment 1
nd a decrease for treatment 2, in agreement with the microbi-
logical growth observed. For phospholipids, a certain level of
tability was noted for treatment 1 while for treatment 2, after
aving undergone heavy losses (due to lime-induced hydroly-
is) the PL increased owing to the growth of a new population
f microorganisms.

.2. 13C NMR

13C NMR spectra of the OMW at the initial and final stages of
ach process (treatments 1 and 2) before and after lipid extraction
re presented in Figs. 2 and 3. These spectra were interpreted
n the basis of the studies of Preston [30]; Barančı́ková et al.
31], Almendros et al. [32], Kögel-Knaber [33], Ait Baddi et
l. [34], Amir et al. [35] and Hafidi et al. [13]. The spectra
ere characterized by the presence of many signals in the area
f paraffinic carbon in alkyl chains (0 and 50 ppm), aliphatic

arbon substituted by oxygen and nitrogen and including the
ethoxyl groups of aromatic ethers (50 and 110 ppm), double

onded or aromatic carbon (110 and 160 ppm) and carboxylic
arbon in ester or amide (160–200 ppm).

able 2
oncentrations of neutral lipids, monoglycerides and phospholipids (mg/g TS) at different stages of the two treatments

Treatment 1 (days) Treatment 2 (days)

0 15 30 45 0 15 30 45

eutral lipids (mg/g TS) 42.38 42.30 48.73 55.14 46.47 42.50 41.77 42.45
onoglycerides (mg/g TS) 1.23 2.64 2.15 1.58 2.86 3.51 2.83 0.69

hospholipids (mg/g TS) 7.37 8.81 8.30 7.88 1.43 3.94 2.83 2.05
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Fig. 3. 13C NMR spectra of OMW before and after solvent lipid extraction at
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nitial and final stages of treatment 2. (a) 0 days before solvent lipid extraction; (b)
5 days before solvent lipid extraction; (c) 0 days after solvent lipid extraction;
d) 45 days after solvent lipid extraction.

In the area of alkyl carbons, the signal at 16.5 ppm was char-
cteristic of the final methyl group (–CH3). Signals from 20 to
2 ppm were attributed to CH2 groups in the long fatty acid
hains by Preston and Schnitzer [36], whereas the signal at
7 ppm was characterized as (CH2)n in the long chains of other
lkyls [37]. However, Ouatmane [38] attributed the presence of

he latter peak to ramified aliphatic structures and/or long chains
n humic acids.

The resonances observed between 40 and 105 ppm were gen-
rated by carbons bound directly to an oxygen heteroatom as

t
l
c
l

us Materials 154 (2008) 927–932

n alcohols and carbohydrates or nitrogen as in amines and
mino acids. These resonances could also be attributed to car-
ons bound to groups such as aldehydes and ketones [39]. The
ignals at 66, 70–80 and 105 ppm were found to correspond
o the �-d-glucopyranose units present in cellulose [39] and in
leuropeine, a compound of interest in OMW.

The aromatic region (110–160 ppm) can be divided into three
arts, one between 110 and 130 ppm for unsubstituted aromatic
arbons, another between 130 and 145 ppm for C-substituted
romatic carbons and the last between 145 and 160 ppm for

or N substituted aromatic carbons [35]. The signal in the
41–159 ppm range is assigned to phenolic carbons in lignin
nits [40]. This region can also be attributed to the resonance
f carbons in steroids such as cholesterol (121.3; 141.2 and
60.5 ppm) and ergosterol (119.4; 136.0 and 140.7 ppm) [41].

The carboxylic region (160–200 ppm) can be divided into
wo parts, one between 160 and 184 ppm for carboxylic acids
–COOH) mainly organic acid that are free or involved in esters
r amides, and the second between 184 and 200 ppm for the car-
onyl group (–C O) present in aldehydes, ketones and organic
cids [42]. In the present case, this region is of interest for the
ifferent fatty acids and particularly for the phospholipids char-
cterized by a carbonyl band between 173.0 and 173.4 ppm [43].
ther compounds such as pectin polysaccharides mainly present

n the cell wall pulp (hexuronic acids) [44], which also present
carbonyl group, could resonate at 176.8 and 177.4 ppm [45].

The NMR spectra in samples 1 and 2 (spectra 2-a and 2-b;
pectra 3-a and 3-b) presented the same general pattern at the
tart and at the end of the treatments suggesting that neither treat-
ent greatly modified the biochemical entities initially present

n the samples. With respect to spectrum 2a, which can be con-
idered as a reference for the study, large variations can be seen
or the peaks at 16.7 and 32.5 ppm as well as for the peak at
84.2 ppm in spectrum 3-a, which follows initial treatment with
ime. This results from the hydrolysis of esters, especially of fatty
cid esters, to give carboxylic acids. The same changes (spectra
-c and 3-c) were observed after solvent treatment, confirming
hat the lipid part of the samples was easily accessible to external
ctions (chemical removal or solvent extraction). For all sam-
les treated with solvent (spectra 2-c and 2-d; spectra 3-c and
-d), amplification is seen to occur in the continuum between 73
nd 79 ppm which corresponds to the simultaneous resonance
f C-2, C-3 and C-5 of polysaccharides such as the resonance
f pyranosides in cellulose and hemicellulose [46]. This part of
he spectrum is in agreement with the fact that OMW could rep-
esent a source of simple and complex sugars, which might be
basis for fermentation processes [47].

Integration of the C-alkyl region of the initial and final sam-
les proved to give identical values for the two treatments
Tables 3a and 3b), indicating that for the first treatment,
here was an increase in the percentage of C-alkyl derivatives
ttributed to the C-aliphatic of the fatty acids, while in treat-
ent 2, there was a decrease. In the C-carboxylic region, while
he decreases observed for the untreated samples were rather
ow, solvent treatment showed a notable decrease (4%) in C-
arboxylic, which could indicate the occurrence of a certain
evel of mineralisation of the organic matter, particularly from
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Table 3a
Carbon distribution at the initial and final stages for treatment 1 before and after
solvent lipid extraction

Stage C-alkyla O-alkyl/N-alkyla Aromatica Carboxylica

1–0 d 37.82 30.87 17.98 13.33
1–45 d 47.73 21.20 18.45 12.62
1–0 d s 16.41 48.35 14.15 21.08
1–45 d s 15.38 40.02 27.12 17.48

d: days; s: solvent lipid extraction.
a Values are expressed as percentages of the whole spectral area.

Table 3b
Carbon distribution at the initial and final stages for treatment 2 before and after
solvent lipid extraction

Stage C-alkyla O-alkyl/N-alkyla Aromatica Carboxylica

2–0 d 40.53 24.63 12.30 22.54
2–45 d 32.60 34.69 14.54 18.17
2–0 d s 21.10 43.11 13.58 22.21
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–45 d s 17.98 42.55 21.54 17.94

: days; s: solvent lipid extraction.
a Values are expressed as percentages of the whole spectral area.

he lipid part in treatment 2. In contrast, for C-aromatic, there
as a sharp increase in the signal, confirming the increase in aro-
aticity of the final products, as previously reported concerning

he transformation of polyphenols into polymerised aromatic
ompounds [7].

Based on the NMR determination of the carbon functions,
he different biochemical entities present in the organic matter
ere evaluated as follows (Tables 4a and 4b):

C-alkylx14/12; O-alkyl/N-alkylx30/12; C-aromaticx13/12

andC-aliphaticx44/12.
his enables an estimation to be made of their weight con-
ribution to the biomatrix. The resulting glycosidic carbon
ontribution in this study (30–52%) was of the same order as
hat reported elsewhere [47].

able 4a
arbon contribution to the biomatrix at the initial and final stages for treatment
before and after solvent lipid extraction

tage C-alkyl O-alkyl/N-alkyl Aromatic Carboxylic

–0 d 23.27 40.69 10.27 25.77
–45 d 31.83 30.30 11.42 26.45
–0 d s 8.23 51.96 6.59 33.22
–45 d s 8.49 47.31 13.89 30.31

: days; s: solvent lipid extraction.

able 4b
arbon contribution to the biomatrix at the initial and final stages for treatment
before and after solvent lipid extraction

tage C-alkyl O-alkyl/N-alkyl Aromatic Carboxylic

–0 d 23.08 30.06 6.51 40.35
–45 d 18.36 41.87 7.60 32.16
–0 d s 10.77 47.16 6.44 35.63
–45 d s 9.69 49.14 10.78 30.39

: days; s: solvent lipid extraction.
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This approach enables us to confirm the results of the method
ased on the integration areas, i.e. the differentiation between
he two treatments for the C-alkyl and the increase in the degree
f aromaticity. The variations in the O-alkyl/N-alkyl region
50–110 ppm) indicate that the lime treatment caused a fall in the
nitial levels of O-alkyl/N-alkyl derivatives (drop from 40.7 to
0.1%) to the advantage of C-carboxylic derivatives (rise from
5.8 to 40.4%), also affecting the C O-alkyl/C-carboxyl ratio
or samples 1-0d/2-0d which fell from 1.6 to 0.7%. This sug-
ests the degradation of certain carbohydrate derivatives such as
ectins to give uronic acids [44]. For treatment 1, comparison
f the initial, final and treated spectra showed a decrease in the
olysaccharides of about 5–10%, this source of carbon being
vailable for the synthesis of lipid. The difference between the
wo treatments for the production of lipid is therefore confirmed.
hus, for treatment 1, the increase in the C-alkyl and the constant
-carboxylic levels, giving rise to an increase in the C-alkyl/C-
arboxylic ratio between the initial and the final states, clearly
onfirms the conservation of the ester bonds of the fatty acids.
or treatment 2, the decrease in the C-alkyl derivatives is paral-

eled by a similar decrease in C-carboxylic, leading to a stable
atio of 0.6, confirming that the lime treatment also altered the
ipid entities.

. Conclusion

Monitoring the behaviour of lipids during the aerobic treat-
ent of olive mill wastewater for 45 days shows notable

ariations for total lipid and its component fractions (neu-
ral lipids, monoglycerides and phospholipids) depending on
hether lime was added before microbial degradation or not.

13C NMR spectroscopy carried out on the initial and final
amples before and after solvent extraction revealed large dif-
erences in the spectrum between the initial sample (1-0d) and
ts lime-treated counterpart (2-0d). The main spectral differ-
nces were observed in the C-alkyl region (0–50 ppm), in the C
-alkyl/N-alkyl region (50–110 ppm), and in the C-carboxylic

160–200 ppm) region, providing information on the alterations
ccurring in the different biochemical entities composing this
omplex biomatrix (e.g. lipids and carbohydrates) according to
he treatment.
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