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Abstract

In this paper, we consider the so-called Shape Invariant Model which stands for the

estimation of a function submitted to a random translation in a white noise model. We

are interested in such model when the law of the deformations is unknown. We observe n
independent occurrences of a process defined through a randomly shifted unknown periodic

function f0 on the interval [0, 1], translated by a random shift τ whose law g0 is unknown

and corrupted by an additive noise modelled by a standard Brownian motions W . We aim

to recover the law of the process Pf0,g0 as well as f0 and g0.
In this perspective, we adopt a Bayesian point of view and find prior on f and g such that

the posterior distribution concentrates around Pf0,g0 and possesses some good frequentist

asymptotic properties when n goes to +∞. We intensively use some Bayesian non parametric

tools coupled with mixture models and believe that some of our results obtained on this

mixture framework may be also of interest for frequentist point of view.
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1 Introduction

We are interested in this work in the so-called Shape Invariant Model (SIM). Such model aims
to describe a statistical process which involves a deformation of a functional shape according to
randomized geometric variability. Such geometric deformation of a common unknown shape may
be well-suited in various and numerous fields, like image processing (see for instance [AGP91] or
[PMRC10]). It corresponds to particular case of the general Grenander’s theory of shapes (see
[GM07] for a detailed introduction on this topic). This kind of model is also useful in medicine:
the recent work of [Big11] deals with the differentiation between normal and arrhythmic cycles
in electrocardiogram). It appears in genetics if one deals with some delayed activation curves
of genes when drugs are administrated to patients, or in Chip-Seq estimation when translations
in protein fixation yield randomly shifted counting processes (see for instance [MMW07] and
[BGKM12]) It is also occurs in econometric for the analysis of Engel curves [BCK07], in landmark
registration [Big06]. . .

Such model has received a large interest in the statistical community as pointed by the large
amount of references on this subject. Some works consider a semi-parametric approach for the
estimation (self-modeling regression framework used by [KG88] and [BGV09]). In [Cas12], the
author applies some Bayesian techniques to obtain also statistical results on SIM in a semi-
parametric setting when the level of noise on observations asymptotically vanishes. Older ap-
proaches use parametric setting (see [GM01] and the discussion therein for an overview) and
study the so-called Fréchet mean of pattern.

Standard M -estimation or Bayesian methods are exploited in [BGL09] or [AAT07] and same
authors develop [AKT10] a nice stochastic algorithm to run estimation in such model. Some
recent works follow some testing strategies to obtain curve registration [CD11], [Col12]. At last,
note that [BG10] obtains some minimax adaptive results for non-parametric estimations in the
Shape Invariant Model when one knows the law of the randomized translations.

All these works are interested in the statistical process of deformation of the "mean common
shape" and generally aim to recover this unknown functional object according to noisy i.i.d.
observations. Moreover, the Shape Invariant Model is considered as a standard benchmark for
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statistical methods which aim to compute estimations in some more general deformable models.
Of course, the SIM could be extended to some more general situations of geometrical deformations
described through an action of a finite dimensional Lie Group (see [BCG12] for a precise non
parametric description). We have decided to restrict our work here to the simplest case of the
one dimensional Lie group of translation S

1 to warp the functional objects.
This work has been inspired by several discussions with Alain Trouvé about the work [AKT10]

for the study of the Shape Invariant Model. We aim to extend their parametric Bayesian frame-
work to the non-parametric setting and then study the behaviour of some posterior distributions.
Hence, the motivation of the paper is mainly theoretical: we want to describe the asymptotic evo-
lution of the posterior probability distributions when data are coming from the SIM. Of course,
we need to build suitable prior which yield nice contraction rate for this posterior distribution.
We have decided to consider the general case where both the functional shape and the probabil-
ity distribution of the deformations are unknown. Indeed, it corresponds to the more realistic
case. From the best of our knowledge, no sharp statistical results have been derived yet in this
non-parametric situation.

Our work will describe the evolution of the posterior distribution when the number of obser-
vations grows to +∞. It is an important difference with the study of the asymptotically vanishing
noise situation (σ → 0). It is itself a special feature of the Shape Invariant Model: there is no
obvious Le Cam equivalence of experiments (see [LCY00]) for the SIM between the experiments
when n 7→ +∞ and when σ 7→ 0. It is illustrated by the very different minimax results ob-
tained in [BG10] (n 7→ +∞) and in [BG12] (σ 7→ 0). We will use in the sequel quite standard
tools of Bayesian non parametric methods to obtain some frequentist consistency of Bayesian
procedures. Such tools rely on some important contributions of [BSW99] and [GGvdV00] for
posterior behaviour in general situations, as well as Bayesian properties on mixture models stated
in [GvdV01] and [GW00].

The paper is organised as follows. Section 2 presents a sharp description of the Shape
Invariant Model, as well as standard elements on Bayesian and Fourier analysis. It also provides
some notations for mixture models. It ends with statements of our main results. Section 3
presents the proof of the posterior contraction around the true law on functional curves, which
is our first main result. Section 4 provides some general identifiability results and up to these
identifiability conditions, shows the posterior contraction on the functional objects themselves.
At last, this section also establishes a lower bound result of reconstruction in a frequentist
paradigm. We end the paper with numerous challenging issues.

We gather in the appendix sections some technical points: the metric description of the Shape
Invariant Model embedded in a special randomized curves space and the calibration of suitable
prior for the SIM.

Acknowledgements: S. G. is indebted to Jean-Marc Azaïs, and Laurent Miclo for stimulating
discussions related to some technical parts of this work. Authors also thank Jérémie Bigot, Ismaël
Castillo, Xavier Gendre, Judith Rousseau and Alain Trouvé for enlightening exchanges.

2 Model, notations and main results

2.1 Statistical settings

Shape Invariant Model. We recall here the random Shape Invariant Model (SIM). We assume
f0 to be a function which belongs to a subset F of smooth functions. We also consider a
probability measure g0 which is an element of the set M([0, 1]). This last set stands for the set of
probability measures on [0, 1]. We observe n realizations of noisy and randomly shifted complex
valued curves Y1, . . . , Yn coming from the following white noise model

∀x ∈ [0, 1] ∀j = 1 . . . n dYj(x) := f0(x− τj)dx+ σdWj(x). (2.1)
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Here, f0 is the mean pattern of the curves Y1, . . . , Yn although the random shifts (τj)j=1...n

are sampled independently according to the probability measure g0. Moreover, (Wj)j=1...n are
independent complex standard Brownian motions on [0, 1] and model the presence of noise in
the observations, the noise level is kept fixed in our study and is set to 1 for sake of simplicity.

In the sequel, f−τ will denote the pattern f shifted by τ , that is to say the function x 7→
f(x − τ). Complex valued curves are considered here for the simplicity of notations. However
all our results can be adapted to the simpler case where all curves Yj’s are real valued. A
complex standard Brownian motion Wt on [0, 1] is such that W1 is a standard complex Gaussian
random variable, whose distribution is denoted by NC(0, 1); a standard complex Gaussian random
variable have independent real and imaginary parts with a real centered Gaussian distribution
of variance 1/2.

This work will address the question of the behaviour of some posterior distributions on F ⊗
M([0, 1]) given some functional n-sample (Y1, . . . , Yn). Since our work will be mainly asymptotic
with n → +∞, we intensively use some standard notation such as "." which refers to an
inequality up to a multiplicative absolute constant. In the meantime, a ∼ b stands for a/b −→ 1.

Bayesian framework. Since most of statistical works on the SIM are frequentists, we have
decided to briefly recall here the Bayesian formalism following the presentation of [GGvdV00].
Familiar readers can thus omit this paragraph.

Functional objects f0 and g0 we are looking for, belong to F ⊗M([0, 1]) and for any couple
(f, g) ∈ F⊗M([0, 1]), equation (2.1) describes the law of one continuous curve. Its law is denoted
Pf,g and possesses a density pf,g with respect to the Wiener measure on the sample space. Since
f0 and g0 are unknown, Pf0,g0 is also unavailable but belongs to a set P of probability measure
over the sample space. This set P is the set of all possible measures described by (2.1) when
(f, g) varies into F ⊗M([0, 1]).

Given some prior distribution Πn on P (generally defined through prior on F ⊗ M([0, 1])),
Bayesian procedures are generally built using the posterior distribution defined by

Πn (B|Y1, . . . , Yn) =
∫

B

∏n
j=1 p(Yj)dΠn(p)

∫

P
∏n
j=1 p(Yj)dΠn(p)

,

which is a random measure on P that depends on the observations Y1, . . . , Yn. For instance,
Bayesian estimators can be obtained using the mode, the mean or the median of the posterior
distribution. This is exactly the approach adopted by [AKT10] which is mainly dedicated to
compute such a posterior mean in a parametric setting with a stochastic EM algorithm.

The posterior distribution is then said consistent if it concentrates to arbitrarily small neigh-
bourhoods of Pf0,g0 in P with a probability tending to 1 when n growth to +∞. One frequentist
property of such posterior distribution describes the contraction rate of such neighbourhoods
meanwhile still capturing most of posterior mass. According to equation (2.1), we thus tackle
such Bayesian consistency and compute such convergence rates in the frequentist paradigm. Of
course, such properties will highly depend on the metric structure of the sets P and F .

Functional setting and Fourier analysis. Without loss of generality, the function f0 is
assumed to be periodic with period 1 and to belong to a subset F of L2

C
([0, 1]), the space of

squared integrable functions on [0, 1] endowed with the euclidean norm ‖h‖ :=
∫ 1
0 |h(s)|2ds.

Moreover, each element h ∈ L2
C
([0, 1]) may naturally be extended to a periodic function on R of

period 1. Since we will intensively use some Fourier analysis in the sequel, let us first recall some
notations: i will stand for the complex number such that i

2 = −1. The Fourier coefficients of h
are denoted

θℓ(h) :=

∫ 1

0
e−i2πℓth(t)dt. (2.2)

All along the paper, we will often use the parametrisation of any element of h ∈ L2
C
([0, 1])

through its Fourier expansion and will simply use the notation (θℓ)ℓ∈Z instead of (θℓ(h))ℓ∈Z.
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Our work is dedicated to the analysis of SIM when F models smooth functions of [0, 1].
Hence, natural subspaces of L2

C
([0, 1]) are Sobolev spaces Hs with a smoothness parameter s:

Hs :=

{

f ∈ L2
C([0, 1]) |

∑

ℓ∈Z
(1 + |ℓ|2s)|θℓ(f)|2 < +∞

}

.

A useful set of functions for the identifiability part will also be the following restriction of Hs:

Fs :=
{

f ∈ L2
C([0, 1]) | θ1(f) > 0 and

∑

ℓ∈Z
(1 + |ℓ|2s)|θℓ(f)|2 < +∞

}

.

In the sequel, we aim to find prior on P that reaches good frequentist properties, and if possible
adaptive with the smoothness parameter s since this parameter is generally unknown. We will
consider only regular case when s ≥ 1, the quantity

∑

ℓ ℓ
2|θℓ|2 is thus bounded and we denote

the Sobolev norm

‖θ‖H1 :=

√
∑

ℓ∈Z
ℓ2|θℓ|2.

It will also be useful to consider in some cases Fourier "thresholded" elements of Hs. Hence, we
set for any integer ℓ (which is the frequency threshold)

Hℓ
s := {f ∈ Hs | ∀|k| > ℓ θk(f) = 0} .

Mixture model. According to equation (2.1), we can write in the Fourier domain that

∀ℓ ∈ Z ∀j ∈ {1 . . . n} θℓ(Yj) = θ0ℓ e
−i2πjτj + ξℓ,j, (2.3)

where θ0 := (θ0ℓ )ℓ∈Z denotes the true unknown Fourier coefficients of f0. Owing to the white noise
model, the variables (ξℓ,j)ℓ,j are independent standard (complex) Gaussian random variables:
ξℓ,j ∼i.i.d. NC(0, 1),∀ℓ, j.

For sake of simplicity, γ will refer to γ(z) := π−1e−|z|2 ,∀z ∈ C, the density of the standard
complex Gaussian centered distribution NC(0, 1), and γµ(.) := γ(. − µ) is the density of the
standard complex Gaussian with mean µ. We keep also the same notation for p dimensional
complex Gaussian densities γ(z) := π−pe−‖z‖2 ,∀z ∈ C

p, where ‖z‖ is the euclidean p dimensional
norm of the complex vector z.

For any frequence ℓ, equation (2.1) implies that θℓ(Y ) follows a mixture of complex Gaussian
standard variables with mean θ0ℓ e

−i2πℓϕ, ϕ ∈ [0, 1]:

θℓ(Y ) ∼
∫ 1

0
γθ0ℓ e−i2πℓϕdg(ϕ).

In the sequel, for any phase ϕ ∈ [0, 1] sampled according to any distribution g, and for any
θ ∈ ℓ2(Z), θ • ϕ will denote the element of ℓ2(Z) given by

∀ℓ ∈ Z (θ • ϕ)ℓ := θℓe
−i2πℓϕ.

When θ is a complex vector, for instance θ = (θ−ℓ, . . . , θℓ), we keep the same notation θ • ϕ to
refer to the 2ℓ + 1 dimensional vector (θ−ℓei2πℓϕ, . . . , θ0, θ1e−i2πϕ, . . . , θℓe

−i2πℓϕ). It corresponds
to a rotation of each coefficient θℓ around the origin with an angle 2πℓϕ. According to this
notation, the law of the infinite series (of Fourier coefficients of Y ) can thus be rewritten as

θ(Y ) ∼
∫ 1

0
γθ0•ϕ(.)dg(ϕ).

One should remark the important fact that from one frequency to another, the rotations used
to build θ(Y ) are not independent, which traduces the fact that coefficients θℓ(Y ) are highly
correlated.
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2.2 Notations on Mixture models

Our study will intensively use some classical tools of mixture models, see for instance the papers
of [GvdV01] or [GW00]. We thus choose to keep some notations already used in such works.

For any vector θ ∈ ℓ2
C
(Z) corresponds a function f ∈ L2([0, 1]) according to equation (2.2)

and for any measure g ∈ M([0, 1]), Pθ,g will refer to the law of the vector of ℓ2(Z) described by
the location mixture of normals variables:

Pθ,g :=

∫ 1

0
γθ•ϕ(.)dg(ϕ).

This mixture model is of infinite dimension since θ belongs to ℓ2(Z). Following an obvious
notation shortcut, Pf,g will be its equivalent for the functional law on curves derived from Pθ,g.
When θ is of finite length k, pθ,g will be the density with respect to the Lebesgue measure on C

k

of the law Pθ,g:

∀z ∈ C
k pθ,g(z) :=

∫ 1

0
γ(z − θ • ϕ)dg(ϕ).

We also use standard objects on probability distances and covering numbers of metric spaces.
These objects are precisely described in the Appendix (paragraph A).

Bayesian frequentist consistency rate. In our setting, d is chosen according to one of the
metric defined above (dH or dV T ) on the set P := {Pf,g|(f, g) ∈ Hs ⊗M([0, 1])}. We can now
remind Theorem 2.1 of [GGvdV00] which will be useful for our purpose. Definitions of standard
objects such as D(ǫ,P, d) are given in Appendix A.

Theorem 2.1 (Posterior consistency and convergence rate, [GGvdV00]). Assume that a sequence
ǫn with ǫn → 0 and nǫ2n → +∞, a constant C > 0, and a sequence of sets Pn ⊂ P satisfy

logD(ǫn,Pn, d) ≤ nǫ2n (2.4)

Πn (P \ Pn) ≤ e−nǫ
2
n(C+4) (2.5)

Πn
(
Pf,g ∈ P|dKL(Pf0,g0 ,Pf,g) ≤ ǫ2n, V (Pf0,g0 ,Pf,g) ≤ ǫ2n

)
≥ e−nǫ

2
nC . (2.6)

Then there exists a sufficiently large M such that Πn
(
Pf,g : d(Pf0,g0 ,Pf,g) ≥Mǫn|Y1, . . . Yn

)
→ 0

in Pf0,g0 probability.

The posterior concentration rate obtained in the above result is ǫn. The growing set Pn is
referred to as a Sieve over P. Generally, this rate ǫn can be compared to the classical frequentist
benchmark: for instance [GGvdV00] obtained for the Log Spline model a contraction rate ǫn =
n−s/(2s+1) when the unknown underlying density belongs to an Hölder class Cs([0, 1]), and this
rate is known to be the optimal one (in the sense that it is the minimax one) in the frequentist
paradigm over Hölder densities of regularity s. Similarly, the recent work of [RR12] considers
the situation of density estimation for infinite dimensional exponential families and reaches also
contraction rates close or equal to the known optimal frequentist one.

2.3 Bayesian prior and posterior concentration in the randomly shifted curves

model

We detail here the Bayesian prior Πn on P used to obtain a polynomial concentration rate. Note
that such prior will be in our work independent on the unknown smoothness parameter s. As
pointed in the paragraph above, it is sufficient to define some prior on the space Hs ⊗M([0, 1])
since equation (2.1) will then transport this prior to a law Πn on P. The two parameters f and
g are picked independently at random following the next prior distributions.
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Prior on f . The prior on f is slightly adapted from [RR12]. It is defined on Hs through

π :=
∑

ℓ≥1

λ(ℓ)πℓ.

Given any integer ℓ, the idea is to decide to randomly switch on with probability λ(ℓ) all the
Fourier frequencies from −ℓ to +ℓ. Then, πℓ is a distribution defined on ℓ2(Z) such that πℓ :=
⊗k∈Zπkℓ and

∀k ∈ Z πkℓ = 1|k|>ℓδ0 + 1|k|≤ℓNC(0, ξ
2
n).

The randomisation of selected frequencies is done using λ, a probability distribution on N
∗ which

satisfies for ρ ∈ (1, 2):

∃(c1, c2) ∈ R+ ∀ℓ ∈ N
∗ e−c1ℓ

2 logρ ℓ . λ(ℓ) . e−c2ℓ
2 logρ ℓ.

The prior π depends on the variance of the Gaussian laws ξn used to sample the Fourier
coefficients. In the sequel, we use a variance that depends on n according to

ξ2n := n−µs(log n)−ζ , (2.7)

where µs and ζ are parameters that may depend on s (non adaptive prior) or not (adaptive
prior).

Prior on g. As our model does not seem so far from a mixture normal model, a natural prior
on g is built according to a Dirichlet process following the ideas of [GvdV01]. Given any finite
base measure α that has a positive continuous density on [0, 1] w.r.t. the Lebesgue measure, the
Dirichlet process Dα generates a random probability measure g on [0, 1]. For any finite partition
(A1, . . . , Ak) of [0, 1], the probability vector (g(A1), . . . , g(Ak)) on the k-dimensional simplex
has a Dirichlet distribution Dir(α(A1), . . . , α(Ak)). Such process may be built according to the
Stick-Breaking construction (see for instance [Fer73]).

2.4 Main results

Using the prior defined above, we obtain the following theorem on the randomly SIM.

Theorem 2.2. Assume that f0 ∈ Hs with s ≥ 1, then the values µs = 2/(2s + 2) and ζ = 0 in
the definition of ξn yield a non adaptive prior such that

Πn
{
Pf,g s.t. dH(Pf,g,Pf0,g0) ≤ ǫn|Y1, . . . Yn

}
= 1 +OPf0,g0

(1)

when n −→ +∞. Moreover, the contraction rate ǫn is given by

ǫn = n−s/(2s+2) log n.

The values µ = 1/4 and ζ = 3/2 yield the contraction rate

Πn
{
Pf,g s.t. dH(Pf,g,Pf0,g0) ≤ ǫn|Y1, . . . Yn

}
= 1 +OPf0,g0

(1)

when n −→ +∞ with

ǫn =

{
n−s/(2s+2) log n if s ∈ [1, 3]

n−3/8 log n if s ≥ 3.

Let us briefly comment this result. It describes the posterior concentration around some
neighbourhood of the true law Pf0,g0 within a polynomial rate. Our prior is adaptive with

the regularity s as soon as s ∈ [1, 3] setting ξ2n = n−1/4(log n)−3/2. For this range of s, the
convergence rate is n−2s/(2s+2) up to a logarithmic term. To the best of our knowledge, the
minimax frequentist rate is unknown for the problem on recovering Pf0,g0 when both f0 and g0
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are unknown. An interpretation of such polynomial rate is rather difficult to provide. It may be
interpreted as −2s/(2s + d) where d is the number of dimension to estimate in the model (f0

and g0). When s becomes larger than 3, the rate of Theorem (2.2) is "blocked" to 3/8 (which
corresponds to s/(2s + 2) when s = 3) and does not match with s/(2s + 2). This difficulty is
mainly due to the important condition w2

ǫ . lǫ in Theorem 3.1.
At last, the non adaptive prior based on ξ2n = n−2/(2s+2) recovers the good rate −s/(2s+ 2)

for all s larger than 1.
The former result establish a result on the law Pf,g ∈ P. It is also possible to derive a

second result on the objects f ∈ Hs themselves, it provides a somewhat quite weak result on the
posterior convergence towards the true objects f0 and g0. In this view, we define

Mν([0, 1]) :=
{
g ∈ M([0, 1]) | ∃(c, C) ∈ R

∗
+ × R

∗
+ : ∀k ∈ Z c|k|−ν < |θk(g)| < C|k|−ν

}
.

Theorem 2.3. For the adaptive prior using ξn = n−1/4(log n)−3/2, the two following results
hold.

i) Assume that f0 ∈ Fs with s ≥ 1 and g0 ∈ Mν([0, 1]) with ν > 1, then there exists a
sufficiently large M such that

Πn
{
g s.t.‖g − g0‖ ≤Mµn|Y1, . . . Yn

}
= 1 +OPf0,g0

(1)

with the contraction rate µn = (log n)−ν .
ii) In the meantime, we also have

Πn
{
f s.t.‖f − f0‖ ≤Mµ̃n|Y1, . . . Yn

}
= 1 +OPf0,g0

(1)

when n −→ +∞. Moreover, the contraction rate νn is given by

µ̃n = (log n)−
4sν

2s+2ν+1 .

In paragraph 4.3, we will stress the fact that it is indeed impossible to obtain frequentist
convergence rates better than some power of log n even if our lower bound does not match
exactly with the upper bound obtained in the previous result.

Theorem 2.4. i) The Shape Invariant Model is identifiable as soon as (f0, g) ∈ Fs×Mν([0, 1]):
if ν > 1, the canonical application

I : (f0, g0) ∈ Fs ×Mν([0, 1]) 7−→ Pf0,g0 is injective.

ii) Assume that (f0, g0) ∈ Fs ×Mν([0, 1]), then there exists a sufficiently small c such that
the minimax rate of estimation over Fs ×Mν([0, 1]) satisfies

lim inf
n−→+∞

(log n)2s+2 inf
f̂∈Fs

sup
(f,g)∈Fs×Mν([0,1])

‖f̂ − f‖2 ≥ c,

and
lim inf
n−→+∞

(log n)2ν+1 inf
ĝ∈Fs

sup
(f,g)∈Fs×Mν([0,1])

‖ĝ − g‖2 ≥ c.

This result is far from being contradictory with the polynomial rate obtained in Theorem 2.2.
One can make at least three remarks:

• The first result provides a contraction rate on the probability distribution in P and not on
the functional space Fs.

• The link between (f0, g0) and Pf0,g0 relies on the identifiability of the model, and the lower
bound is derived from a net of functions (fi, gi)i, which are really hard to identify according
to the application I . Around these net of functions, the injection is very flat and the two
by two differences of I(f i, gi) are small.
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• In fact, [BG10] have shown that in the SIM, when n −→ +∞, it is impossible to recover the
unknown true shifts. The abrupt degradation between polynomial and logarithmic rates
also occurs owing to such reason. One may argue that such artefact could be avoided if
one chooses a different distance on Fs, which may be better suited to our framework, such
as

dFrechet(f1, f2) := inf
τ∈[0,1]

‖f1(.− τ)− f2(.)‖.

We do not have purchased further investigations with such distance on Fs but it would
certainly be a nice progress to obtain posterior contraction using such distance. We expect
a polynomial rate for such distance, but it is clearly an open (and probably hard) task.

3 Proof of Theorem 2.2

We aim to check conditions (2.5) and (2.6) and then apply Theorem 2.1. In this view, we first
define in section 3.1 a sieve Pℓǫ,wǫ , and our goal is to find some optimal calibration of ǫ, lǫ
and wǫ with respect to n. We thus need to find a lower bound of the prior mass around some
Kullback-Leibler neighbourhood of Pf0,g0 ∈ P. These sets are defined as

Vǫn(Pf0,g0 , dKL) =
{
Pf,g ∈ P|dKL(Pf0,g0 ,Pf,g) ≤ ǫ2n, V (Pf0,g0 ,Pf,g) ≤ ǫ2n

}
.

This will be done indeed considering Hellinger neighbourhoods instead of Kullback-Leibler ones.
A link between these two kinds of neighbourhood is given in section 3.2. In section 3.3, we work
with the Hellinger neighbourhoods to exhibit some admissible sizes for ǫn, ℓn and wn. At last,
we prove Theorem 2.2 in section 3.4.

In all this section, we delay most technical proofs to the Appendix.

3.1 Entropy estimates

We first establish some useful results on the complexity of our model Pf,g when f lives in Hs

and g ∈ M([0, 1]) in various situations (f known, unknown, parametric or not).

3.1.1 Case of known f

We first give some useful results when f is known and belongs to a finite dimensional vector space
(the number of active Fourier coefficients is restricted to [−ℓ, ℓ] for a given ℓ). Then ℓ will be
allowed to grow with n and depend on a parameter ǫ introduced below. Hence, f is described by
the parameter θ = (θ−ℓ, . . . , θ0, . . . , θℓ), we thus define the set of all possible Gaussian measures

Aθ := {γθ•ϕ, ϕ ∈ [0, 1]} .

Following the arguments of [GW00], it is possible to establish the following preliminary result.

Proposition 3.1. For any sequence θ ∈ C
2ℓ+1, one has

N[](ǫ,Aθ, dH) ≤
4π
√

2(2ℓ + 1)‖θ‖H1

ǫ
(1 + o(1)),

where o(1) goes to zero independently on ℓ and θ as ǫ→ 0, and

logN(ǫ,Aθ, dH) . log ℓ+ log ‖θ‖H1 + log
1

ǫ
.

Assume now that g possesses a finite number of k points in its support, one can deduce from
the proposition above a simple corollary that exploits the complexity of the simplex of dimension
k − 1 (see for instance the proof of Lemma 2 in [GW00]).
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Proposition 3.2. Assume f parametric and known (θ ∈ C
2ℓ+1) and define

Mk
θ :=

{
k∑

i=1

g(ϕi)γθ•ϕi,Id| ϕi ∈ [0, 1], g(ϕi) ≥ 0,∀i ∈ {1 . . . K} and

k∑

i=1

g(ϕi) = 1

}

for a number of components k that may depend on ǫ (as ℓ does). Then

H[](ǫ,Mk
θ , dH) . k

(

log ℓ+ log ‖θ‖H1 + log
1

ǫ

)

.

We then naturally provide a description of the situation when f is known and parametrized by
an infinite sequence θ ∈ ℓ2(Z). According to the previous computations, and using a truncation
argument at frequency ℓǫ = ǫ−1/s for Sobolev space Hs, one can show the following result.

Corollary 1. Assume f ∈ Hs known for s ≥ 1 (θ := θ(f) such that
∑

j∈Z |θj|2|j|2s < +∞),

using the same set Aθ as in Proposition 3.1 with ℓǫ = ǫ−1/s, then

H[](ǫ,Aθ, dH) .
s+ 1

s
log

1

ǫ
+ log ‖θ‖H1 .

Similarly, one also has

H[](ǫ,Mk
θ , dH) . k

(
s+ 1

s
log

1

ǫ
+ log ‖θ‖H1

)

.

The next step is to consider continuous mixture for g, which is the more natural case. For f
known, let

Pf := {Pf,g | g ∈ M([0, 1])} .
Once again, we will only consider functions f with null Fourier coefficients of order higher than
ℓǫ. For sake of simplicity, we will omit the dependence on ǫ with the notation ℓ.

It would be quite tempting to use results of [GvdV01] to bound the bracketing entropy of
Pf , but indeed as pointed by [MM11] applying directly the bounds obtained in Lemma 3.1 and
Lemma 3.2 of [GvdV01] to our setting yields a too weak result: the size of upper bound on
H[](ǫ,Pf , dH) will have a too strong dependence on ℓ. By the way, we have to carefully adapt
the approach of [GvdV01] to obtain a sufficiently sharp upper bound of the entropy of Pf . Such
bound is given in the next result, in which we provide a majorization of the entropy with respect
to the Total Variation distance which is easier to handle here. Note that all the previous results
are still true if we use dV T instead of dH since (A.2) also permits to retrieve entropy bounds for
dH from entropy bounds for dV T .

Proposition 3.3. Let ǫ > 0 and s > 0, if log 1
ǫ . ℓ and f ∈ Hℓ

s is such that ‖θ‖2 . 2ℓ+1, then

logN(ǫ,Pf , dV T ) . ℓ2
(

log
1

ǫ
+ log ‖θ‖H1

)

.

If furthermore w .
√
2ℓ+ 1 then

sup
f∈Hℓ

s:‖θ(f)‖≤w
logN(ǫ,Pf , dV T ) . ℓ2

(

log
1

ǫ
+ log ℓ

)

.

The second inequality opens the way for the case of unknown f given below. It is possible
since in the first inequality we have carefully expressed the dependency on f and ℓ.

The method to build an ǫ-covering of Pf is in two steps:

• approximate any mixture g by a finite mixture g̃ such that dV T (Pθ,g,Pθ,g̃) ≤ ǫ/2, with a
number of components of the finite mixture g̃ uniformly bounded in g (depending on f and
ǫ);

• use Proposition 3.2 for the finite mixture to well approximate Pθ,g̃.

The proof itself is delayed to the Appendix.
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3.1.2 Case of unknown f

We now describe the picture when f is unknown, which is the main objective of this paper. We
assume that f belongs to Hs. In order to bound the bracketing entropy, we define a sieve over
Hs which depends on a frequency cut-off ℓ and a size parameter w. We then get

Pℓ,w :=
{

Pf,g | f ∈ Hℓ
s, ‖θ(f)‖ ≤ w, g ∈ M([0, 1])

}

.

Theorem 3.1. Let be given ǫ > 0 small enough, and assume that ℓǫ and wǫ are such that
log 1

ǫ . lǫ and wǫ .
√
ℓǫ, then

logN(ǫ,Pℓǫ,wǫ , dV T ) . l2ǫ

(

log
1

ǫ
+ log ℓǫ

)

.

The proof of Theorem 3.1 is based on two simple results. The first one is Girsanov’s formula
obtained by [BG10] in appendix A.2.2 (in the case of known g): it can be extended to the
situation of unknown g and complex trajectories as in (2.1), which leads to

dPf,g
dPf0,g0

(Y ) =

∫ 1
0 exp

(
2ℜe〈f−α1 , dY 〉 − ‖f−α1‖2

)
dg(α1)

∫ 1
0 exp (2ℜe〈f0,−α2 , dY 〉 − ‖f0,−α2‖2) dg0(α2)

, (3.1)

for any measurable trajectory Y .
The second result is given in the following lemma.

Lemma 3.1. Let f and f̃ be any functions in L2
C
([0, 1]), g be any shift distribution in M([0, 1]),

then

dV T (Pf,g,Pf̃ ,g) ≤
‖f − f̃‖√

2
.

Proof of Theorem 3.1. The idea of the demonstration is to build a ǫ-covering of Pℓ,w with ǫ/2-
coverings for f and g. First, let Pf,g and Pf̃ ,g̃ two elements of Pl,w and remark that by the
triangle inequality

dV T (Pf,g,Pf̃ ,g̃) ≤ dV T (Pf,g,Pf̃ ,g) + dV T (Pf̃ ,g,Pf̃ ,g̃).

We will look for a covering method that will use the inequality above and a tensorial argument,
it requires to bound both terms. The majorization of the first one comes from Lemma 3.1. The
second term is handled uniformly in f̃ in Proposition 3.3.

Now, we build ǫ/2-coverings of Pf,g for fixed g from an ǫ/
√
2-covering of f for the L2-norm:

logN
(

ǫ/
√
2,
{

f ∈ Hℓǫ
s , ‖θ(f)‖ ≤ wǫ

}

, ‖ · ‖
)

. ℓǫ log
wǫ
ǫ

= o

(

ℓ2ǫ log
1

ǫ

)

.

According to inequality (A.2) and since log 1
ǫ2

. log 1
ǫ , we can easily deduce the next corollary.

Corollary 2. Let be given ǫ > 0 small enough, and assume log 1
ǫ . ℓǫ and wǫ ≤

√
2ℓǫ + 1, then

logN(ǫ,Pℓǫ,wǫ , dH) . ℓ2ǫ

(

log
1

ǫ
+ log ℓǫ

)

.

Remark 3.1. i) Even if the model studied here is a very special case of normal mixture models,
one may think that such kind of results may help the analysis of more general mixture cases within
a growing dimension setting.

ii) In our case, we will use a much higher choice of lǫ than log 1
ǫ . This choice will be fixed in

section 3.4.
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3.2 Link between Kullback-Leibler and Hellinger neighbourhoods

We first recall a useful result of Wong & Shen given as Theorem 5 in [WS95]. The following
result enables to handle Hellinger neighbourhood instead of Vǫn(Pf0,g0 , dKL), which is generally
easier for mixture models.

Theorem 3.2 (Wong & Shen). Let µ and ν be two measures such that µ is a.c. with respect to
ν with a density q = dµ/dν. Assume that dH(µ, ν)

2 =
∫
[
√
q − 1]2dν ≤ ǫ2 and that there exists

δ ∈ (0, 1] such that

M2
δ :=

∫

q≥e1/δ
qδ+1dν <∞. (3.2)

Then, for ǫ small enough, there exists a universal constant C large enough such that

dKL(µ, ν) =

∫

q log qdν ≤ C log(Mδ)ǫ
2 log

1

ǫ
,

and

V (µ, ν) ≤
∫

q log2 qdν ≤ C log(Mδ)
2ǫ2
[

log
1

ǫ

]2

.

Hence, Hellinger neighbourhoods are almost Kullback-Leibler ones (up to some logarithm
terms) provided that a sufficiently large moment exists for q (q log q is killed by q1+δ for large
values of q and a second order expansion of q log q − q + 1 around 1 yields a term similar to
[
√
q − 1]2). Next proposition shows that condition (3.2) is satisfied in our SIM.

Proposition 3.4. For any Pf0,g0 ∈ P, and for any f ∈ Hs such that ‖f‖ ≤ 2‖f0‖, and any

g ∈ M([0, 1]), define q =
dPf0,g0

dPf,g
. There exists δ ∈ (0, 1] such that the constant defined in equation

(3.2) M2
δ is uniformly bounded with respect to f .

3.3 Hellinger neighbourhoods

Proposition 3.4 will enable to use Theorem 3.2, thus we now aim to find a lower bound on
Hellinger neighbourhood of Pf0,g0 . Consider a frequency cut-off ℓn that will be fixed later. For
any f ∈ Hℓn

s and g ∈ M([0, 1]), remind that we denote θ := θ(f) as well as θ0 = θ(f0). We
define f0ℓn the L2 projection of f0 on the subspace Hℓn

s .
For sake of simplicity, E0F (Y ) will refer to the expectation of a function F of the trajectory

Y when Y follows Pf0,g0 . The triangle inequality applied to the Hellinger distance shows that

dH(Pf0,g0 ,Pf,g) ≤
(E1)

︷ ︸︸ ︷

dH(Pf0,g0 ,Pf0ℓn ,g
0)+

(E2)
︷ ︸︸ ︷

dH(Pf0ℓn ,g
0 ,Pf0ℓn ,g

)+

(E3)
︷ ︸︸ ︷

dH(Pf0ℓn ,g
,Pf,g) .

In the sequel, we will provide sufficiently sharp upper bound on (E1), (E2), (E3) so that we will
be able to find a suitable lower bound of the prior mass of Hellinger neighbourhoods.

Upper bound of (E1). We first bound (E1) using d2H ≤ dKL with Girsanov’s formula (3.1)

(E1) = dH(Pf0,g0 ,Pf0ℓn ,g
0) ≤

√

dKL(Pf0,g0 ,Pf0ℓn ,g
0)

=



E0



− log

∫ 1
0 exp

(

2ℜe〈f0,−αℓn
, dY 〉 − ‖f0ℓn‖2

)

dg0(α)
∫ 1
0 exp (2ℜe〈f0,−α, dY 〉 − ‖f0‖2) dg0(α)









1/2

:= (Ẽ1)

We now obtain the upper bound of (E1) according to the next proposition.

Proposition 3.5. Assume that Y ∼ Pf0,g0 and f0 ∈ Hs, then

(E1) ≤ (Ẽ1) ≤
√
2‖f0 − f0ℓn‖ ≤

√
2‖f0‖H1ℓ

−s
n .
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Upper bound of (E3). We now compute an upper bound of the Hellinger distance. Indeed,
we will be interested in this Hellinger distance when f0ℓn is close to f , and the dimension ℓn grows
up to +∞ (the mixture law on [0, 1] is the same for the two laws). The important fact will be
its exclusive dependence with respect to the L2 distance between f0ℓn and f . This upper bound
is given in the next proposition, whose proof is immediate from Lemma 3.1 and equation (A.2).

Proposition 3.6. Assume that f ∈ Hℓn
s and g ∈ M([0, 1]), then

dH(Pf0ℓn ,g
,Pf,g) ≤ 21/4

√

‖f − f0ℓn‖.

Upper bound for (E2). This term is clearly the more difficult to handle. We will obtain
a convenient result using some elements obtained in Proposition 3.3. For a given ǫn > 0,
ℓn, f

0
ℓn

∈ Hℓn
s and g0 ∈ M([0, 1]), we know that one may find a mixture model g̃ such that

dH(Pf0ℓn ,g
0 ,Pf0ℓn ,g̃

) < ǫn and g̃ has Cℓ2n points of support in [0, 1] as soon as ǫn is small enough

and log 1
ǫn

. ℓn (the condition ‖f0ℓn‖2 ≤ 2ℓn + 1 is immediate since f0 does not depend on n).
The next step is to control the Hellinger distance dH(Pf0ℓn ,g

,Pf0ℓn ,g̃
) for g ∈ M([0, 1]), and this

can be done thanks to an adaptation in dimension 2ℓn + 1 of Lemma 5.1 of [GvdV01].

Lemma 3.2. Let be given g̃ a discrete mixture law whose support is of cardinal J whose support
points (ϕj)j=1...J are such that g̃(ϕj) = pj and η-separated, i.e. |ϕj − ϕi| ≥ η,∀i 6= j, then

∀ǧ ∈ M([0, 1]) d2H(Pf0ℓn ,g̃
,Pf0ℓn ,ǧ

) ≤
√
π

2
‖f0ℓn‖H1η + 2

J∑

j=1

|ǧ([ϕj − η/2, ϕj + η/2]) − g̃(ϕj)| .

Note that Lemma 3.2 needs a discrete mixture with η-separated support points. The following
result permits to obtain such a mixture.

Proposition 3.7. Assume that and f0 ∈ Hs for s ≥ 1, g0 ∈ M([0, 1]), and log 1
ǫn

. ℓn. For any

ηn ≤ ǫ2n, there exists a discrete distribution g̃ with in its support at most Jn . ℓ2n points denoted
(ψj)j=1...Jn, such that these points are ηn-separated, and

dH(Pf0ℓn ,g
0 ,Pf0ℓn ,g̃

) ≤
(

1 + (8π)1/4‖f0ℓn‖
1/2
H1

)

ǫn.

Furthermore, for any g ∈ M([0, 1]),

dH(Pf0ℓn ,g
0 ,Pf0ℓn ,g

)

≤
(

1 + (8π)1/4‖f0‖1/2H1

)

ǫn +

√
√
√
√

√
π

2
‖f0‖H1ηn + 2

Jn∑

j=1

|g(ψj − ηn/2, ψj + ηn/2)− g̃(ψj)|.

Description of a Hellinger neighbourhood. We can now gather the upper bounds of (E1),
(E2), and (E3) to get the following result.

Proposition 3.8. Assume that f0 ∈ Hs for s ≥ 1 and g0 ∈ M([0, 1]). Choose the threshold such

as ǫ
−1/s
n . ℓn . ǫ

−1/s
n and ηn := ǫ2n, and consider the finite mixture g̃ provided by Proposition

3.7. Define

Gǫn :=






g ∈ M([0, 1]) :

Jn∑

j=1

|g(ψj − ηn/2, ψj + ηn/2) − g̃(ψj)| ≤ ǫ2n






,

Fǫn :=
{

f ∈ Hℓn
s : ‖f − f0ℓn‖ ≤ ǫ2n

}

.

Then, there exists a constant C0 depending only on ‖f0‖H1 such that for any g ∈ Gǫn and f ∈ Fǫn,
dH
(
Pf0,g0 ,Pf,g

)
≤ C0ǫn.
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3.4 Checking the conditions of Theorem 2.1

We first prove the minoration for the lower bound (2.6), necessary to apply Theorem 2.1.

Proposition 3.9. Assume that and f0 ∈ Hs for s ≥ 1 and g0 ∈ M([0, 1]). For any sequence
(ǫn)n∈N which converges to 0 as n→ +∞, and for the prior defined in paragraph 2.3, there exists
a constant c > 0 such that

Πn
(
Pf,g ∈ P|dKL(Pf,g,Pf0,g0) ≤ ǫ2n, V (Pf,g,Pf0,g0) ≤ ǫ2n

)
≥ e

−(c+o(1))
[

ǫ
−2/s
n (log(1/ǫn))

ρ+2/s∨ξ−2
n

]

.

Proposition 3.9 relies on Theorem 3.2, which permits to use Hellinger neighbourhoods instead
of Vǫn(Pf0,g0 , dKL), and on Proposition 3.8, which describes suitable Hellinger neighbourhoods.
To control their prior mass, we remind the following useful result appeared as Lemma 6.1 of
[GGvdV00]. This enables to find a lower bound of ℓ1-ball of radius r under Dirichlet prior.

Lemma 3.3 ([GGvdV00]). Let r > 0 and (X1, . . . ,XN ) be distributed according to the Dirichlet
distribution on the ℓ1 simplex of dimension N −1 with parameters (m,α1, . . . , αN ). Assume that
∑

j αj = m and Arb ≤ αj ≤ 1 for some constants A and b. Let (x1, . . . , xN ) be any points on
the N simplex, there exists c and C that only depend on A and b such that if r ≤ 1/N

Pr





N∑

j=1

|Xj − xj| ≤ 2r



 ≥ C exp

(

−cN log
1

r

)

In the proof of Proposition 3.9 (delayed to the Appendix), one can see that we could obtain
a suitable lower bound as soon as λ(ℓn) ≥ e−cℓ

2
n log ℓn for a constant c. Of course, a distribution

λ with some heavier tail would suit here. However, such a heavier tail is not suitable for the
control of the term Πn (P \ Pn) which is detailed in the next proposition.

Proposition 3.10. For any sequence kn 7→ +∞ as n 7→ +∞ and w2
n = 4kn+2, for any sequence

ǫn 7→ 0 as n 7→ +∞ there exists a constant c such that

Πn (P \ Pkn,wn) ≤ e−c[k
2
n logρ(kn)∧knξ−2

n ],

and

logD (ǫn,Pkn,wn , dH) . k2n

[

log kn + log
1

ǫn

]

We are now able to conclude the proof of the posterior consistency.

Proof of Theorem (2.2). We take ǫn := n−α(log n)κ and kn := nβ(log n)γ . From our definition
(2.7), we have also ξ−2

n = nµs(log n)ζ , and we look for admissible values of α, β, κ, γ, µs, and ζ
in order to satisfy (2.4),(2.5) and (2.6).

Proposition (3.9) imposes that in order to satisfy (2.6), we could check that

ǫ−2/s
n (log ǫn)

ρ+2/s ∨ nµs(log n)ζ ≪ nǫ2n = n1−2α(log n)2κ.

This is true when ǫn satisfies

α ≤ s

2s+ 2
and κ > (ρs+ 2)/(2s + 2).

Moreover, we obtain the first condition on µs: µs ≤ 1− 2α, and if µs = 1− 2α then ζ < 2κ.
Now, Proposition (3.10) shows that (2.4) is fulfilled provided that

k2n

[

log kn + log
1

ǫn

]

. nǫ2n = n1−2α(log n)2κ. (3.3)
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This condition is satisfied when 2β ≤ 1− 2α and 2γ + 1 ≤ 2κ. At last, Proposition (3.10) again
ensures that (2.5) is true as soon as

k2n log
ρ kn ∧ knnµs & nǫ2n

and we deduce from (3.3) that

2β = 1− 2α and − ρ/2 + κ ≤ γ ≤ −1/2 + κ.

Moreover, we also see that β + µs ≥ 1 − 2α, hence µs ≥ 1/2 − α, and if µs = 1/2 − α then
γ + ζ ≥ 2κ; the former condition on µs yields µs ≥ 1/2−α ≥ 1

2s+2 (which naturally drives us to
set µs = 1/4 (case s = 1) for adaptive prior).

We split the proof according to the adaptive or non adaptive case.

Adaptive prior We thus first set µ independent of s and equal to 1/4. For any s ∈ [1, 3], we
see that α(s) = s/(2s + 2) is the admissible largest value of α and α(s) = 3/8 < s/(2s + 2) as
soon as s > 3. The corresponding value of β is 1/(2s+2) when s ∈ [1, 3] and β = 1/8 otherwise.
Any choice of ζ ∈ [3/2, 2) permits to deal with the conditions on ζ that appears when s = 1 or
s ≥ 3. The other values of γ and κ may be determined with respect to ρ. For instance, if we
choose ρ ∈ (1, 2), we can take κ = 1 and γ = 1/2.

Non adaptive prior The non adaptive case is much more simpler since it is sufficient to fix

µs = 1− 2α = 2/(2s + 2)

and ζ = 0 to obtain suitable calibrations for α, β, κ and γ. This achieves the proof.

4 Identifiability and semiparametric results

In the Shape Invariant Model, an important issue is the identifiability of the model with respect
to the unknown curve f and the unknown mixture law g. We first discuss on a quite generic
identifiability condition for Pf,g. Then, we deduce from the previous section a contraction rate
of the posterior distribution around the true f0 and g0.

4.1 Identifiability of the model

In previous works on SIM, the identifiability of the model is generally given according to re-
striction on the support of g. For instance, [BG10] assume the support of g to be an interval
included in [−1/4, 1/4] (their shifts are randomly sampled in [−1/2; 1/2] instead of [0, 1] in our
paper) and g is assumed to have 0 mean although f is supposed to have a non vanishing first
Fourier coefficient (θ1(f) 6= 0). The same kind of condition on the support of g is also assumed
in [BG12].

If the condition on the first harmonic on f is imperative to obtain identifiability of g, the
restriction on its support size seems a little bit artificial and we detail in the sequel how one can
avoid such hypothesis. First, we recall that for any curve Y sampled from the SIM, the first
Fourier coefficient is given by θ1(Y ) = θ01e

−i2πτ + ξ (here θ01 = θ1(f
0)). Hence, up to a simple

change of variable in τ , we can always modify g in g̃ such that |θ01|e−i2πτ + ξ and θ01e
−i2πτ + ξ

possess the same law. It is for instance sufficient to fix g̃(ϕ) = g(ϕ+ α) where α is the complex
argument of θ01. Hence, to impose such identifiability condition, we have chosen to restrict f to
the the following class of signals

Fs = {f ∈ Hs | θ1(f) > 0} .
According to the lines above, this condition is not restrictive up to a change of measure for the
random variable τ . The next result provide an identifiability criterion for the model, both for f
and g.

15



Theorem 4.1. Assume that f ∈ Fs(A) defined above and g ∈ Mν([0, 1]) defined by

Mν([0, 1]) :=
{
g ∈ M([0, 1]) | ∃(c, C) ∈ R

∗
+ × R

∗
+ : ∀k ∈ Z c|k|−ν < |θk(g)| < C|k|−ν

}
,

where ν > 1, then the Shape Invariant Model described by (2.3) is identifiable.

Proof. The demonstration of such result is decomposed using three hierarchical steps. First, we
prove that if Pf,g = Pf̃ ,g̃, then one has necessarily θ1(f) = θ1(f̃). Then we deduce from this
point that g = g̃ and at last we obtain the identifiability for all other Fourier coefficients of f .

Note that as soon as ν > 1/2, g and g̃ admit densities with respect to the Lebesgue measure
on [0, 1]. In the sequel we use the same notation g to refer to the density of g.

Point 1: Identifiability on θ0(f) and θ1(f). We denote P
k
f,g the marginal law of Pf,g on the

kth Fourier coefficient when the curve follows the Shape Invariant Model (2.3). Of course, we
have the following implications

dV T (Pf,g,Pf̃ ,g̃) = 0 =⇒
(

Pf,g = Pf̃ ,g̃

)

=⇒ ∀k ∈ Z : dV T (P
k
f,g,P

k
f̃ ,g̃

) = 0.

We immediately obtain that θ0(f) = θ0(f̃) since θ0(f) (resp. θ0(f̃)) represents the mean of the
distribution P

0
f,g (resp. P0

f̃ ,g̃
). But note that the distribution P

0
f,g does not bring any information

on the measure g, and is not helpful for its identifiability. Concerning now the first Fourier
coefficient, we use the notation θ1 := θ1(f), θ̃1 := θ1(f̃) and remark that

dV T (P
1
f,g,P

1
f̃ ,g̃

) = π−1

∫

C

∣
∣
∣
∣

∫ 1

0
e−|θ1ei2πα−z|2g(α)dα −

∫ 1

0
e−|θ̃1ei2πα−z|2 g̃(α)dα

∣
∣
∣
∣
dz

Assume now that θ̃1 6= θ1, without loss of generality θ̃1 > θ1 > 0 and consider the disk

DC

(

0, θ̃1−θ12

)

, we then get

∀z ∈ DC

(

0,
θ̃1 − θ1

2

)

∀α ∈ [0, 1] |θ1ei2πα − z| < θ̃1 + θ1
2

et |θ̃1ei2πα − z| > θ̃1 + θ1
2

.

Hence, for all z ∈ DC

(

0, θ̃1−θ12

)

, we get
∫ 1
0 e

−|θ1ei2πα−z|2g(α)dα > e−
|θ̃1+θ1|2

4 and of course

∫ 1
0 e

−|θ̃1ei2πα−z|2 g̃(α)dα < e−
|θ̃1+θ1|2

4 . We can thus write the following lower bound of the Total
Variation1.

dV T (P
1
f,g,P

1
f̃ ,g̃

) ≥ π−1

∫

DC

(

0,
θ̃1−θ1

2

)

∣
∣
∣
∣

∫ 1

0
e−|θ1ei2πα−z|2g(α)dα −

∫ 1

0
e−|θ̃1ei2πα−z|2 g̃(α)dα

∣
∣
∣
∣
dz > 0.

In the opposite, dV T (P
1
f,g,P

1
f̃ ,g̃

) = 0 implies that θ1 = θ̃1 since f and f̃ belong to Fs(A).

Point 2: Identifiability on g. We still assume that dV T (P
1
f,g,P

1
f̃ ,g̃

) = 0. We know that

θ1 = θ̃1 and we want to infer that g = g̃. We are going to establish such result using only the

1It is indeed possible to write an explicit lower bound which will depend on |θ1 − θ̃1|
2, with a radius smaller

than θ̃1−θ1
2

.
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first harmonic of the curves. Using a polar change of variables z = ρeiϕ, we can write that

dV T (P
1
f,g,P

1
f̃ ,g̃

) =
1

π

∫

C

e−[θ21+|z|2]
∣
∣
∣
∣

∫ 1

0
e2ℜe(zθ1ei2πα)(g(α) − g̃(α)dα

∣
∣
∣
∣
dz

=
1

2π2

∫ +∞

0
ρe−[θ21+ρ

2]

∫ 2π

0

∣
∣
∣
∣

∫ 2π

0
e2ρθ1 cos(u−ϕ)(g − g̃)(u/2π)du

∣
∣
∣
∣
dϕdρ

=
1

2π2

∫ +∞

0
ρe−[θ21+ρ

2]

∫ 2π

0

∣
∣
∣
∣

∫ 2π

0
e2ρθ1 cos(u)(g − g̃)

(
u+ ϕ

2π

)

dα

∣
∣
∣
∣
dϕdρ

=
1

2π2

∫ +∞

0
ρe−[θ21+ρ

2]

∫ 2π

0
|ψ2ρθ1(ϕ)| dϕdρ.

In the expression above, we denote h = g − g̃ and ψa(ϕ) is defined as

ψa(ϕ) =

∫ 2π

0
ea cos(u)h

(
u+ ϕ

2π

)

du.

Of course, ψa is upper bounded by 4πea, and a very rough inequality yields2 |ψa(ϕ)| ≥ |ψa(ϕ)|2
4πea .

Hence,

dV T (P
1
f,g,P

1
f̃ ,g̃

) ≥ 1

4π2

∫ +∞

0
ρe−(θ21+ρ

2+2θ1ρ)‖ψ2ρθ1‖2dρ. (4.1)

Using the fact that ν > 1, h may be expanded in Fourier series since h ∈ L2([0, 1]):

h(x) =
∑

n∈Z
cn(h)e

i2πnx,

and we can also obtain the Fourier decomposition of ψa:

ψa(ϕ) =
∑

n∈Z
cn(h)

∫ 2π

0
ea cos(u)einudu ei2πnϕ.

Thus, the L2 norm of ψa is given by

‖ψa‖2 =
∑

n∈Z
|cn(h)|2

∣
∣
∣
∣

∫ 2π

0
ea cos(u)einudu

∣
∣
∣
∣

2

, (4.2)

Now, if we denote the first and second kind of Tchebychev polynomials (Tn)n∈Z and (Un)n∈Z
which satisfy Tn(cos θ) = cos(nθ) and (sin θ)Un(cos θ) = sin(nθ), we can decompose

∫ 2π

0
ea cos(u)einudu =

∫ 2π

0
ea cos(u) [Tn(cos u) + i(sinu)Un(cos u)] du

=

∫ 2π

0

∑

k≥0

ak(cos u)k

k!



Tn(cos u) + i(sin u)
n∑

j=0

βj(cos u)
j



 du

where we have used the analytic expression of Un given by

Un(cos u) =

E((n−1)/2)
∑

j=0

(−1)jC2j+1
n (cos u)n−2j−1(1− cos2 u)j .

2Such inequality is not very sharp and we can instead use an argument based on the Laplace transform of g

and g̃. The main advantage of such inequality is to handle L2 norms instead of L1 ones.
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Hence, we obtain

∫ 2π

0
ea cos(u)einudu =

∫ 2π

0

∑

k≥0

ak(cos u)k

k!
Tn(cos u)du

+ i

∑

k≥0

n∑

j=0

βj
ak

k!

∫ 2π

0
sinu(cos u)k+jdu

=

∫ 2π

0

∑

k≥0

ak(cos u)k

k!
Tn(cos u)du

=

∫ 2π

0
ea cos(u) cos(nu)du ∈ R if a ∈ R.

We denote An the following (holomorphic) function of the variable a as

An(a) :=

∫ 2π

0
ea cos(u) cos(nu)du,

and equation (4.2) yields

‖ψa‖2 =
∑

n∈Z
|cn(h)|2An(a)2. (4.3)

Moreover, for each n, An is not the null function, otherwise it would be the case for each of its
derivative but remark that (cos u)n may be decomposed in the basis (Tk) and using successive
derivations

A(n)
n (0) =

d(n)

da(n)

[ ∞∑

k=0

ak

k!

∫ 2π

0
(cos u)k cos(nu) du

]

(0)

=

∫ 2π

0
(cos u)nTn(cos u)du =

∫ 2π

0

[
n−1∑

k=0

αkTk(cos u) + 21−nTn(cos u)

]

Tn(cos u)du

= 21−nπ > 0.

Note that in the meantime, we also obtain that A
(j)
n (0) = 0,∀j < n, so that

An(a) ∼a7→0
21−n

n!
an. (4.4)

We can conclude the proof of the identifiability of g using (4.3) in (4.1) to obtain

dV T (P
1
f,g,P

1
f̃ ,g̃

) ≥ 1

4π2

∑

n∈Z
|cn(h)|2

(∫ +∞

0
ρe−[θ1+ρ]2An(2ρθ1)

2dρ

)

︸ ︷︷ ︸

:=In(θ1)

.

From (4.4), we can deduce that each integral In(θ1) 6= 0,∀n ∈ Z and we then conclude that:

dV T (P
1
f,g,P

1
f̃ ,g̃

) ⇐⇒ g = g̃ et θ1 = θ̃1.

Point 3: Identifiability on f . We end the argument and prove that Pf,g = Pf̃ ,g̃ implies

f = f̃ . We already know that g = g̃ and it remains to establish such property for all the Fourier
coefficients whose frequency is different from 0 and 1. By similar argument as the one used for
the identifiability of θ1 (Point 1), we can easily show that

dV T (P
k
f,g,P

k
f̃ ,g̃

) = 0 =⇒ |θk| = |θ̃k|.
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But we cannot directly conclude here since it is not reasonable to restrict the phase of each others
coefficients θk(f) to a special value (as it is the case for θ1(f) which is positive). We assume that
θ̃k = θke

iϕ. Since g = g̃, we have

dV T (P
k
f,g,P

k
f̃ ,g

) = π−1

∫

C

∣
∣
∣
∣

∫ 2π

0
e−|z−θke−ikα|2 − e−|z−θkei(ϕ−kα)|2g(α)dα

︸ ︷︷ ︸

:=F (z)

∣
∣
∣
∣
dz.

Now, if one considers z = x + iy, F is differentiable with respect to x and y and F (0) = 0. A
simple computation of ∇F (0) shows that ∇F (0) is the vector (written in the complex form)

∇F (0) = θke
−|θk|2ck(g)[1 − eiϕ].

Since g ∈ Mν([0, 1]), this last term is non vanishing except if θk = 0 (which trivially implies that
θ̃k = 0 = θk) or if ϕ = 0(2π). In both cases, F ′(0) = 0 ⇐⇒ θ̃k = θk. Thus, as soon as θk 6= θ̃k,
we have ∇F (0) 6= 0 and we may find a neighbourhood of 0 denoted B(0, r) such that |F |(z) > 0
when z ∈ B(0, r) \ {0} . This is sufficient to end the proof of identifiability.

In a sense, the main difficulty of the proof above is the implication of dV T (P
1
f,g,P

1
f̃ ,g̃

) =⇒ g =

g̃. Then, the identifiability follows using a chaining argument θ1(f) → g → θk(f),∀k /∈ {0, 1}.
We will see that such part of the proof can also be used to obtain a contraction rate for f and
g around f0 and g0. We recall here the main inequality used above: ∀θ1 > 0 and ∀(g, g̃) ∈
Mν([0, 1]), the identifiability on g is traduced by

dV T
(
P
1
θ1,g,P

1
θ1,g̃

)
≥ 1

4π2

∑

n∈Z
|cn(g − g̃)|2

(∫ ∞

0
ρe−(ρ+θ1)2An(2ρθ1)

2dρ

)

(4.5)

The aim of the next paragraph is to exploit such inequality to produce a contraction rate of g
aroung g0.

4.2 Contraction rate of the posterior distribution around f 0 and g0.

4.2.1 Link with deconvolution with unknown variance operator

We provide in this section an upper bound on the contraction rate of the posterior law around
f0 and g0. This question is somewhat natural owing to the identifiability result obtained in the
previous section. We thus assume for the rest of the paper that f ∈ Fs and g ∈ Mν([0, 1]) for
some parameters s ≥ 1 and ν > 1.

Remark first that our problem written in the Fourier domain seems strongly related to the
standard deconvolution with unknown variance setting. For instance, the first observable Fourier
coefficients are

θ1(Yj) = θ1e
−i2πτj + ǫ1,j ,∀j ∈ {1 . . . n}

and up to a division by θ1, it can also be parametrised as

θ̃1(Yj) = e−i2πτj +
ǫ1,j
θ1
,∀j ∈ {1 . . . n}, (4.6)

which is very similar to the problem Y = X+ ǫ studied for instance by [Mat02] where ǫ follows a
Gaussian law whose variance (here 1/θ21) is unknown. As pointed in [Mat02] (see also the more
recent work [BM05] where similar situations are extensively detailed), such particular setting is
rather unfavourable for statistical estimation since convergence rates are generally of logarithmic
order. Such phenomenon also occurs in our setting, except for the first Fourier coefficient of f
as pointed in next proposition.

The roadmap of this paragraph is similar to the proof of Theorem 4.1. We first provide a
simple lower bound of dV T which enables to conclude for the first Fourier coefficient. Then,
we still use the first marginal to compute a contraction rate for the posterior distribution on
g around g0. At last, we chain all this result to provide a contraction rate for the posterior
distribution on f around f0.
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4.2.2 Contraction rate on the first Fourier coefficient

Proposition 4.1. Assume that (f, g) ∈ Fs ×Mν([0, 1]), then the posterior distribution satisfies

Πn

(

θ1 ∈ B
(

θ01,Mǫ1/3n

)c∣∣
∣Y1, . . . , Yn

)

7→ 0

in Pf0,g0 probability as n 7→ +∞ for a sufficiently large M . The contraction rate around the true

Fourier coefficient is thus at least n−1/3×[s/(2s+2)∧3/8](log n)1/3.

Proof. The demonstration of such result is quite simple. Remark that using the beginning of the
proof of Theorem 4.1, one can show that for any θ1 such that 0 < η < |θ1 − θ01| < θ01/2, one can
bound, for any g ∈ Mν([0, 1]), the Total Variation distance between Pf,g and Pf0,g0 . Remark
that

dV T
(
Pf,g,Pf0,g0

)
≥ dV T

(

P
1
f,g,P

1
f0,g0

)

,

owing to the restriction of Pf,g to the first Fourier marginal and the variational definition of the
Total Variation distance. Then

dV T

(

P
1
f,g,P

1
f0,g0

)

≥
∫

B

(

0,
|θ1−θ01 |

4

)

∣
∣
∣
∣

∫ 1

0
g(α)e−|z−θ1ei2πϕ|2 − g0(α)e−|z−θ01ei2πϕ|2dϕ

∣
∣
∣
∣
dz

≥ π
η2

16

∣
∣
∣e−(3θ01+θ1)

2/16 − e−(3θ1+θ01)
2/16

∣
∣
∣ ≥ C(θ01)η

3,

for a suitable small enough constant C(θ01). Now, one can use simple inclusions and Pinsker
inequality

{θ1 ∈ B(0, η)c} ⊂
{
θ1|dV T (Pf,g,Pf0,g0) ≥ C(θ01)η

3
}
⊂
{
θ1|dH(Pf,g,Pf0,g0) ≥ C(θ01)η

3
}
.

The proof is now achieved according to Theorem 2.2.

4.2.3 Posterior contraction rate around g0

We now study the contraction rate of the posterior distribution around the true mixture law g0.
This result is stated below.

Theorem 4.2. Assume (f0, g0) ∈ Fs ×Mν([0, 1]), then

Πn
(
g : ‖g − g0‖2 > M log−2ν(n)

∣
∣Y1, . . . , Yn

)
7→ 0

in Pf0,g0 probability as n 7→ +∞ for a sufficiently large M .

Proof. We first restrict ourselves to the first marginal on Fourier coefficient as before. Using
Theorem 2.2, we know that

Πn
{
Pf,g s.t. dH(Pf,g,Pf0,g0) ≥Mǫn|Y1, . . . Yn

}
→ 0 as n→ +∞.

Since dV T (P
1
θ1,g

,P1
θ01,g

0) = dV T (P
1
f,g,P

1
f0,g0) ≤ dV T (Pf,g,Pf0,g0) ≤ dH(Pf,g,Pf0,g0), we then get

Πn

{

Pf,g s.t. dV T (P
1
θ1,g,P

1
θ01,g

0) ≥Mǫn|Y1, . . . Yn
}

→ 0 as n→ +∞. (4.7)

For any g ∈ Mν([0, 1]), the triangular inequality yields

dV T

(

P
1
θ01,g

,P1
θ1,g

)

+ dV T

(

P
1
θ1,g,P

1
θ01 ,g

0

)

≥ dV T

(

P
1
θ01,g

,P1
θ01,g

0

)

. (4.8)

Now, let f̃ be defined by θ1(f̃) = θ1(f), and for any k ∈ Z\{1}, θk(f̃) = θk(f
0). Then Lemma

3.1 yields

dV T

(

P
1
θ01,g

,P1
θ1,g

)

= dV T

(

P
1
f̃ ,g
,P1

f0,g

)

≤ ‖f̃ − f0‖√
2

=
|θ1 − θ01|√

2
.
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Therefore

Πn

(

Pf,g s.t. dV T

(

P
1
θ01,g

,P1
θ1,g

)

≤ M√
2
ǫ1/3n

∣
∣
∣
∣
Y1, . . . , Yn

)

≥ Πn

(

Pf,g s.t. |θ1 − θ01| ≤Mǫ1/3n

∣
∣
∣Y1, . . . , Yn

)

−→ 1 (4.9)

as n −→ +∞. In conclusion, we deduce from (4.7),(4.8) and (4.9) that for M large enough:

Πn

(

Pf,g s.t. dV T

(

P
1
θ01,g

,P1
θ01 ,g

0

)

≤Mǫ1/3n

∣
∣
∣Y1, . . . , Yn

)

−→ 1 as n −→ +∞.

We then use equation (4.5) applied with θ1 = θ01 and the last equation to obtain our rate of
consistency. Remark that

dV T (P
1
θ01 ,g

,P1
θ01,g

0) ≥
1

4π2

∑

n∈Z
|cn(g − g0)|2

∫ +∞

0
ρe−(ρ+θ01)

2
An(2ρθ

0
1)

2dρ, (4.10)

where we have used the definition

An(a) =

∫ 2π

0
ea cos(u) cos(nu)du.

Now, we use equivalents given by Lemma C.1 detailed in the paragraph C in the Appendix. We
only keep the integral of An for a ∈ [0, c

√
n] since it can be shown that the tail of such integral

will yield neglictible term We just use the equivalent given by (C.1). One can find a sufficiently
small constant κ such that

∫ +∞

0
ρe−(ρ+θ01)

2
An(2ρθ

0
1)

2dρ ≥
∫

√
n

2θ0
1

0

4π2ρ2n+1{θ01}2n
n!2

e−(ρ+θ01)
2

(

1− κ
[2ρθ01 ]

n

)2

dρ

≥
(

1− κ√
n

)2 4π2{θ01}2n
n!2

e
−
(
θ01+

√
n

2θ01

)2 ∫
√

n

2θ0
1

0
ρ2n+1dρ

Now, we can apply the Stirling formula to obtain:

4π2{θ01}2n
n!2

e
−
(
θ01+

√
n

2θ0
1

)2 ∫
√

n

2θ0
1

0
ρ2n+1dρ ∼ 4π2{θ01}2n

(n/e)2n2πn
e
−
(
θ01+

√
n

2θ0
1

)2 (√
n/(2θ01)

)2n+2

2n + 2

∼ 2π

n(2n + 2)
e−2n log[n/eθ01]e

−
(
θ01+

√
n

2θ01

)2

e(n+1) log[n/4{θ01}2].

Hence, this last term is lower bounded by C(θ01)e
−n log(n). As a consequence, we can plug such

lower bound in (4.10) to get

dV T (P
1
θ01 ,g

,P1
θ01,g

0) ≥ c
∑

k∈Z
|ck(g − g̃)|2e−k log k.

for c sufficiently small. We now end the proof of the Theorem: choose a frequency cut-off kn
that depends on n and remark that

∀g ∈ Mν([0, 1]) ‖g − g0‖2 =
∑

|ℓ|≤kn
|cℓ(g − g0)|2 +

∑

|ℓ|>kn
|cℓ(g − g0)|2

. ekn log kn
∑

|ℓ|≤kn
|cℓ(g − g0)|2e−ℓ log ℓ + k−2ν

n

. ekn log kndV T (P
1
θ01 ,g

,P1
θ01 ,g

0) + k−2ν
n .
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We know from Equation (4.9) that the last bound is smaller than ekn log knǫ
1/3
n + k−2ν

n up to a
multiplicative constant, with probability close to 1 as n goes to +∞. The optimal choice for kn
yields

[kn + 2ν] log kn =
1

3
log

1

ǫn
.

This thus ensures that

Πn
{
g ∈ Mν([0, 1]) s.t. ‖g − g0‖2 ≤M log(n)−2ν |Y1, . . . Yn

}
−→ 1 as n −→ +∞.

We then aim to obtain a similar result for the posterior weight on neighbourhoods of f0.
Even if our results are quite good for the first coefficient θ1, we will see that indeed, this is far
from being the case for the rest of its Fourier expansion.

Theorem 4.3. Assume (f0, g0) ∈ Fs ×Mν([0, 1]), then

Πn

(

f : ‖f − f0‖2 > M (log n)−2s× 2ν
2s+2ν+1 |Y1, . . . , Yn

)

−→ 0

in Pf0,g0 probability as n −→ +∞, for a sufficiently large M .

Proof. The idea of the proof is very similar to the former used arguments, we aim to study the
posterior weight on neighbourhoods of the true Fourier coefficients of f0, whose frequency is
larger than 1.

Point 1: Triangular inequality For any f ∈ Fs, we have for any k ∈ Z:

dV T (P
k
f,g0 ,P

k
f0,g0) ≤ dV T (P

k
f,g0 ,P

k
f,g) + dV T (P

k
f0,g0 ,P

k
f,g).

The second term does not exceed ǫn ≪ log(n)−ν with a probability tending to 1, more precisely

Πn

(

∀k ∈ Z dV T (P
k
f,g,P

k
f0,g0) < Mǫn

∣
∣
∣Y1, . . . , Yn

)

−→ 1 as n −→ +∞. (4.11)

Point 2: We aim to show that Πn

(

sup
k∈Z

dV T (P
k
f,g0 ,P

k
f,g) < M log(n)−ν

∣
∣
∣
∣
Y1, . . . , Yn

)

→ 1.

We can use the Cauchy-Schwarz inequality as follows:

dV T (P
k
f,g0 ,P

k
f,g) = π−1

∫

C

∣
∣
∣
∣

∫ 2π

0
e−|z−θkeikϕ|2 [g(ϕ) − g0(ϕ)]dϕ

∣
∣
∣
∣
dz

≤ ‖g − g0‖
π

∫

C

[∫ 2π

0
e−2|z−θkeikϕ|2dϕ

]1/2

dz

Now, the Young inequality implies

|z − θke
ikϕ|2 = |z|2 + |θk|2 − 2ℜ

(

z̄θke
ikϕ
)

≥ |z|2(1− 1

M
)− |θk|2(M − 1) ∀M > 0,

and the choice M = 2 yields

dV T (P
k
f,g0 ,P

k
f,g) ≤

‖g − g0‖
π

∫

C

(

e−|z|2+2|θk|2
)1/2

dz ≤ ‖g − g0‖e|θk |2 . (4.12)

To obtain that the former term is bounded, we first establish that indeed the posterior
distribution asymptotically only weights functions f with bounded Fourier coefficients. We
hence denote

An = {(f, g) : ∃k ∈ Z dV T (P
k
f,g0 ,P

k
f,g) ≥M log(n)−ν}
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and the two sets
B = {f : ∀k ∈ Z |θk| ≤ |θ0k|+M log(n)−ν}

and
C = {f : ∀k ∈ Z |θ0k| ≤ |θk|+M log(n)−ν}.

We first consider an integer k and θk such that |θk| > |θ0k|+M log(n)−ν , then

dV T (P
k
f0,g0 ,P

k
f,g) =

1

π

∫

C

∣
∣
∣
∣

∫ 2π

0

[

e−|z−θkeikϕ|2g(ϕ) − e−|z−θ0keikϕ|2g0(ϕ)
]

dϕ

∣
∣
∣
∣
dz.

For any z in the centered complex ball Bn = B
(

0, M log(n)−ν

3

)

, one has for any ϕ ∈ [0, 2π]

|z − θ0ke
ikϕ| ≤ M log(n)−ν

3
+ |θ0k| ≤ 2

M log(n)−ν

3
+ |θ0k| ≤ |θk| −

M log(n)−ν

3
≤ |z − θke

ikϕ|.

Hence if |θk| ≥ |θ0k|+M log(n)−ν , one has

dV T (P
k
f0,g0 ,P

k
f,g) ≥ 1

π

∫

Bn

∣
∣
∣
∣

∫ 2π

0

[

e−|z−θkeikϕ|2g(ϕ) − e−|z−θ0keikϕ|2g0(ϕ)
]

dϕ

∣
∣
∣
∣
dz.

≥ 1

π

∫

Bn

e−[|θ0k|+M log(n)−ν/3]2 − e−[|θ0k|+2M log(n)−ν/3]2dz

≥ c|θ0k|2e−|θ0k|2 log(n)−3ν ,

for a sufficiently small absolute constant c > 0. Since the sequence (θ0k)k∈Z is bounded, for

sufficiently large n, we know that ‖θ0‖2e− infk |θ0k|2 log(n)−3ν ≫ ǫn. We can deduce from (4.11)
that

Πn (Bc|Y1, . . . , Yn) −→ 0 as n −→ +∞. (4.13)

A similar argument yields

Πn (Cc|Y1, . . . , Yn) −→ 0 as n −→ +∞.

Gathering now (4.13) and (4.12), we get for a sufficiently large M and small c

Πn (An|Y1, . . . , Yn) = Πn (An ∩ B ∩ C|Y1, . . . , Yn) + Πn (An ∩ (B ∩ C)c|Y1, . . . , Yn)
≤ Πn

(

‖g − g0‖ ≥Me−(1+supk |θ0k|2) log(n)−ν
)

+Πn (Bc|Y1, . . . , Yn) + Πn (Cc|Y1, . . . , Yn)

We can now apply Theorem 4.2 to obtain the desired result:

Πn

(

sup
k∈Z

dV T (P
k
f,g0 ,P

k
f,g) < M log(n)−ν

∣
∣
∣
∣
Y1, . . . , Yn

)

−→ 1 as n −→ +∞. (4.14)

Point 3: Contraction of θk near θ0k From the arguments of Point 2, we see that

Πn
(
f : ∀k ∈ Z

∣
∣|θk| − |θ0k|

∣
∣ < M log(n)−ν

)
−→ 1 as n −→ +∞.

We now study the situation when
∣
∣|θk| − |θ0k|

∣
∣ < M log(n)−ν , and we can write θk = θ0ke

iϕ + ξn
where ξn is a complex number such that |ξn| ≤M log(n)−ν .

dV T (P
k
f,g0 ,P

k
f0,g0) = π−1

∫

C

∣
∣
∣
∣

∫ 2π

0

[

e−|z−θkeikα|2 − e−|z−θ0keikα|2
]

g0(α)dα

︸ ︷︷ ︸

:=F (z)

∣
∣
∣
∣
dz
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Indeed, F (0) ≃ 0 since a Taylor expansion near 0 yields at first order in z and ξn that

F (z) = 2e−|θ0k |2
∫ 2π

0

[

1 + ℜe
(

zθ̄ke
−ikα

)

− (1 + ℜe
(

zθ̄0ke
−ikα

)]

g0(α)dα + o(|z|) + o(|ξn|).

If one uses now θk = θ0ke
iϕ+O(log(n)−ν), the computation of the integral above yields for c < 2

and η small enough such that |z| ≤ η:

|F (z)| ≥ ce−|θ0k |2
∣
∣
∣sin(ϕ/2)ℜe

(

zieiϕ/2θ̄0kc−k(g
0)
)∣
∣
∣+O(log(n)−ν)

Now, denote ū =
ieiϕ/2θ̄0kc−k(g

0)

|θ0k|×|c−k(g0)|
which is a complex number of norm 1, and let v = ūeiπ/2. The

vector v is orthogonal to ū and z may be decomposed as

z = aū+ bv.

We then choose |b| < |a|/2 and denotes Ra the rectangular area where z is living. For a < η
small enough, we obtain that there exists an absolute constant c independent of k such that

dV T (P
k
f,g0 ,P

k
f0,g0) ≥

∫

Ra

|F (z)| ≥ cη3e−|θ0k|2 | sin(ϕ/2)||θ̄0k ||c−k(g0)|+O
(
log(n)−ν

)
.

Since |θk − θ0k| = 2| sin(ϕ/2)||θ0k |+O (log(n)−ν), we get that :

dV T (P
k
f,g0 ,P

k
f0,g0) ≥ cη3e−|θ0k|2 |c−k(g0)||θk − θ0k|+O

(
log(n)−ν

)
. (4.15)

Thus, we can conclude using (4.14) and (4.15) that there exists a sufficiently large M such that

Πn

(

f : sup
k∈Z

∣
∣(θk − θ0k)c−k(g

0)
∣
∣ < M log(n)−ν

∣
∣
∣
∣
Y1, . . . , Yn

)

−→ 1 as n −→ +∞. (4.16)

Point 4: Contraction on f0 We can now produce a very similar proof to the one used at
the end of Theorem 4.2:

‖f − f0‖2 =
∑

|ℓ|>kn
|θℓ − θ0ℓ |2 +

∑

|ℓ|≤kn
|θℓ − θ0ℓ |2

. k−2s
n +

∑

|ℓ|≤kn

|θℓ − θ0ℓ |2|c−ℓ(g0)|2
|c−ℓ(g0)|2

. k−2s
n + k2νn

∑

|ℓ|≤kn
|θℓ − θ0ℓ |2|c−ℓ(g0)|2

. k−2s
n + k2ν+1

n sup
|ℓ|≤kn

|θℓ − θ0ℓ |2|c−ℓ(g0)|2

Hence, (4.16) implies

Πn
(
f : ‖f − f0‖2 ≤ k−2s

n + k2ν+1
n log(n)−2ν

∣
∣Y1, . . . , Yn

)
−→ 1 as n −→ +∞.

The optimal choice of the frequency cut-off is kn = (log n)
2ν

2ν+2s+1 , which yields

Πn

(

f : ‖f − f0‖2 ≤M (log n)−4sν/(2s+2ν+1)
∣
∣
∣Y1, . . . , Yn

)

−→ 1 as n −→ +∞.

This last result is the desired inequality.

Remark 4.1. The lower bound obtained on dV T (P
k
f,g0 ,P

k
f0,g0) will be important to understand

how one should build an appropriate net of functions (fj, gj) ∈ Fs×Mν([0, 1]) hard to distinguish
according to this distance. When |θk| 6= |θ0k|, it is quite easy to distinguish the two hypotheses but
it is far from being the case when their modulus is equal. In such case, the behaviour of Fourier
coefficients of g0 becomes then important. This is a clue to exhibit efficient lower bound through
the Fano lemma (for instance). This is detailed in the next paragraph.
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4.3 Lower bound from a frequentist point of view

We complete now our study of the Shape Invariant Model by a small investigation on how
one could obtain some lower bounds in the frequentist paradigm. We could consider several
methods. Among them, the first one could be the use of results in the literature, such as the
works of [Mat02] or [BM05]. Indeed, in the convolution model with unknown variance

Yi = Xi + ǫi,∀i ∈ {1 . . . n} (Xi)i=1...n ∼ g, (4.17)

we already know that one cannot beat some log n power for the convergence rate of any estimator
of both g and of the variance of the noise σ2. Such nice result is obtained using the so-called
van Trees inequality which is a Bayesian Cramer-Rao bound (see for instance [GL95] for further
details). However, our feeling is that such use here is not entirely satisfactory: Proposition 4.1
seems much more optimistic since we obtain there a polynomial rate for the posterior contraction
around θ01.

First, note that results given by [Mat02] and Proposition 4.1 are not opposite. Indeed, [Mat02]
considers lower bounds in a larger class than the estimation problem of θ1 written as (4.6): from
a minimax point of view, the suppremum over all hypotheses is taken in a somewhat larger set
than ours. Moreover, if one consider (4.6), the density of e−i2πτj is supported by S

1 instead of
the whole complex plane which would be a natural extension of (4.17). Hence, g is a singular
measure with respect to the noise measure: going beyond the logarithmic convergence rates is
certainly due to this degeneracy nature of our problem according to the Gaussian complex noise,
which is an important structural information which is not available when one considers general
problems such as (4.17).

Following such considerations, we are thus driven to build some nets of hypothesis hard to
distinguish between and then apply some classical tool for lower bound results. We have chosen
to use Fano’s Lemma (see [IH81] for instance) instead of Le Cam’s method, since we will only
be able to find some discrete (instead of convex) set of pairs (fj , gj) in Fs × Mν([0, 1]) closed
according to the Total Variation distance. We first recall the version of Fano’s Lemma we used.

Lemma 4.1 (Fano’s Lemma). Let r ≥ 2 be an integer and Mr ⊂ P which contains r probability
distributions indexed by j = 1 . . . r such that

∀j 6= j′ d(θ(Pj), θ(Pj′) ≥ αr,

and
dKL(Pj , Pj′) ≤ βr.

Then, for any estimator θ̂, the following lower bound holds

max
j

Ej

[

d(θ̂, θ(Pj))
]

≥ αr
2

(

1− βr + log 2

log r

)

.

Theorem 4.4. There exists a sufficiently small c such that the minimax rate of estimation over
Fs ×Mν([0, 1])

lim inf
n−→+∞

(log n)2s+2 inf
f̂∈Fs

sup
(f,g)∈Fs×Mν([0,1])

‖f̂ − f‖2 ≥ c,

and
lim inf
n−→+∞

(log n)2ν+1 inf
ĝ∈Fs

sup
(f,g)∈Fs×Mν([0,1])

‖ĝ − g‖2 ≥ c.

Proof. We will adapt Fano’s Lemma to our setting and we are looking for a set (fj , gj)j=1...pn

such that each Pfj ,gj are closed together with rather different functional parameters fj or gj .
Reading carefully the Bayesian contraction rate is informative to build pn hypotheses which are
difficult to distinguish. First, we know that since each fj should belong to Fs, we must impose
for any fj that θ1(fj) > 0. From Proposition 4.1, we know that one can easily distinguish two
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laws Pfj ,gj and Pfj′ ,gj′ as soon as θ1(fj) 6= θ1(fj′). Our net will then build using a common
choice for the first Fourier coefficient of each fj in our net. For instance, we impose that

∀j ∈ {1 . . . pn} θ1(fj) = 1.

Point 1: Net of functions (fj)j=1...pn : We have seen in the proof of Theorem 4.3 that in a
similar way, as soon as |θk(fj)| 6= |θk(fj′)|, Pfj ,gj can be separated to Pfj′ ,gj′ quite easily. We
will then choose the following construction

∀j ∈ {1 . . . pn} fj(x) = ei2πx + p−sn ei2
(j−1)
pn

πei2πpnx. (4.18)

The number of elements in the net pn will be adjusted in the sequel and will grow to +∞.
Note that our construction naturally satisfies that each net (fj)j=1...pn belongs to Fs since the
modulus of the pn-th Fourier coefficient is of size p−sn . At last, we have the following rather trivial
inequality: ∀(j, j′) ∈ {1 . . . pn}2

‖fj − fj′‖2 ≥ p−2s
n ×

∣
∣
∣ei2π/pn − 1

∣
∣
∣

2
≥ 4p−2s

n sin2(π/pn) ∼n 7→+∞ 4π2p−2s−2
n .

Point 2: Net of measures (gj)j=1...pn: The core of the lower bound is how to adjust the
measures of the random shifts to make (Pfj ,gj)j=1...pn each others as close as possible. First,
remark that Fano’s Lemma 4.1 is formulated with entropy between laws although it is quite
difficult to handle when dealing with mixtures. In the sequel, we will choose to still use the Total
Variation distance, and then use the chain of inequalities: ∀j 6= j′

dV T

(

Pfj ,gj ,Pfj′ ,gj′

)

≤ η ⇒ dH

(

Pfj ,gj ,Pfj′ ,gj′

)

≤ √
η ⇒ dKL

(

Pfj ,gj ,Pfj′ ,gj′

)

.
√
η log

1

η
.

Hence, from the tensorisation of the entropy, we must find a net such that dV T

(

Pfj ,gj ,Pfj′ ,gj′

)

≤
ηn with −√

ηn log ηn = O(1/n) to obtain a tractable Fano’s Lemma application (in which Pj =

P
⊗n
fj ,gj

). It imposes to find some mixture laws such that dV T

(

Pfj ,gj ,Pfj′ ,gj′

)

. 1
(n logn)2 . From

the triangular inequality, it is sufficient to build (gj)j=1...pn satisfying

∀j ∈ {1 . . . pn} dV T
(
Pfj ,gj ,Pf1,g1

)
.

1

(n log n)2
. (4.19)

For sake of convenience, we will omit the dependence of pn with n and simplify the notation to
p. In a similar way, θjp will denote the p-th Fourier coefficient of fj given by θjp = ei2παjθ1p where

αj =
j−1
pn

. From our choice of (fj)j=1...pn given by (4.18), we have

dV T
(
Pfj ,gj ,Pf1,g1

)
= π−2

∫

C×C

∣
∣
∣
∣

∫ 1

0
e−|z1−ei2πϕ|2−|z2−ei2πpϕθ1p|2g1(ϕ)dϕ

−
∫ 1

0
e−|z1−ei2πϕ|2−|z2−ei2πpϕθjp|2gj(ϕ)dϕ

∣
∣
∣
∣
dz1dz2

Following the same idea as in the proof of Proposition 3.3, we will use the smoothness of
Gaussian densities to obtain a suitable upper bound of the Total Variation distance. We hence
call F the function defined as

∀(x1, y1, x2, y2) ∈ R
4 F (x1, y1, x2, y2) =

∫ 1

0
e−‖z−θ1•ϕ‖2g1(ϕ)
︸ ︷︷ ︸

G1
ϕ(z)

− e−‖z−θj•ϕ‖2gj(ϕ)
︸ ︷︷ ︸

Gj
ϕ(z)

dϕ,

where z = (x1 + iy1, x2 + iy2) and θj • ϕ = (ei2πϕ, θpj e
i2πpϕ).
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To control F , we act as for term (B), page 33; here we only give the sketch of the proof for
this point. We use a truncature for (x1, x2, y1, y2) ∈ RRn := BC(0, Rn)

2. Outside RRn , we use
again the Taylor bounds (B.2). Since here the only non null Fourier coefficients are of order 1
and p, we have to ensure that

∀m ≤ d ∀ℓ ≤ d ∀(s, s̃) ∈ {−1;+1} csm+s̃ℓp(gj)e
s̃ℓαj = csm+s̃ℓp(g1).

Hence, the maximum size of d is d = p/4. We have

dV T
(
Pfj ,gj ,Pf1,g1

)
= π−2

∫

RRn

|F (x1, y1, x2, y2)|dx1dy1dx2dy2

+ π−2

∫

Rc
Rn

|F (x1, y1, x2, y2)|dx1dy1dx2dy2

. e−R
2
n/2 +

(

(eRn)
p/4

(p/4)p/4

)4

. e−R
2
n/2 +

(eRn)
p

(p/4)p
.

We choose now Rn such as Rn := 3
√
log n to obtain that e−R

2
n/2 ≪ (n log n)−2 as required in

condition (4.19). Now, we control the last term of the last inequality: the Stirling formula yields

(eRn)
p

(p/4)p
. ep log(3

√
logn)−p log p/4.

If one chooses pn = κ log n with κ > 12, we then obtain that

dV T
(
Pfj ,gj ,Pf1,g1

)
. e−Cpn log pn . (n log n)−2.

Such a choice of Rn and pn ensures that (4.19) is fulfilled.
We then conclude our proof: we aim to apply the Fano Lemma (see Lemma 4.1) with αn =

p−2s−2
n and βn = O(1) for the parametrization of (fj)j=1...pn . We then deduce the first lower

bound
lim inf
n−→+∞

(log n)2s+2 inf
f̂∈Fs

sup
(f,g)∈Fs×Mν([0,1])

‖f̂ − f‖2 ≥ c.

Our construction implies also that each gj are rather different each others since one has for
instance, cp(gj)e

iαj = cp(g1) = cp(gj′)e
iαj′ . Thus

∀j 6= j′ ‖gj − gj′‖22 ≥ |cp(gj)− cp(gj′)|2 = p−2ν |eαj − eαj′ |2 ≥ cp−2ν−2.

Applying the Fano Lemma to (gj)j=1...pn we get

lim inf
n−→+∞

(log n)2ν+2 inf
ĝ∈Fs

sup
(f,g)∈Fs×Mν([0,1])

‖ĝ − g‖2 ≥ c.

This ends the proof of the lower bound.

5 Concluding remarks

In this paper, we exhibit a suitable prior which enable to obtain a contraction rate of the posterior
distribution near the true underlying distribution Pf0,g0 . Moreover, this rate is polynomial with
the number n of observations, even if our SIM is an inverse problem with unknown operator of
translation which depends on g. From a technical point of view, the keystones of such results are
the tight link between the white noise model and the Fourier expansion as well as the smoothness
of Gaussian law which permits to obtain an efficient covering strategy.

Up to non restrictive condition, we can also obtain a large identifiability class but in this
class, the contraction of the posterior is dramatically damaged since we then obtain a logarithm
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rate instead of a polynomial one. This last point cannot be so much improve using the standard
L2 distance to measure the neighbourhoods of f0 as pointed by our last lower bound. Remark
that we do not obtain exactly the same rates for our lower and upper bounds of reconstruction.

This may be due to the rough inequality |ψa(ϕ)| ≥ |ψa(ϕ)|2
‖ψa‖∞ used to obtain (4.1) may a reason

why we do not obtain optimal rates.
Indeed, the degradation of the contraction rate occurs when one tries to invert the identifia-

bility map I : (f, g) 7→ Pf,g. Such difficulty should be understood as a novel consequence of the
impossibility to exactly recover the random shifts parameters when only n grows to +∞. Such
phenomenon is highlighted for instance in several papers such as [BG10] or [BGKM12].

However, it may be possible to obtain a polynomial rate using a more appropriate distance
adapted to our problem of randomly shifted curves as pointed in our main results:

dFrechet(f1, f2) := inf
τ∈[0,1]

‖f1(.− τ)− f2(.)‖.

We plan to tackle this problem in a future work. The important requirement in this view is to
find some relations between the neighbourhoods of Pf0,g0 and the neighbourhoods of f0 according
to the distance dFrechet.

At last, an open and challenging question concerns the research of stochastic algorithm to
approach the posterior distribution in our non parametric Shape Invariant Model. One may
think of an adaptation of the SAEM strategy proposed in [AKT10] even if this approach is at
the moment valid only in a parametric setting.
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A Topology on probability space

Probability distances. We will study consistency using standard distance over probability
measures. If P and Q are two probability measures over a set X, absolutely continuous with
respect to a reference measure λ, dH will refer to the Hellinger distance defined as

dH(P,Q) :=

√
√
√
√

∫

X

[√

dP

dλ
−
√

dQ

dλ

]2

dλ.

Note that dH does not depend on the choice of the dominating measure λ, and that the definition
can be extended to any finite measures P and Q in a straightforward way.

When needed, we will use the Total Variation distance between two probability measures P
and Q. If B is the σ-algebra of measurable sets with the reference measure λ, this distance is
given by

dV T (P,Q) := sup
A∈B

|P (A)−Q(A)| = 1

2

∫

X

∣
∣
∣
∣

dP

dλ
− dQ

dλ

∣
∣
∣
∣
dλ.

At last, we recall the definition of the Kullback-Leibler divergence (entropy) between P and Q
since it will sometimes be used in the work:

dKL(P,Q) :=

∫

X
− log

dQ

dP
dP.
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In the sequel, we shall also use V (P,Q) defined as a second order moment associated to the
Kullback-Leibler divergence

V (P,Q) :=

∫

X

(

log
dQ

dP

)2

dP.

It may be reminded the classical Pinsker’s inequality

√

1

2
dKL(P,Q) ≥ dV T (P,Q), (A.1)

as well as
1
2 dH(P,Q)2 ≤ dV T (P,Q) ≤ dH(P,Q). (A.2)

Model Complexity. To obtain the posterior consistency and convergence rate, we shall use
results given by Theorem 2.1 of [GGvdV00] which is stated below. This theorem exploits the
notion of complexity of the studied model, and this complexity is traduced according to packing
or covering numbers. For any set of probability measures P endowed with a metric d, D(ǫ,P, d)
will refer to the ǫ-packing number (the maximum number of points in P such that the minimal
distance between each pair is larger than ǫ). The ǫ-covering number N(ǫ,P, d) is the minimum
number of balls of radius ǫ needed to cover P. These two numbers are linked through the
following inequality

N(ǫ,P, d) ≤ D(ǫ,P, d) ≤ N(ǫ/2,P, d).
At last, for d a metric on finite measures, an ǫ-bracket is a set of the form

[L,U ] :=

{

P s.t.
dL

dλ
≤ dP

dλ
≤ dU

dλ

}

,

for L and U two finite measures such that d(L,U) ≤ ǫ and λ any dominating measure. The
ǫ-bracketing number N[](ǫ,P, d) is the minimal number of ǫ-brackets needed to cover P. Note
that N[](ǫ,P, dH ) is an upper bound of the (ǫ/2)-covering number N(ǫ/2,P, dH ). The bracketing
entropy is then defined by H[](ǫ,P, d) := logN[](ǫ,P, d).

B Tools for the proof of Theorem 2.2

B.1 Entropy estimates

Proof of Proposition 3.1. The proof is similar to Lemma 1 of [GW00], we set p = 2ℓ + 1 and
for any ǫ > 0, we are going to build an explicit bracketing of Aθ and then bound N[](ǫ,Aθ, dH).
For an integer K which will be chosen in the sequel, we define [ϕi−, ϕ

i
+] of size ∆ϕ = 1/K, with

ϕi− = (i− 1)∆ϕ and ϕi+ = i∆ϕ. For any δ > 0, we consider the lower and upper brackets

li := (1 + δ)−1γθ•ϕi
−,(1+δ)

−αId and ui := (1 + δ)γθ•ϕi
− ,(1+δ)

αId.

We are looking for some admissible values of α, δ, and K such that ([li, ui])i=1...K is an ǫ-bracket
of Aθ for dH . Of course, for all ϕ ∈ [ϕi−, ϕ

i
+], li ≤ γθ•ϕ,Id(.) ≤ ui should hold, but we can check

that

∀x ∈ C
li(x)

γθ•ϕ,Id(x)
≤ 1

1 + δ

1

(1 + δ)−pα
e

‖θ•ϕ−θ•ϕ−
i

‖2

1−(1+δ)−α ≤ (1 + δ)pα−1e

4π2∆2
ϕ‖θ‖2H1

1−(1+δ)−α .

Hence, we must have α ≤ 1/p, and we must also satisfy

|∆ϕ|2 ≤
1− pα

4π2‖θ‖2H1

(
1− (1 + δ)−α

)
log(1 + δ) =

α(1− pα)δ2

4π2‖θ‖2H1

(1 + o(1)) ,
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where o(1) does not depend on p and goes to zero as δ → 0 uniformly in α in any positive
neighbourhood of zero. In a same way considering γθ•ϕ,Idu

−1
i , we obtain

∀x ∈ C
γθ•ϕ,Id(x)

ui(x)
≤ (1 + δ)αp−1e

4π2∆2
ϕ‖θ‖2H1

(1+δ)α−1 ,

and the same conditions arise. In order to minimize the cardinal of the bracketing, ∆ϕ must be
as large as possible, we then maximize α(1− pα) and choose α = (2p)−1.

We must now check that dH(li, ui) ≤ ǫ. Rapid computations show that

dH(li, ui)
2 = δ2 + dH(γθ•ϕi

−,(1+δ)
−αId(.), γθ•ϕi

− ,(1+δ)
αId(.))

2.

Using standard formula on Hellinger distance for multivariate gaussian laws, we obtain

dH(li, ui)
2 = δ2 + 2

[

1− 2p

((1 + δ)α + (1 + δ)−α)p

]

= δ2 + 2

[

1− 2p
√
1 + δ

(
1 + (1 + δ)1/p

)p

]

.

One can easily check that, whatever p ≥ 1,
(
1 + (1 + δ)1/p

)p ≤ 2peδ/2, which yields

dH(li, ui)
2 ≤ 3

2δ
2 + o(δ2) ≤ 2δ2

for δ small enough. An admissible choice of δ should be δ = ǫ/
√
2, which insures dH(li, ui) ≤ ǫ.

We then obtain

∆2
ϕ ≤ δ2 + o(δ2)

16π2p‖θ‖2H1

=
ǫ2 + o(ǫ2)

32π2p‖θ‖2H1

,

where o(ǫ2) does not depend on p. The number of brackets is now K = ∆−1
ϕ , this ends the proof

of the proposition .

Proof of Proposition 3.3. We first fix the notation p = 2ℓ + 1 which refers to the dimension of
the multivariate mixture. For any R > 0 which will be chosen later, ER is the ball of in C

p of
radius R. For sake of simplicity, we will sometimes omit the dependence on ǫ with the notation
p. According to the hypotheses in Proposition 3.3, there exists an absolute constant a such that
‖θ‖ ≤ w ≤ a

√
p. We first write

dV T (Pθ,g,Pθ,g̃) ≤
1

2

∫

Ec
R

|dPθ,g − dPθ,g̃| (z)
︸ ︷︷ ︸

:=(A)

+
1

2

∫

ER
|dPθ,g − dPθ,g̃| (z)

︸ ︷︷ ︸

:=(B)

.

Let ν be a measure on [0, 1] that dominates both g and g̃.

Term (A). We will pick R such that (A) is smaller than ǫ/2, first set R2 > (1 + a)2p ≥
a−2(1 + a)2‖θ‖2 and with this choice,

∀ϕ ∈ [0, 1] ∀z ∈ EcR ‖z − θ • ϕ‖ > ‖z‖/(1 + a).

This simply implies that,

(A) ≤ π−p
∫

Ec
R

∫ 1

0
e
− ‖z‖2

(1+a)2

∣
∣
∣
∣

dg

dν
(ϕ) − dg̃

dν
(ϕ)

∣
∣
∣
∣
dν(ϕ)dz ≤ 2(1 + a)2p P

(

χ2
2p ≥

2R2

(1 + a)2

)

.

To deal with we last term we use a concentration of chi-square statistics inequality (see Lemma
1 of [IL06]): for any k ≥ 1 and c > 0,

P
(
χ2
k ≥ (1 + c)k

)
≤ 1

c
√
2π
e−

k
2
[c−log(1+c)]− 1

2
log k. (B.1)
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Therefore, writing R2 = (1 + a)2(1 + c)p for c > 0, one gets

(A) ≤ 1

c
√
π
e−p[c−log(1+c)−2 log(1+a)]− 1

2
log p

and this term is smaller than ǫ/2 if we pick c large enough, since log 1
ǫ . p.

Term (B). We then consider (B), following the strategy of [GvdV01] which exploits the
smoothness of Gaussian densities. We will exhibit a discrete mixture law which will be close
to Pθ,g, for any given g. Taylor’s expansion theorem yields:

∀k ∈ N ∀y ∈ R+

∣
∣
∣
∣
∣
∣

e−y −
k−1∑

j=0

(−y)j
j!

︸ ︷︷ ︸

:=Rk(y)

∣
∣
∣
∣
∣
∣

≤ |y|k
k!

≤ (e|y|)k
kk

. (B.2)

Thus, for all z ∈ ER, we have

Pθ,g(z)− Pθ,g̃(z) = π−p
∫ 1

0
e−‖z−θ•ϕ‖2

[
dg

dν
(ϕ) − dg̃

dν
(ϕ)

]

dν(ϕ)

= π−p
k−1∑

j=0

(−1)j

j!

∫ 1

0
‖z − θ • ϕ‖2j

[
dg

dν
(ϕ)− dg̃

dν
(ϕ)

]

dν(ϕ)

+ π−p
∫ 1

0
Rk
(
‖z − θ • ϕ‖2

)
[
dg

dν
(ϕ) − dg̃

dν
(ϕ)

]

dν(ϕ).

We now decompose θ = (θ−ℓ, . . . , θℓ) and z = (z−ℓ, . . . , zℓ) using polar coordinates: θm = ρ
(1)
m eiαm

and zm = ρ
(2)
m eiβm for |m| ≤ ℓ.

‖z − θ • ϕ‖2 =
ℓ∑

m=−ℓ
|zm − θme

imϕ|2 = ‖z‖2 + ‖θ‖2 − 2
ℓ∑

m=−ℓ
ρ(1)m ρ(2)m cos(βm − αm −mϕ).

For any integer j ≤ k, we deduce that

‖z − θ • ϕ‖2j = Cj(z, θ) +

j
∑

r=1

ℓ∑

m=−ℓ
ar,m(z, θ) [cos(βm − αm −mϕ)]r ,

where (a(r,m))r=1...k,m=−ℓ...ℓ is a complex matrix which only depends on z and θ. Using Euler’s
identity,

‖z − θ • ϕ‖2j = Cj(z, θ) +

j
∑

r=1

ℓ∑

m=−ℓ
ar,m(x, θ)2

−r
(

ei(βm−αm−mϕ) + e−i(βm−αm−mϕ)
)r

= Cj(z, θ) +

jℓ
∑

r=−jℓ
br(z, θ)e

irϕ.
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where b stands for a complex vector obtained by the Binomial formula and coefficients ar,m(z, θ).
Consequently, for all z ∈ ER

Pθ,g(z)− Pθ,g̃(z) = π−p
k−1∑

j=0

(−1)j

j!

∫ 1

0



Cj(z, θ) +

jℓ
∑

r=−jℓ
br(z, θ)e

irϕ





[
dg

dν
(ϕ)− dg̃

dν
(ϕ)

]

dν(ϕ)

+ π−p
∫ 1

0
Rk
(
‖z − θ • ϕ‖2

)
[
dg

dν
(ϕ)− dg̃

dν
(ϕ)

]

dν(ϕ)

= π−p
k−1∑

j=0

(−1)j

j!



Cj(z, θ)c0(g − g̃) +

jℓ
∑

r=−jℓ
br(z, θ)cr(g − g̃)





+ π−p
∫ 1

0
Rk
(
‖z − θ • ϕ‖2

)
[
dg

dν
(ϕ)− dg̃

dν
(ϕ)

]

dν(ϕ).

Caratheodory’s theorem shows that one can find g̃ with a finite support of size 2(k−1)ℓ+1 ∼ 2kℓ
such that

∀r ∈ [−(k − 1)ℓ, (k − 1)ℓ] cr(g) = cr(g̃).

For such finite mixture law g̃, we obtain

∀z ∈ C
p

Pθ,g(z)− Pθ,g̃(z) = π−p
∫ 1

0
Rk
(
‖z − θ • ϕ‖2

)
[
dg

dν
(ϕ) − dg̃

dν
(ϕ)

]

dν(ϕ),

and of course

(B) ≤ π−p
∫

ER

∣
∣
∣
∣

∫ 1

0
Rk
(
‖z − θ • ϕ‖2

)
[
dg

dν
(ϕ)− dg̃

dν
(ϕ)

]

dν(ϕ)

∣
∣
∣
∣
dz

≤ 2π−p sup
z∈ER,ϕ∈(0,1)

Rk
(
‖z − θ • ϕ‖2

)
V ol(ER).

According to the choice R = (1+a)
√

(1 + c)p which implies that ‖z−θ•ϕ‖ ≤ (1+2a)
√

(1 + c)p,
and using the volume of ER and Stirling’s formula, we obtain

(B) . π−p
(
e(1 + 2a)2(1 + c)p

)k

kk
πp[(1 + a)2(1 + c)p]p

p!

. Cp1C
k
2 e

−k log(k)+k log(p),

where we used in the last equation pp/p! ≤ Cp. If we define the threshold k in (B.2) such that
k ∼ bℓ for a sufficiently large b, we then obtain for a universal C:

(B) =

∫

ER
|dPθ,g − dPθ,g̃| (z) . eℓ(C−b log(b)).

In order to bound (B) by ǫ/2, we thus choose kǫ ∼ bℓǫ for a sufficiently large absolute constant b.
For such a choice, since log 1

ǫ . ℓǫ we have found g̃ with a discrete support of cardinal sǫ ∼ 2bℓ2ǫ
points, with sǫ not depending on g, such that

dV T (Pf,g,Pf,g̃) ≤ ǫ/2.

Now, the first inequality in Proposition 3.3 comes from Proposition 3.2.
The second inequality in Proposition 3.3 is proved from the first one, using the relation

‖θ‖H1 ≤ ℓ‖θ‖ valid for any f ∈ Hℓ
s.
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Proof of Lemma 3.1. We follow a straightforward argument: Pf,g is a mixture model so

Pf,g =

∫ 1

0
Pf,δαdg(α).

Thus

dV T

(

Pf,g,Pf̃ ,g

)

=

∥
∥
∥
∥

∫ 1

0

(

Pf,δα − Pf̃ ,δα

)

dg(α)

∥
∥
∥
∥
TV

≤
∫ 1

0

∥
∥
∥Pf,δα − Pf̃ ,δα

∥
∥
∥
TV

dg(α)

=
∥
∥
∥Pf,δ0 − Pf̃ ,δ0

∥
∥
∥
TV

≤ dH

(

Pf,δ0 ,Pf̃ ,δ0

)

.

Assume now Y ∼ Pf,δ0 , hence from (2.1) dY = f(x)dx + dW , with W is a complex stan-
dard Brownian motion. If we denote U a random variable NC(0, 1), standard argument using
Girsanov’s formula yields

d2H

(

Pf,δ0 ,Pf̃ ,δ0

)

= 2



1− Ef,δ0

√

dPf̃ ,δ0
dPf,δ0

(Y )





= 2

(

1− Ef,δ0

√

exp
(

2ℜe〈f̃ − f, dW 〉 − ‖f̃ − f‖2
)
)

= 2

(

1− exp

(

−‖f̃ − f‖2
2

)

EU

[

exp
(

‖f̃ − f‖ℜe(U)
)]
)

= 2

(

1− exp

(

−‖f̃ − f‖2
4

))

≤ ‖f̃ − f‖2
2

.

B.2 Link between Kullback-Leibler and Hellinger neighbourhoods

Proof of Proposition 3.4. This proposition uses a corollary of Rice’s formula (see [AW09] for
various applications of such formula), stated in Lemma B.1 and postponed after this proof.

We begin with Girsanov’s formula (3.1). Write now Y = f0,−τ +W where W stands for a
complex standard Brownian motion independent of the random shift τ (whose law is g0). The
L2 norm is invariant with any shift thus

dPf0,g0

dPf,g
(Y ) = exp

(
‖f‖2 − ‖f0‖2

)
∫ 1
0 e

2ℜe〈f0,−α1 ,f0,−τ+dW 〉dg0(α1)
∫ 1
0 e

2ℜe〈f−α2 ,f0,−τ+dW 〉dg(α2)

≤ exp
(
‖f‖2 − ‖f0‖2

)
exp

(

2 sup
α1,α2

ℜe〈f0,−α1 − f−α2 , f0,−τ 〉
)

exp

(

2 sup
α1,α2

ℜe〈f0,−α1 − f−α2 , dW 〉
)

≤ e(‖f‖+‖f0‖)2eZ1+Z2 ,

where the last inequality is obtained using Cauchy-Schwarz’s inequality and the notations

Z1 := 2 sup
α1

ℜe〈f0,−α1 , dW 〉 = 2 sup
α1

ℜe
∫ 1

0
f0(s− α1)dWs,

Z2 := 2 sup
α2

ℜe〈−f−α2 , dW 〉 = 2 sup
α2

ℜe
∫ 1

0
−f(s− α2)dWs.
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We now set δ ∈ (0, 1] (it will be precisely fixed in the sequel) and we define the trajectories Eδ as

Eδ :=
{

Y = f0,−τ +W | dPf0,g0

dPf,g
(Y ) ≥ e1/δ

}

.

Hence, following the definition of M2
δ of (3.2), we have

M2
δ = EY∼Pf0,g0

[(
dPf0,g0

dPf,g
(Y )

)δ

1Y ∈Eδ

]

.

For δ small enough, (δ ≤ 1
2(‖f‖+‖f0‖)2 ):

M2
δ ≤ eδ(‖f‖+‖f0‖)2

Eeδ(Z1+Z2)1Z1+Z2≥ 1
δ
−(‖f‖+‖f0‖)2 ≤ eδ(‖f‖+‖f0‖)2

Eeδ(Z1+Z2)1Z1+Z2≥ 1
2δ

≤ eδ(‖f‖+‖f0‖)2
Eeδ(Z1+Z2)1eδ(Z1+Z2)≥√

e.

Integrating by parts the last expectation, the use of Lemma B.1 yields

M2
δ ≤ eδ(‖f‖+‖f0‖)2

∫ +∞

√
e

P

(

eδ(Z1+Z2) > u
)

du

= eδ(‖f‖+‖f0‖)2
∫ +∞

√
e

[

P

(
Z1

2
≥ log u

4δ

)

+ P

(
Z2

2
≥ log u

4δ

)]

du

M2
δ ≤ C(f0, f)eδ(‖f‖+‖f0‖)2

∫ +∞

√
e

[

exp

(

− log2(u)

16δ2‖f0‖2
)

+ exp

(

− log2(u)

16δ2‖f‖2
)]

du. (B.3)

Now, we can choose δ non negative and small enough such that M2
δ < ∞ since for u ≥ √

e, we
have

e
− log2(u)

16δ2‖f0‖2 ≤ e
− log(u)

32δ2‖f0‖2 = u−1/32δ2‖f0‖2 ,

which is an integrable function as soon as δ2 < 1
32‖f0‖2 , and the same holds with f instead of f0.

Note that M2
δ is uniformly bounded if f is picked into a ball centered at 0 with radius 2‖f0‖.

We now show that the technical inequality used in (B.3) is satisfied.

Lemma B.1. Let W a complex standard Brownian motion and u a complex 1-periodic map of
Hs. We assume that u is of class C2. Then when t/‖u‖ −→ +∞, we have

P

(

sup
α

ℜe〈u−α, dW 〉 > t

)

.
‖u′‖
2π‖u‖ exp

( −t2
‖u‖2

)

.

In particular, if u ∈ Hℓ
s, we have

P

(

sup
α

ℜe〈u−α, dW 〉 > t

)

.
ℓ

2π
exp

( −t2
‖u‖2

)

.

Proof. We define the following process

∀α ∈ [0, 1] X(α) :=

√
2ℜe

(∫ 1
0 u(s − α)dWs

)

‖u‖ .

X is a Gaussian centered process. Its covariance function is given by

Γ(t) = E [X(0)X(t)] .
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Obviously, one has Γ(0) = 1 and Cauchy-Schwarz’s inequality implies that Γ(s) ≤ Γ(0). More-
over, since Γ is C1([0, 1]), we deduce that Γ′(0) = 0 and simple computation yields

Γ”(0) =
ℜe
(∫ 1

0 u
′(s)u”(s)ds

)

‖u‖2 = −‖u′‖2
‖u‖2 .

Rice’s formula (see for instance exercice 4.2, chapter 4 of [AW09]) then yields that when t −→
+∞, we have

P

(

sup
α
X(α) > t

)

∼ ‖u′‖
2π‖u‖e

−t2/2.

This ends the proof of the first inequality. Assume furthermore that u ∈ Hℓ
s, Parseval’s equality

implies that ‖u′‖ ≤ ℓ‖u‖ and we obtain the second inequality.

B.3 Hellinger neighbourhoods

Proof of Proposition 3.5. Recall first that if Y follows Pf0,g0 , one shift β is randomly sampled
according to g0. Conditionally to this shift β, Y is described trough a white noise model dY (x) =
f0(x − β)dx + dW (x). For any function F of the trajectory Y , we will denote EβF (Y ) the
expectation of F (Y ) up to the condition that the shift is equal to β, and of course one has

E0[F (Y )] =

∫ 1

0
Eβ[F (Y )]dg0(β).

For each possible value of β ∈ [0, 1], we define

Dβ(α) := exp
(

2ℜe〈f0,−αℓn
, f0,−β〉+ 2ℜe〈f0,−αℓn

, dW 〉 − ‖f0ℓn‖2
)

and

Xβ(α) := exp
(

2ℜe〈(f0 − f0ℓn)
−α, f0,−β〉+ 2ℜe〈(f0 − f0ℓn)

−α, dW 〉 − ‖f0 − f0ℓn‖2
)

.

We can now split the randomness of the Brownian motion into two parts: the first one is spanned
by the Fourier frequencies from −ℓn to ℓn and the second part is its orthogonal (in L2): W =
W1 +W2. Of course, W1 and W2 are independent.

Moreover, 〈f0,−αℓn
, dW 〉 = 〈f0,−αℓn

, dW1〉 and 〈(f0 − f0ℓn)
−α, dW 〉 = 〈(f0 − f0ℓn)

−α, dW2〉. For
any fixed β, Dβ(α) is measurable with respect to the filtration associated to W1, and Xβ(α) is
independent of W1. We thus obtain using Jensen’s inequality and this filtration property that

(Ẽ1)
2 = E

[

log

∫ 1
0 Dβ(α)Xβ(α)dg

0(α)
∫ 1
0 Dβ(α)dg0(α)

]

≤ log

∫ 1

0
E
W2
β

[

E
W1
β

[ ∫ 1
0 Dβ(α)Xβ(α)dg

0(α)
∫ 1
0 Dβ(α)dg0(α)

∣
∣
∣
∣
∣
W2

]]

dg0(β)

≤ log

∫ 1

0
E
W2
β

[

Xβ(α)E
W1
β

[ ∫ 1
0 Dβ(α)dg

0(α)
∫ 1
0 Dβ(α)dg0(α)

∣
∣
∣
∣
∣
W2

]]

dg0(β)

≤ log

∫ 1

0

(

sup
α

E
W2
β [Xβ(α)]

)

dg0(β).

The notation E
W1
β F (Y ) (resp. E

W2
β F (Y )) used above refers to the expectation of F (Y ) with

respect to W1 (resp. with respect to W2) with a fixed β.
Now, one should remark that Xβ(α) has the same law as exp

(
2ℜe〈(f0 − f0ℓn)

−α, f0,−β〉+ U
)
,

where U ∼ NR

(
−‖f0 − f0ℓn‖2, 2‖f0 − f0ℓn‖2

)
, and E

[
eU
]
= 1. Hence

(Ẽ1)
2 ≤ log

∫ 1

0
sup
α

exp
(

2ℜe〈(f0 − f0ℓn)
−α, f0,−β〉

)

dg0(β) ≤ log sup
α,β

exp
(

2ℜe〈(f0 − f0ℓ )
−α, f0,−β〉

)
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We can now switch log and sup since log is increasing, and we obtain

(Ẽ1) ≤
√

2 sup
α,β

ℜe〈(f0 − f0ℓn)
−α, f0,−β〉.

Again, we can use the orthogonal decomposition f0,−β = f0,−βℓn
+ f0,−β − f0,−βℓn

and Cauchy-

Schwarz’s inequality yields (Ẽ1) ≤
√
2‖f0 − f0ℓn‖.

Note that untill now we did not use the hypothesis f0 ∈ Hs. It is only needed to get the last
inequality in Proposition 3.5.

To establish Lemma 3.2, we first remind the following useful result.

Lemma B.2. For any any dimension p and any couple of points (z1, z2) ∈ C
p, if ‖z1 − z2‖ is

the Euclidean distance in C
p, then one has

dV T (γz1 , γz2) =
1

2
‖γz1 − γz2‖L1 =

[

2Φ

(‖z1 − z2‖
2

)

− 1

]

≤ ‖z1 − z2‖√
2π

,

where Φ stands for the cumulative distribution function of a real standard normal variable.

Proof of Lemma 3.2. The proof is largely inspired from the one given in [GvdV01] and will only
be summarized. The first idea is to upper bound the square of Hellinger distance by the Total
Variation distance. Now, for any ǧ ∈ M([0, 1]), Pf,ǧ ∼

∫ 1
0 ǧ(ϕ)γθ•ϕ,Iddϕ. If we denote θ = θ(f0ℓn),

for any z in C
2ℓn+1, we have

(Pθ,ǧ − Pθ,g̃)(z) =

∫ 1

0
γ0(z − θ • ϕ)(dǧ(ϕ) − dg̃(ϕ)).

We define S =
⋂J
j=1 {[ϕj − η/2, ϕj + η/2]}c and since the support of g̃ does not intersect S, we

have

(Pθ,ǧ − Pθ,g̃)(z) =

∫

S
γ0(z − θ • ϕ)dǧ(ϕ) +

J∑

j=1

∫ ϕj+η/2

ϕj−η/2
γ0(z − θ • ϕ)(dǧ(ϕ) − dg̃(ϕ))

=

∫

S
γ0(z − θ • ϕ)dǧ(ϕ) +

J∑

j=1

∫ ϕj+η/2

ϕj−η/2
[γ0(z − θ • ϕ)− γ0(z − θ • ϕj)]dǧ(ϕ)

+
J∑

j=1

∫ ϕj+η/2

ϕj−η/2
γ0(z − θ • ϕj)dǧ(ϕ)− γ0(z − θ • ϕ)dg̃(ϕ)

︸ ︷︷ ︸

=γ0(z−θ•ϕj)[ǧ([ϕj−η/2,ϕj+η/2])−pj ]

.

Fubini theorem implies that

‖Pf0ℓn ,ǧ − Pf0ℓn ,g̃
‖L1 ≤ ǧ(S) +

J∑

j=1

∫ ϕj+η/2

ϕj−η/2
‖γ0(.− θ • ϕ)− γ0(.− θ • ϕj)‖L1dǧ(ϕ)

+

J∑

j=1

|ǧ([ϕj − η/2, ϕj + η/2]) − pj | .

Lemma 5.1 of [GvdV01] proves that ǧ(S) ≤∑J
j=1 |ǧ([ϕj − η/2, ϕj + η/2]) − pj | and Lemma B.2

yields

‖Pf0ℓn ,ǧ − Pf0ℓn ,g̃
‖L1 ≤ 2

J∑

j=1

|ǧ([ϕj − η/2, ϕj + η/2]) − pj|+
J∑

j=1

∫ ϕj+η/2

ϕj−η/2

‖θ • ϕ− θ • ϕj‖√
2π

dǧ(ϕ)

This ends the proof of the Lemma 3.2 since ‖θ • ϕj − θ • ϕ‖ ≤ 2π‖θ‖H1 |ϕ− ϕj |.
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Proof of Proposition 3.7. The construction used in the proof of Proposition 3.3 provide a mixture
˜̃g such that ˜̃g is supported by J̃n := Cℓ2n points (denoted (ϕj)j=1...J̃n

) so that dH(Pf0ℓn ,g
0 ,Pf0ℓn ,

˜̃g) ≤
ǫn. Therefore ˜̃g =

∑J̃n
j=1wjδϕj . As pointed by [GvdV01], one can slightly modify ˜̃g so that the

support points are separated enough as follows. First, denote (ψj)j=1...Jn the subset of (ϕj)j=1...J̃n

which is ηn-separated with a maximal number of elements. Hence, Jn ≤ J̃n and up to a per-
mutation, one can divide (ϕj)j=1...J̃n

in two parts: (ϕj)j=1...J̃n
= (ψj)j=1...Jn ∪ (ϕj)j=Jn+1...J̃n

.

For any i ∈ {Jn + 1, . . . , J̃n}, we define ψj(i) as the closest point of (ψj)j=1...Jn , the new discrete
mixture law is then given by

g̃ =

Jn∑

j=1



wj +
∑

i>Jn|j(i)=j
wi





︸ ︷︷ ︸

:=w̃j

δψj
.

Of course, g̃ as a support which is ηn-separated. Moreover, we have

2dV T

(

Pf0ℓn ,g̃
,Pf0ℓn ,

˜̃g

)

=

∫

Cℓn

∣
∣
∣
∣
∣
∣

Jn∑

i=1

w̃iγ(z − θ • ψi)−
J̃n∑

i=1

wiγ(z − θ • ϕi)

∣
∣
∣
∣
∣
∣

dz

=

∫

Cℓn

∣
∣
∣
∣
∣
∣

Jn∑

j=1

(w̃j − wj)γ(z − θ • ψj)−
∑

i>Jn

wiγ(z − θ • ϕi)

∣
∣
∣
∣
∣
∣

dz

=

∫

Cℓn

∣
∣
∣
∣
∣
∣

Jn∑

j=1

∑

i>Jn|j(i)=j
wi[γ(z − θ • ψj)− γ(z − θ • ϕi)]

∣
∣
∣
∣
∣
∣

dz.

Then, Fubini’s theorem yields

dV T

(

Pf0ℓn ,g̃
,Pf0ℓn ,

˜̃g

)

≤
Jn∑

j=1

∑

i>Jn|j(i)=j
widV T (γθ•ϕi

, γθ•ψj
),

and we deduce from Lemma B.2 that

dV T

(

Pf0ℓn ,g̃
,Pf0ℓn ,

˜̃g

)

≤
√
2π

Jn∑

j=1

∑

i>Jn|j(i)=j
wi‖θ‖H1ηn ≤

√
2π‖θ‖H1ηn.

Now the relations between Hellinger and Total Variation distances (A.2) yield

dH(Pf0ℓn ,g
0 ,Pf0ℓn ,g̃

) ≤ ǫn + dH(Pf0ℓn ,g̃
,Pf0ℓn ,

˜̃g) ≤
(

1 + (8π)1/4‖θ‖1/2H1

)

ǫn.

Lemma 3.2 permits to conclude.

B.4 Checking the conditions of Theorem 2.1

Proof of Propostion 3.9. We have seen in the proof of Proposition 3.4 that M2
δ is uniformly

bounded with respect to ‖f‖ and ‖f0‖ for a suitable choice of δ. We restrict our study to the
elements f such that ‖f‖ ≤ 2‖f0‖. We know from Proposition 3.4 and Theorem 3.2 that as soon
as ǫ̃n log

1
ǫ̃n

≤ cǫn with c small enough:

Vǫ̃n(Pf0,g0 , dH) :=
{
Pf,g ∈ P|dH(Pf0,g0 ,Pf,g) ≤ ǫ̃n and ‖f‖ ≤ 2‖f0‖

}
⊂ Vǫn(Pf0,g0 , dKL).

This last condition on ǫ̃n is true as soon as

ǫ̃n := c̃ǫn

(

log
1

ǫn

)−1

(B.4)
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with c̃ small enough. Now, Proposition 3.8 permits to describe a subset of Vǫ̃n(Pf0,g0 , dH), by

the definition of subsets Fǫ̃n and Gǫ̃n for f and g. Choose ℓn := ǫ̃
−1/s
n .

We first bound the prior mass on Gǫ̃n . This follows from the lower bound given by Lemma
3.3. The prior for g is a Dirichlet process with a finite base measure α admitting a continuous
positive density on [0, 1]. Since ηn goes to zero, for n large enough α(ψj − ηn/2, ψj + ηn/2) for

any j = 1 . . . Jn. Note that Jn . ℓ2n = ǫ̃
−2/s
n ≤ ǫ̃−2

n . Thus, there exists an absolute constant
a ∈ (0, 1] such that the condition Jn ≤ 2(aǫ̃n)

−2 is fulfilled, and one can find universal constants
C and c such that for n large enough

Πn (Gǫ̃n) ≥ Πn (Gaǫ̃n) ≥ Ce
−cJn log 1

ǫ̃2n ≥ Ce−cℓ
2
n log 1

ǫ̃n . (B.5)

We next consider the prior mass on Fǫ̃n . Remark that when n is large enough, any element of
Fǫ̃n satisfies ‖f‖ ≤ 2‖f0‖ and the additional condition on ‖f‖ in the definition of Vǫ̃n(Pf0,g0 , dH)
is instantaneously fulfilled. Remark that from the construction of our prior on f , one has

Πn (Fǫ̃n) ≥ λ(ℓn)× πℓn
(
B
(
θ0ℓn , ǫ̃

2
n

))
.

From our assumption on the prior λ, we have λ(ℓn) ≥ e−cℓ
2
n logρ ℓn , and the value of the volume

of the (4ℓn + 2)-dimensional Euclidean ball of radius ǫ̃2n implies

Πn (Fǫ̃n) ≥ e−cℓ
2
n logρ ℓn inf

u∈B
C2ℓn+1(0,ǫ̃2n)

(

e−‖θ0+u‖2/ξ2n

π2ℓn+1ξ
2(2ℓn+1)
n

)

(
ǫ̃2n
)4ℓn+2 π2ℓn+1

Γ(2ℓn + 2)
.

For n large enough we get

Πn (Fǫ̃n) ≥ exp−
[
cℓ2n log

ρ ℓn + ξ−2
n

+(2ℓn + 1)
(
log ℓn + 4 log(1/ǫ̃n)− log ξ−2

n +O(1)
)]

≥ exp
[
−(c+ o(1))

[
ℓ2n log

ρ ℓn ∨ ξ−2
n

]]
(B.6)

Gathering (B.5) and (B.6), the relations ℓn = ǫ̃
−1/s
n and (B.4) lead to

Πn
(
Vǫn(Pf0,g0 , dKL)

)
≥ Πn (Fǫ̃n)Πn (Gǫ̃n)
≥ exp

[
−(c+ o(1))

[
ℓ2n log

ρ ℓn ∨ ξ−2
n

]]

≥ exp
[

−(c+ o(1))
[

ǫ̃−2/s
n logρ (1/ǫ̃n) ∨ ξ−2

n

]]

≥ exp
[

−(c+ o(1))
[

ǫ−2/s
n (log(1/ǫn))

ρ+2/s ∨ ξ−2
n

]]

for constants c > 0.

Proof of Proposition 3.10. The upper bound on the packing number comes directly from Theo-
rem 3.1 since we set wn =

√
2kn + 1.

Now, to control the prior mass outside the sieve, remark first that owing to the construction
of our prior, we have

Πn (P \ Pkn,wn) ≤
∑

|k|≥kn
λ(k) + Pr




∑

|k|≤kn
|θk|2 ≥ w2

n



 , (B.7)

where each θk for −kn ≤ k ≤ kn follows a centered Gaussian law of variance ξ2n. Now, there
exists some constants c and C such that for sufficiently large n:

∑

|k|≥kn
λ(k) ≤ Cλ(kn) ≤ e−ck

2
n logρ(kn).
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Regarding now the second term of the upper bound in (B.7), we use (B.1) to get

Pr




∑

|k|≤kn
|θk|2 ≥ w2

n



 = Pr




∑

|k|≤kn

∣
∣
∣
∣

θk
ξn

∣
∣
∣
∣

2

ξ2n ≥ w2
n





≤ P
(
χ2
2kn+1 ≥ 2(2kn + 1)ξ−2

n

)

≤ 1

(ξ−2
n − 1)

√
π
e−(2kn+1)[ξ−2

n −1−log ξ−2
n ]−log(2kn+1)/2.

Now, using the value of ξn, we obtain

Πn (P \ Pkn,wn) ≤ e−c[k
2
n logρ(kn)∧knξ−2

n ].

This concludes the proof of the Proposition.

C Equivalents on Modified Bessel functions

Lemma C.1. For any n ∈ Z and a > 0, define

An(a) :=

∫ 2π

0
ea cos(u) cos(nu)du.

Then, the following equivalent holds:

∀a ∈ [0,
√
n] An(a) ∼

2π

n!

(a

2

)n (

1 +O
(a

n

))

.

Proof. This equivalent is related to the modified Bessel functions (see [AS64] for classical equiv-
alents on Bessel functions and [LL10] for standard results on continuous time random walks).
More precisely, Im(a) is defined as

∀m ∈ N,∀a > 0 Im(a) :=
∑

k≥0

1

k!(k +m)!

(a

2

)2k+m
,

and we have (see for instance [AS64])

I0(a) + 2

+∞∑

m=1

Im(a) cos(mu) = ea cosu.

Hence, we easily deduce that An(a) = 2πIn(a). For small a, it is possible to use standard results
on modified Bessel functions. Equation (9.7.7) of [AS64], p. 378. yields

∀a ∈ [0,
√
n] In(a) ∼

1

n!

(a

2

)n (

1 +O
(a

n

))

. (C.1)

This integral is strongly related to the density of continuous time random walk if one remark
that if Bn(a) = e−aAn(a)/(2π), one has Bn(0) = 0,∀n 6= 0 and B0(0) = 1 and at last

B′
n(a) =

B′
n(a− 1) +B′

n(a+ 1)

2
−Bn(a).

Hence, Bn(a) is the probability of a continuous time random walk to be in place n ∈ Z at time a.
In this way, we get some asymptotic equivalents of Bn(a) (and so of An(a)): from the Brownian
approximation of the CTRW , we should suspect that for a large enough

Bn(a) ∼
1√
2πa

e−n
2/(2a),∀a≫ n2. (C.2)
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Moreover, from [AS64], we know that

In(a) ∼
ea√
2πa

, as soon as a ≥ 2n, (C.3)

and this equivalent is sharp when a is large enough: from equation (9.7.1) p. 377 of [AS64], we
know that

∀a ≥ 4n2 In(a) ≥
1

2
× ea√

2πa
.

We remark that (C.3) yields the heuristic equivalent suspected in (C.2): Bn(a) = e−aIn(a) ∼
1√
2πa

, although (C.1) provides a quite different information for smaller a. We do not have

purchase more investigation on this asymptotic since we will see that indeed, (C.1) is much more
larger than (C.3).

For a ∈ [
√
n, 2n], we do not have found any satisfactory equivalent of modified Bessel func-

tions. Formula of [AS64] is still tractable but yields some different equivalent which is not
"uniform enough" since we need to integrate this equivalent for our bayesian analysis. This is
not so important since we can see for our range of application that the most important weight
belongs to the smaller values of a.
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