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JUMP DIFFUSION OVER FEATURE SPACE FOR OBJECT
RECOGNITION∗
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Abstract. We present a dynamical model for a population of tests in pattern recognition. Taking
a preprocessed initialization of a feature set, we apply a stochastic algorithm based on an efficiency
criterion and a Gaussian noise to recursively build and improve the feature space. This algorithm
simulates a Markov chain which estimates a probability distribution P on the set of features. The
features are structured as binary trees and we show that such random forests are a good way to
represent the evolution of the feature set. We then obtain properties on the dynamic of the features
space before applying this algorithm to practical examples such as face detection and microarray
analysis. Lastly, we identify the weak limit of our process as a jump-diffusion process defined using
the Skorokhod map over simplices.
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1. Introduction. In this paper, we study a learning algorithm designed for the
construction of features in pattern recognition tasks. This algorithm is constructed
as the stochastic approximation of a constrained jump-diffusion process, for which we
provide an asymptotic analysis.

The algorithm originates from the following issue. A pattern recognition problem
corresponds to the classification of input data into two or more classes. To solve
this, an algorithm, called a classifier, is used to design a function which associates a
class prediction to an observation of the input variables. There exists several types
of competing approaches for building classifiers. Our goal is not to build a new one,
but to optimize and improve the prediction by feeding the algorithm with the “best”
input variables. Poorly informative variables indeed act like noise in a dataset and
reduce the quality of learning algorithms, and fewer variables generally is a guarantee
for robustness and reduced generalization ability. Also, a good understanding of the
features which have more impact in the classification is critical in some subjects such
as biology or text categorization: In microarray analysis, for example, it is important
to identify the genes which express a pathology, and in spam detection, one can
expect that the presence of some special chain of words enables better detection
of nondesirable spam for some classical algorithms such as support vector machines
(SVMs), classification trees (CART), or random forests, for instance.

Denote by F0 the initial set of variables; in the machine learning community, these
are also called features and this is the word we will use in this paper. In several recent
interesting applications, F0 is a large set, which contains hundreds, maybe thousands,
of elements. Given that what we want to consider are not only a few useful elements
of F0, but also useful combinations of them, we face an overwhelming space of possible
explanatory variables that we need to explore in the selection process. Our goal will
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FEATURE SELECTION WITH JUMP DIFFUSION 905

be to provide a suboptimal stochastic approach to recursively explore and build new
composed features space.

For simplicity, the only combinations we consider in this paper are products of
variables. If we denote P(F0) parts of F0, we estimate, from a training set of samples,
a subset F of P(F0) of “useful” variables, those which are the most important for the
classification task. This set will be estimated as a jump process which will be denoted
(Ft)t≥0.

1

This jump process will in fact be driven by an auxiliary process, denoted Pt, such
that, at all times t, Pt is a probability measure supported by Ft. We will define the
pair (Pt,Ft) as a jump-diffusion process, designed to maximize the efficiency of the
variables belonging to Ft. The practical implementation will be a stochastic approx-
imation of this process. The primary goal of this paper is to provide a convergence
study of both algorithms, the diffusion, and its approximation.

Since there are important motivations and applications from feature extraction,
finding a universal alphabet of features has intrigued researchers in computer vision,
and the construction of feature sets has become an active research domain. Direct
methods, based on principal (or discriminant) components analysis (PCA) or inde-
pendent components analysis (ICA) [24], can be used for reduction of dimension, but
are not able to create new variables by composition and do not help us to easily
understand the selection. Methods based on hierarchically structured variables have
also been developed: Amit and Geman [2] and Fleuret and Geman [16] build recur-
sive sets of binary decision trees using coarse to fine procedures. These recursive
algorithms combine statistical and geometric properties to assemble discriminative
sequential testing and reach very low rates of error in many image classification prob-
lems. But in most cases for these algorithms, the amount of features constructed is
not limited and can regularly increase if the learning procedure is not stopped [25] and
conclusions about optimization results are not inferred. Our approach to the feature
space structure will be largely inspired from this sequential testing method, based on
statistical correlation [16], entropy [20], or mutual information [15].

Finally, methods based on the optimization of margin of support vector machines
have been recently proposed to make recursive feature elimination (RFE [31], [10]).
These methods use exact expressions of margin separation of SVM and optimize
weights on features to keep only those with high influence on the margin formula. This
yielded interesting results on several classification tasks, such as pedestrian detection
and cancer morphology classification, with a quantity of features. However, all these
methods perform only backward selections from an initial fixed set of features, while
adding new features obtained from composition of initial ones could improve efficiency
of classification.

Building a set of features derived from an initial set, which contains a reduced
number of variables, and complex combinations of variables, is at this point a largely
open issue. Our objective will be to handle this problem using simultaneously up-
ward and backward stochastic strategies. Such evolutionary algorithms are commonly
used in the framework of regression, adding and removing variables with respect to
any information criterion (AIC (Akaike information criterion), MSE (mean square
error), etc.). We show here how one can think about similar ideas for the framework
of pattern classification without using logistic regression, which may be considered
somewhat artificial. Moreover, contrary to most variable selection procedures for lin-
ear analysis, we provide a theoretical background for our stochastic exploration of

1The construction will in fact be slightly more complex, involving trees instead of subsets.
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906 SÉBASTIEN GADAT

features subsets dedicated to an optimization criterion. Lastly, our method can be
used with any classification algorithm. This is an important point since for the com-
monly investigated classification problems, there does not exist a best classifier among
all methods developed by statisticians.

Our paper will be organized as follows. In the next section, we give a precise
description of our framework and introduce notation. The third section is devoted
to the theoretical model of our jump-diffusion Markov process. Then, section 4 gives
exact rules to enable features space to evolve over time. These rules use a Metropolis–
Hastings evolution based on an energy E to be minimized over time. Section 5 gives
dynamic properties of the model previously defined, whereas section 6 provides a
statistical implementation and approximation method to simulate the jump-diffusion
process of section 3. Finally, we conclude our work with experiments on synthetic data
and real classification problems (face detection and leukemia classification) before giv-
ing future developments and applications to other situations in pattern recognition.
Lastly, note that we choose to formalize our work in a continuous setting (Markov
processes) rather than in a discrete form (Markov chains). One motivation will be
to provide an understanding of the limit behavior of our exploration/extraction algo-
rithm. Continuous setup will make it easier to precisely describe the dynamic of our
constrained optimization method (section 5.1), while the formalism of the martingale
problem and generator for Markov processes will be very powerful in identifying the
asymptotic measure of our algorithm (Theorems 6.3 and 7.2). In fact, one can also
describe our algorithm in a discrete setting (it is, moreover, the way it is numerically
implemented) but the identification of the asymptotic behavior requires a time con-
tinuous approach with the use of the Skorokhod map. We thus choose to directly
present the algorithm in the continuous framework to avoid some additional notation
and repetitions.

2. Notation and settings.

2.1. Classes and features. We address the following pattern recognition prob-
lem. Given a large integer d which will denote the initial number of features, an
input signal I ∈ R

d must be classified into a fixed number of classes denoted C =
{C1, . . . , CN}. Each input I is described by its coordinates (X1(I), . . . , Xd(I)). F0 is
the set of initial coordinates maps:

F0 =
{
X1, . . . , Xd

}
.

In our experiments, the Xj will be the projection to the jth component, it can
be binary (values in {0, 1}) or ternary (values in {−1, 0, 1}) for the image processing
problem of section 8, or more generally, real-valued coordinates can also be considered
(see the microarray analysis experiments of section 8).

A classification algorithm is a function which assigns a class Ci of the finite set
C to an observed signal I. This function is estimated on the basis of a training set,
which is a finite family of correctly labeled signals. However, for obvious dimensional
complexity, the algorithm assumes a specific parametric form for the classification
function: it could be, for instance, CART, SVMs, linear discriminant analysis, nearest
neighbor, etc. In the two-class problem, the simplest classification rule is based on
linear separation: Compute the sum β0 +

∑d
j=1 βjX

j , and decide for the first class if
it is negative and for the second otherwise. The parameters (β0, βj , j ∈ {1 . . . p}) are
estimated so that this rule is as consistent as possible with the training data. Various
definitions of the consistency criterion, variants on the functional form of the decision
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FEATURE SELECTION WITH JUMP DIFFUSION 907

rule and of the optimization algorithms, yield a very large family of classifiers, as
provided by the literature. We will use in our applications an SVM with a linear
kernel because of the generalization ability of this algorithm. Note that the previous
linear separation rule assumes that all the features are used as monomials. Our goal
in this context is twofold:

• Selection: Use less than the total family of features, which can be very large
(d > 1000, for instance).

• Composition: Use more complex expressions than monomials by combining
the features, and thus define one way to combine them.

This last point implies heuristic or stochastic exploration of the several compositions
we can produce starting from F0: simplest ones are XjXk, (j, k) ∈ {1 . . . d), and
XjXkX l, (j, k) ∈ {1 . . . d}. One can see the exponential growth of the size of pos-
sible composition space, and our algorithm proposes a stochastic approach of this
exploration step.

Example 2.1. Consider the following synthetic example that will be used first in
the experiments section. We deal with 3 classes of signals described by 100 ternary
features. We thus have F0 = {X1, . . . , X100}. One can imagine that these 3 classes
behave differently on several subset of features G1,G2, and G3 (which may overlap or
not) and follow exactly the same distribution on variables in F0\G1 ∪ G2 ∪ G3

. This is
the case for most signal processing situations, where some variables act as independent
noise whatever the class of the signal is, although different statistic distributions are
located on some other special set of variables for each corresponding class (G1 for C1,
G2 for C2, and G3 for C3).

We are interested in the problem of detecting interactions of features encoded in
all Gi, filtering out noisy features in F0\G1 ∪ G2 ∪ G3

, and forming new compositional
variables corresponding to each subset Gi. We will provide more details on practical
examples in section 8.

2.2. Composition of features. We introduce notation regarding the composi-
tion of features. Individual features from the original set will be denoted F0, while
the set of features obtained at time t will be naturally named Ft. In the definition
of the jump diffusion, there will be many advantages in ensuring that the jumps are
reversible. To obtain such a property, it will be necessary (see section 4.2) for each
element of Ft to remember how it has been constructed. For this reason, we introduce
trees on the set of features as follows.

To an elementary feature Xj in F0 we associate the elementary tree (and keep
the same notation “Xj”):

(1) Xj := Xj

∅ ∅

.

A tree feature A is a binary tree such that each node contains a composition
of elementary features, and terminal nodes (leaves) are elementary features of F0.
Moreover, each nonterminal node in A must be the concatenation (union) of its de-
scendants so that one can easily infer how any tree has been formed. The root of
A, denoted r(A), is the main node associated to the tree. Tree features A,B are
aggregated with the construction rule “::”

(2) A :: B = r(A) ∪ r(B)

A B

.
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908 SÉBASTIEN GADAT

Note that we do not take into account any order or repetition of elementary
features taken in r(A) ∪ r(B).

Example 2.2. For instance, in the operation

X1X2

X1 X2

︸ ︷︷ ︸

Al

:: X1X3

X1 X3

︸ ︷︷ ︸

Ar

= X1X2X3

X1X2

X1 X2

X1X3

X1 X3

:= A,

we can reform left and right sons (Ar and Al) from A by cutting A’s main node. It is
manifest here that without this tree structure of features, the same composition will
be

X1X2
︸ ︷︷ ︸

Bl

:: X1X3
︸ ︷︷ ︸

Bl

= X1X2X3 := B

but we cannot directly obtain from B the way it has been formed since some sons
could be {(X1X2); (X1X3)} or {(X2X3); (X2X1)}.

To restrict the number of notations, we will keep again the notation F0 for the set
of elementary trees over the initial set of variables created by operation (1). Similarly,
Ft will be the set of features handled at time t by our algorithm. We will denote by
F♯ the set of all trees over F0 defined by (1) using (2). Technically, Ft will be a jump
process on F♯ (we will call them forests), and Pt will be a jump diffusion process
with values in the set of probability distributions on F♯, which will be supported by
a subset of the process Ft.

We use the map A → r(A) only for the computation of trees over input signals
since each value of any tree A will naturally be defined on any signal I by

r(A)(I) = Xi1(I) × · · · ×Xip(I)

if r is written as r(A) = Xi1 . . . Xip .

2.3. Base classification algorithm A. In this paper, we consider a classifica-
tion algorithm, denoted A, as a “black box” with the following functionalities. We
assume that A can be conditioned by any subset ω ⊂ F♯ of active variables. In training
mode, A uses a database to build an optimal classifier Aω : I → C, such that Aω(I)
depends only on variables ω(I). The test mode simply consists in the instantiation of
Aω on a given signal of the test set.

We work with a randomized version of A, in which the randomization is on the
set of variables. This randomization of features spaces has been introduced by Amit
and Geman [1] and Breiman [8] who build accurate random classifiers with very
low dependence to outliers and noise. In the training phase, this works as follows:
First, extract a collection {ω(1), . . . , ω(N)} of subsets of F♯, and build the classifiers
Aω(1) , . . . ,Aω(N) . Then, derive the classification in the test phase using a majority rule
within these N classifiers. This final algorithm will be denoted Ā = Ā(ω(1), . . . , ω(N)).
In test mode, it is run with fixed ω(i)’s, which have been obtained in the learning phase.

In addition to being an auxiliary process that we use for variable selection, the
probability Pt will also be used for sampling the ω(k) in the construction of random-
ized algorithms. Note that the present paper focuses on the way to construct an
automatic process creating the random subsets of F♯ and not designing the classifica-
tion algorithm A, for which we use standard procedures.
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We will construct a process (Ft,Pt), where Ft is a jump process over forests
(subsets of F♯) and between jumps, and Pt is a diffusion process, constrained to the
set of probabilities on Ft, designed to optimize the performance of the classification
algorithm. We start by describing the diffusion process. We will then consider the
transition probabilities at jump times, both for Ft and Pt.

3. Constrained diffusion.
Important notation. From now on, we will denote with capital letters the Markov

process (Ft) among the forests; (Pt) will denote the Markov process among the prob-
abilities although F (and F1, F2, . . .) or P (P1, P2, . . .) will be some possible realiza-
tions of these two processes. This distinction will be important to the understanding
of settings of the next sections.

Description of the dynamic. Between jumping times, the probability will essen-
tially evolve according to the diffusion

(3) dPt = −∇Eerr(Pt)dt + σdWt,

where Eerr(P ) is a cost function measuring the quality of the classifier using variables
sampled from P ; this will be precisely defined in the following paragraph. Such a
process classically stabilizes around probabilities P with low cost Eerr.

This process must, however, be modified in order to ensure that Pt is a probability
supported by Ft. If F is a subset of F♯, we denote by HF the hyperplane in R

F of
equation

∑

δ∈F P (δ) = 1. Let πF be the affine orthogonal projection onto HF (which
is πF (U) = U−∑

δ U(δ)/|F|). We denote ∇FEerr(P ) = πF∇Eerr(P ). We can restrict
(3) to HF by replacing ∇ by ∇F and using a Brownian motion on HF , or equivalently,
using

(4) dPt = −∇Eerr(Pt)dt + ΣFtdWt,

where W is a Brownian motion on R
F

♯

and ΣF = σπF .
Denoting SF for the set of all such probability distributions on F , we need to mod-

ify (4) to ensure that Pt belongs to SFt
at all times. This is done using a constrained

diffusion process, which is here a reflected diffusion process:

dPt = −∇Eerr(Pt)dt + ΣFtdWt + dZt,

where Zt acts as a correction to ensure that the positivity constraints are satisfied at
all times. This means that d|Zt| is positive only when Pt hits ∂SF .

3.1. Cost function. We now define two costs functions for our system forest F
+probability P . The first function Eerr(P ) measures the average performance of the
classifier based on random feature selection according to P . The second measures a
structural cost of the set of features F and does not depend on P . These two functions
enable us to form the global cost for the pairwise process (Ft,Pt).

3.1.1. Measuring the mean performance of A: The energy Eerr. Con-
sider a set of trees F ⊂ F♯ and a probability distribution P on F♯ supported by F . The
algorithm A provides a different classifier Aω for each choice of a subset ω of k features
ω = (ω1, . . . , ωk) ⊂ F . We let η be the classification error, η(ω) = P(Aω(I) �= C(I)),
which will be estimated by

g(ω) = P̂(Aω(I) �= C(I)),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

910 SÉBASTIEN GADAT

where P̂ is the empirical probability on the training set. As we want to use a small
number of features, we fix an integer k; the distribution P⊗k corresponds to k inde-
pendent trials with replacement with respect to the distribution P . We define the
cost function Eerr by

Eerr(P ) = EP⊗kg(ω) =
∑

ω∈Fk

g(ω)P⊗k(ω) =
∑

ω∈Fk

g(ω)P (ω1) . . . P (ωk).

One can thus remark that minimizing Eerr according to the control parameter P will
drive us to a distribution with important weights on useful features for the classifica-
tion (low error rate induced by A).

3.1.2. Global cost function on (F, P ): The energy E. We now describe
the global cost function, denoted by E . It will take the form

E(F, P ) = Eerr(P ) + Estruct(F ),

where Estruct is a structural energy on the forest. More precisely,

(5) Estruct(F ) =
∑

A∈F

|A|
︸ ︷︷ ︸

E1
s (F )

−
∑

A∈F

Î(A.g,A.d)

︸ ︷︷ ︸

E2
s (F )

and Î(A.g,A.d) is the empirical mutual information function between the left and
right subtrees of A. The first term E1

s limits the size of the forest and comes from the
minimum description length principle of information theory [28]. The last term E2

s is
of a compositional nature and favors the concatenation of correlated trees (or trees
with high mutual information) [16]. Our goal is now to minimize E over the space
F♯ × SF♯ , which has a discrete component and a continuous one.

4. Jumps. We first introduce the notion of weak reversibility of a jump process
since this property will have critical importance in the stochastic dynamic search
(Ft,Pt).

4.1. General rule. The time differences between jumps are assumed to be mu-
tually independent, and independent from the rest of the process. Jumps occur as a
Poisson process (interjump times are independent and identically distributed (i.i.d.)
exponential). Coupled with the constrained diffusion process, this allows the inference
algorithm to visit F♯×SF♯ . This accomodates the discrete nature of the problem. At
jump times, the transitions Ft → Ft+dt will correspond to deletion, addition, or com-
bination of elements of Ft. Each of these rules will be designed using an accept/reject
scheme (Hastings) as follows. We handle here the complete cost function, E(Ft,Pt)
defined by (5). Below, we review some general notions on the Metropolis–Hastings
method (this section may be skipped).

4.1.1. Generality on the Metropolis–Hastings algorithm. The situation
is as follows: Let Ω be a measurable set with a measure m and let μ be a measure on
Ω with density (also denoted μ) w.r.t. m. The Metropolis–Hastings transitions follow
a two-step rule:

• From state x ∈ Ω, first propose a state y with probability Q0(x, dy);
• then, accept the transition with a probability which is adjusted so that μ is

invariant.
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We assume the following property: For all x ∈ Ω, there exists a measure ρx such
that

(A1) Q0(x, .) has a density q(x, .) w.r.t. ρx.
(A2) q(x, y) > 0 ⇔ q(y, x) > 0.
(A3) the measure ρx(dy) ⊗m(dx) is symmetrical: For any function f on Ω2,

∫

Ω

f(x, y)ρx(dy)m(dx) =

∫

Ω

f(y, x)ρx(dy)m(dx).

The transition Q is then defined by

Q(x, dy) = min

(
μ(y)q(y, x)

μ(x)q(x, y)
, 1

)

Q0(x, dy)

+

(

1 −
∫

Ω

min

(
μ(z)q(z, x)

μ(x)q(x, z)
, 1

)

Q0(x, dz)

)

1lx(dy).(6)

The distribution of two consecutive states is then Q(x, dy)⊗m(dx), and to ensure
the reversibility we need to verify that it is symmetrical. But

Q(x, dy) ⊗m(dx) = min (μ(y)q(y, x), μ(x)q(x, y)) ρx(dy) ⊗m(dx)

+

(

1 −
∫

Ω

min (μ(z)q(z, x), μ(x)q(x, z)) ρx(dz)

)

1lx(dy) ⊗m(dx).

The second line takes the form g(x)1lx(dy)m(dx) and is obviously symmetric, although
the first one is symmetric thanks to our assumption on ρx. Consequently, we need to
give a transitions rule satisfying the previous assumptions (A1), (A2), and (A3) for
our framework on weighted forests.

Remark 4.1 (necessity of weak reversibility). It is important here to underline
why the building process of (Ft) must be weakly reversible (assumptions (A1), (A2),
and (A3)). We can present at least two reasons for this imperative condition:

• First, note that our exploration process of F♯ has a stochastic nature and may
be mistaken for some iteration because of the Metropolis–Hastings acceptance
strategy. We thus need to cancel the decision taken at this step (assumption
(A2)), and weak reversibility guarantees this possibility in only one reverse
jump.

• Furthermore, the Metropolis–Hastings acceptance rate computation (6) in-
volves the ratio q(x, y)/q(y, x) because of assumptions (A1), (A3) applied to
q(x, .) and q(y, .). Obviously, if the features are not structured as a tree, one
cannot compute this ratio since we do not have from any set of variables x
the unique pair of its antecedents.

4.1.2. Metropolis–Hastings transitions on weighted forests. We denote
by mF the Lebesgue measure on SF and consider m as the global measure on P(F♯)×
SF♯ defined by

m =
∑

F⊂F♯

1lF ⊗mF ,

which means that
∫

f(F, P )dm(F, P ) =
∑

F⊂F♯

∫

SF

f(F, P )dmF (P ).
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Here, 1lF is the Dirac measure at a forest F . Consider any forest F1 and an element
P1 of SF1 . The transitions are defined as follows: Choose a new forest F2 ∈ VF1 ,
where VF1 is the set of forests which are reachable in one jump, and then choose an
element of SF2 according to a probability which depends on F1, F2, and P1. Assume
that this probability has a positive density w.r.t. some measure denoted ψF1,F2

(P1, .)
on SF2 . This implies that the measures, w.r.t. which the densities of the transitions
are computed, are

ρF1,P1(F2, .) = 1lVF1
(F2)ψF1,F2(P1, .),

where ρF1,P1 = ρx is the measure defined in the former paragraph. Therefore, we need
to construct ρ, ψ, and a neighborhood V. in order to satisfy assumptions (A1)–(A3).
We design in the next section transitions satisfying (A1) and (A2). Next, we will
show that the symmetry requirement is true. Since in the framework of a weighted
forest we have

mF1(dP1)ρF1,F2(P1, dP2) = 1lVF1
(F2)ψF1,F2(P1, .)mF1(dP1),

it will be sufficient to establish

mF1(dP1)ψF1,F2(P1, dP2) = mF2(dP2)ψF2,F1(P2, dP1).

4.2. Transitions between forests. We first construct a set T of compositional
rules before showing the weak reversibility (assumptions (A1), (A2), and (A3)) of our
system. This set of transitions does not seem standard and is different from what is
done in genetic algorithms. However, to satisfy the weak reversibility needed by the
Metropolis sampling scheme, this set of transitions T will be necessary.

Definition 4.2 (transition rules T ). T is the set of applications from P(F♯)×SF♯

to P(F♯) × SF♯ formed by buddings, cuttings, suppressions, or rebirths. By (F, P ) ∈
P(F♯) × SF♯ we enumerate the states which are reachable in one jump from (F, P ).
For convenience of notation, U will denote the set of active variables in F with their
associated weights in P . The quantities pb, pc, ps, and pr will represent the nonnegative
probability at each jump time of choosing budding, cutting, suppression, or rebirth. We
first enumerate the budding transitions:

Transition Symbol Antecedents Changes in U Probability

Budding
without
suppression

B (A1, p1); (A2, p2)

Add (A1 :: A2, p)
Change the weights:
(A1, p1 − p + x)
(A2, p2 − x) where
p ∼ U[0;p1+p2]

x ∼ U[p−p1;p2]

pb/4

Budding with
left suppres-
sion

Bl (A1, p1); (A2, p2)
Add (A1 :: A2, p1)
Leave (A2, p2)
Remove (A1, p1)

pb/4

Budding with
right suppres-
sion

Br (A1, p1); (A2, p2)
Add (A1 :: A2, p2)
Leave (A1, p1)
Remove (A2, p2)

pb/4

Budding with
both suppres-
sions

Blr (A1, p1); (A2, p2)
Add (A1 :: A2, p1+p2)
Remove (A1, p1)
Remove (A2, p2)

pb/4
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We present next the cut transitions:

Transition Notation Antecedents Changes in U Probability

Cut without
creation

C (A1 :: A2, p)
(A1, p1); (A2, p2)

Remove (A1 :: A2, p)
Change the weights:
(A1, p1 + p− x)
(A2, p2 + x)
where x ∼ U[−p2;p1+p]

pc/4

Cut with
left creation

Cl (A1 :: A2, p)
(A2, p2)

Remove (A1 :: A2, p)
Add (A1, p)
Leave (A2, p2)

pc/4

Cut with right
creation

Cr (A1 :: A2, p)
(A1, p1)

Remove (A1 :: A2, p)
Add (A2, p)
Leave (A1, p1)

pc/4

Cut with both
creation

Clr (A1 :: A2, p)

Remove (A1 :: A2, p)
Add (A1, x)
Add (A2, p− x)
where x ∼ U[0;p]

pc/4

Lastly, we have the suppression and rebirth transitions:

Transition Notation Antecedents Changes in U Probability

Suppression S (A, p)

Remove (A, p)
Change the weights
∀(B, q) ∈ U ⇒ (B, q/(1−p))

ps

Rebirth S A ∈ F0 \ F
Add (A, x)
Change the weights
∀(B, q) ⇒ (B, q(1 − x))

pr

With these former transition rules, it is now possible to establish the weak re-
versibility conditions.

Proposition 4.3 (weak reversibility of T ). Assumptions (A1), (A2), and (A3)
are true under the dynamic of (Ft,Pt) induced by T .

Proof. Take a forest F in P(F ♯) and define VF as the set of reachable forests
using one (and only one) transition of T . We first remark that if we enumerate all
transitions between two forests, we have for any couples of forests (F1, F2):

F2 ∈ VF1 ⇐⇒ F1 ∈ VF2 .

Roughly speaking, if one tree is created, cut, or deleted using T , it is instantaneously
possible to flashback and cancel this transition using another rule in T . This point is
also true if we study weights over forests. For instance, the inverse of budding without
suppression is a cut without creation, and if

{(A1, p1); (A2, p2)} �−→ {(A1, q1 = p1 − p + x); (A2, q2 = p2 − x); (A1 :: A2, q3 = p)},

one can see easily that q1 takes all values in [0; p1 + p2] and q2 in [0; p1 + p2] with,
in addition, q1 + q2 + q3 = p1 + p2. Consequently, cut without creation from such
{(A1, q1); (A2, q2); (A1 :: A2, q3)} can reach the initial state. We can verify that this



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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point is true for all transitions given in the three former arrays while enumerating all
possible transitions.

If we then denote by ρF,P the uniform measure among reachable sets from (F, P )
using T , and by q((F, P ), .) the density of proposition law Q0 defined in section 4.1.1,
we naturally obtain that (A1) and (A2) are true.

We now study assumption (A3). Denote first (F1, P1) as a weighted forest and
(F2, P2) as reachable from (F1, P1) using T . We must compare mF1

(dP1)ψF1,F2
(P1,

dP2) with mF2
(dP2)ψF2,F1

(P2, dP1). We must then number all transitions of T and
verify the symmetrical relation. This point is more or less complicated according
to the relation considered. For instance, take again the case of budding without
creation (remember that mF1

is the Lebesgue measure defined on the simplex SF1
),

and denote by N the length of vector P1 = (p1, p2, . . . , pN ). Without loss of generality,
we can suppose that we choose to bud trees 1 and 2 so that other weighted trees of
F1 remain unchanged. The length of P2 is consequently N + 1, and we have thus
P2 = (q1, q2, . . . qN , qN+1).

Hence, to one side we have

mF1(dP1)ψF1,F2(P1, dP2) =

N∏

i=1

mF1(dpi) ⊗
N∏

i=3

1lpi
(qi) ⊗ UXp1,p2 (q1, q2, qN+1),

and ψF1,F2
(P1, .) is a Dirac for all coordinates in P1 which are not modified by the

bud and

Xp1,p2 =
{
(a, b, c) ∈ R

3
+ | a + b + c = p1 + p2

}
.

On the other hand, we can equally write the transition measure

mF2(dP2)ψF2,F1(P2, dP1) =

N+1∏

i=1

mF2(dqi) ⊗
N∏

i=3

1lqi(pi) ⊗ UX
q1,q2,qN+1 (p1, p2).

The symmetrical claim is satisfied since, for all measurable functions f on SF1 ×SF2 ,
〈
mF1(dP1)ψF1,F2(P1, dP2); f

〉

=

∫∫

SF1
×SF2

f(p1, . . . , pN , q1, . . . , qN+1)mF1
(dP1)ψF1,F2

(P1, dP2)

=

∫ N∏

i=1

dpi

∫ p1+p2

0

dp

∫ p2

p−p1

dxf(P1, p1−p+x, p2−x, p3, . . . , pN , p)

=

∫ N+1∏

i=1

dqi

∫ q1+qN+1

−q2

dx

∫ q2+x

q1+qN+1−x

f(P2, q1+p−x, q2+x, q3, . . . , qN )

=
〈
mF2

(dP2)ψF2,F1
(P2, dP1); f

〉
.

A similar change of variables can be done for all other types of transitions of T , and
we can conclude that the symmetrical assumption (A3) is also true.

4.3. Decision steps of the Markovian dynamic of jumps. Taking a jump
time tj and any state of our process (Ftj ,Ptj ), we use rules taken from T to modify
Ftj and Ptj to Ftj+dt and Ptj+dt. There are exactly three steps for the choice of which
transition of T is applied.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEATURE SELECTION WITH JUMP DIFFUSION 915

Step 1. We first choose which kind of transition is proposed in T (bud, cut, sup-
pression, or rebirth) according to the probability distribution specified in the
last columns of arrays of section 4.2.

Step 2. When the rule is chosen, select the trees to which the rule is applied. One
can make this decision regardless of whether it is dependent on Ptj . The
simpler method is to choose uniformly among all trees in Ftj or in F0\Ftj

.

Step 3. Accept (or not) the transition according to a differential energy criterion,

Q((Ftj ,Ptj ); (F, P )) = min
(

1, eE(Ftj
,Ptj

)−E(F,P ) ×R
)

,(7)

where

R =
Q0((F, P ); (Ftj ,Ptj ))q((F, P ); (Ftj ,Ptj ))

Q0((Ftj ,Ptj ); (F, P ))q((Ftj ,Ptj ); (F, P ))
.

The computation of the first step is easy with a discrete probability distribution
on the rules constituting T . At Step 2, the choice of which trees to apply the rule
can depend on the distribution Ptj . The main idea is to favor trees with high prob-
ability for budding and low probability for cuts. Trees selected for rebirth are chosen
uniformly in the feature space F0 \ Ftj . More details can be found in [17].

5. Existence of the jump-diffusion process. From the beginning of this
section, special attention will be dedicated to the indexing of our random processes.
They will be described first (up to and including section 6) using a continuous setting
(Ft,Pt), which looks somewhat artificial since in section 7 the algorithm works in
a discrete framework with (Fn,Pn). Morevover, the description of the continuous
setup will be much more complicated than the discretized one mainly owing to the
projection term in the set of probability distributions.

Actually, the asymptotic behavior of the Markov chain (Fn,Pn) will be presented
following a classical scheme of compactness/identification. The compactness is studied
in section 7, although the identification of the stationary measure in section 7 will
critically use uniqueness of the stationary measure for the continuous process. Thus,
the heavy use of the Skorokhod map is highly motivated by this asymptotic study
since the identification of the stationary measure is easily deduced from the Markov
generator of the process. Since we will need this continuous approach for this last
identification, we directly describe the learning process in a continuous setting. Lastly,
the weak limit of our discrete Markov chain will be the continuous reflected jump
diffusion, and the description of this last process will need the Skorokhod map.

But the Skorokhod map can be skipped to intuitively make the understanding
easier in this section, and one can replace the continuous processes by the discretized
ones using a simple convex projection to keep Pn in a set of probability measures.

5.1. Existence of the reflected diffusion between jump times. We work
in this section with fixed Ft = F of size S and discuss the existence of a Markovian
reflected diffusion process which drives the evolution in the absence of jumps:

(8) dPt = − ∇
︸︷︷︸

(=∇F )

Eerr(Pt)dt + σdWt + dZt.

The construction of solutions of (8) relies on the Skorokhod map Γ associated to SF

and a set of unit vectors dc(x) for all x on the boundary ∂SF . This map associates
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916 SÉBASTIEN GADAT

Fig. 1. Directions of reflection vectors for x in ∂SF .

to any càdlàg trajectory a constrained càdlàg trajectory that satisfies some boundary
conditions based on dc(.). We refer to [12] and [13] for further precise technical
definitions on this construction. For the sake of completeness, we provide only the
constraint vectors we used. The important fact is thus that Γ will exist and define a
Lipschitz function on càdlàg trajectories.

Definition 5.1 (directions of constraints dc(.)). We call −→ni the unit vectors
belonging to the hyperplane supporting SF that normally enter the ith face of the
simplex. The directions of constraints are given by

∀x ∈ ∂SF , dc(x) =

⎧

⎨

⎩
γ =

∑

i | xi=0

αi
−→ni | αi ≥ 0, ‖γ‖ = 1

⎫

⎬

⎭
.

These directions of reflection on ∂SF can be expressed easily in a different way
as follows.

Proposition 5.2 (directions of constraints dc(.)). For any point x in ∂SF ,
vectors dc(x) coincide exactly with the sets of unit vectors:

dc(x) = {−→γ with ‖−→γ ‖2 = 1 | ∃ y ∈ HF y − πF (y) = αγ, α ≤ 0, x = πF (y)} ,

where πF is the natural convex projection on the simplex SF .

Figure 1 summarizes this natural property. One can remark that directions dc(x)
are strongly connected to convex projections on SF : they correspond exactly to the
unitary vectors that can be used to project any exterior point to SF . In stochastic
approximation algorithms, it is the usual way of introducing convex constraints. This
yields a set of possible callback vectors shown in Figure 1.

The Skorokhod map allows us to formalize the reflected diffusion (8) as a system
of integral equations:

⎧

⎨

⎩

Xt = P0 −
∫ t

0

∇Eerr(Ps)ds + σdW (s),

Pt = Γ(X)t.
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This system is equivalent to the stochastic differential equation (8) [3, 12]. Strong
(and obviously weak) existence and uniqueness of such an integral system is standard
using a fixed point method [30], Lipschitz regularity of Γ, and Lipschitz continuity
of the drift ∇Eerr. Indeed, for ω ∈ F k and δ ∈ F , denote by C(ω, δ) the number of
occurences of δ in ω:

C(ω, δ) = |{i ∈ {1, . . . , k} | ωi = δ}| .

Since the drift term is polynomial in variables P (δ), it is obviously Lipschitz contin-
uous. Its exact expression is for any P ∈ SF ; then

(9) ∀δ ∈ F, ∇PEerr(δ) =
∑

ω∈Fk

C(ω, δ)P⊗k(ω)

P (δ)
g(ω).

We can thus infer the following result.
Theorem 5.3 (existence and uniqueness of (8)). Let (Ω, T , Q) be a probability

space with an increasing filtration Tt, let Wt be standard Brownian motion on R
|F|,

and let P be a random variable T0-measurable. Then there exists a unique pair (Pt, Zt)
Tt-measurable satisfying (8) with

1.

∀T > 0, |ZT | < +∞ TT -a.s.

2.

∀t ≥ 0, |Z|t =

∫ t

0

1l
Ps∈∂SF

d|Z|s.

3.

∀t ≥ 0, dZt ∈ dc(Pt).
Proof. See [30, Chapter 5].

5.2. Existence of the complete process. Since the jump time is a Poisson
process independent of the rest, the previous result, combined with the Markov tran-
sitions at jump times, trivially implies the existence and uniqueness of the complete
jump-diffusion process. An example of the evolution of such a stochastic process is
summarized in Figure 2 using a sequence of four different simplices and jumping times.
Each simplex corresponds to a features space while the a.s. continuous trajectory
points to the evolution of our extraction method Ps. We represent here one reflection
on SFts2

and several jumps between several (i.e., 4) simplices. Note that if it is pos-

sible to jump from SFts2
to SFts3

, it is equally possible to jump from SFts3
to SFts2

(weak reversibility).
We will denote by Φ the stationary solution of the stochastic differential equation

of the reflected jump diffusion based on reflected diffusion on each simplex and jumps
between subspaces of features. This solution is defined as follows.

Definition 5.4 (stationary solution Φ). Let (Ω, T , Q) be a probability space

with an increasing filtration Tt. Let (Wt)t≥0 be a standard Brownian motion on R
|F♯|

and (Nt)t≥0 be a Poisson jump process, both adapted to filtration T . Suppose likewise
that W and N are independent. We call Φ = (P,F) the stationary solution of the
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Fig. 2. General form of the stochastic jump-diffusion process.

stochastic differential equation with jumps:

d

(
Pt

Ft

)

= −
(
∇FtE(Pt)dt + ΣFtdWt + dZt

0

)

+

∫

F⊂F♯,P∈SF

Q

[(
Ft

Pt

)

;

(
F
P

)]

N

(

d

(
P

F

)

; dt

)

.

6. Dynamical properties of the algorithm. In this section, we briefly sum-
marize the dynamical properties of the unique solution of the reflected jump-diffusion
process. Our goal is to prove that the process is positive recurrent with a unique
stationary measure, given by the the density

(10) μ(F, P ) =
e−E(F,P )

Z
,

with respect to the measure on PF♯ × SF♯ ,

m =
∑

F⊂F♯

1lF ⊗mF .

We first give the expression of the infinitesimal generator of the process, then establish
that (Ps, Xs)s≥0 is positive recurrent and prove that its stationary measure is the
Gibbs field μ associated to E .
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6.1. Infinitesimal generator of (Fs, Ps)s≥0. Our Markov process is a com-
bination of a reflected diffusion process and a jump process. A generic function on
P(F♯) × SF♯ can be decomposed as

f(F, P ) =
∑

F ′⊂F♯

1lF ′(F )fF ′(P ).

The generator A of this process can be decomposed into a diffusion part and a
jump part, yielding Af = Adf + Ajf , with

Adf(P, F ) = −〈∇F
PEerr|∇F

P fF 〉 +
1

2
ΔF fF (x)

and

Ajf(P, F ) =

∫

P(F♯)×S
F♯

[fF ′(P ′) − fF (P )]Q [(F, P ), (F ′, P ′)] dm(F ′, P ′),

where Q is the transition probability at jump times.

6.2. Positive recurrence. The main result of this section uses the positive
definite nature of ΣF on HF and a result of [23, Theorem 1, section 7] ensuring a
positive recurrence of the reflected process (without any jump). For any reachable
simplex SF , the unique process solution of

dPt = −∇Eǫ(Pt)dt + σdWt + dZt

satisfies the following for all compact sets S ⊂ SF of nonnegative Lebesgue measure
λ(S) > 0 (if Pp is the probability of one event for which initialization of our process
is taken at point p):

(11) inf
p∈SF

Pp [τS ≤ 1] > 0,

where

τS = inf {t/Pt ∈ S} .

Equation (11) means that starting at any point p of simplex SF , one can reach S in
less time than with a probability strictly positive. This implies in particular (see [4,
Theorem 2.8]) the positive recurrence of (8) without a jump, and the existence of a
unique invariant measure. The extension of the results to the jump-diffusion process
now requires only the following fact. Denote

p
F,T

(S) = inf
p∈SF

Pp [τS ≤ T ]

for S ⊂ SF , where τS is the hitting time of S. We have the following result.
Corollary 6.1.

pF,T (S) > 0,

and the general reflected process with jumps is positive recurrent.
Proof. The jumps have been designed so that there exists an integer N such that

for any F and F ′, and for any P ∈ SF , the transition (F, P ) → F ′ in N steps has
a probability strictly larger than some positive constant, η. Since the probability of
making N jumps before T , and no other jump after, is strictly positive, the result is
a direct consequence of the positive recurrence of the process without a jump.
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6.3. Invariant measure of the process. Properties of the invariant measure
can be inferred from the positive recurrence of (Pt,Ft)t≥0. First, note that for any
initialization (P0,F0) of the process, the family of occupation measures (μt)t≥0, de-
fined by

μt(A) =
1

t

∫ t

0

P(P0,F0) [(Ps,Fs) ∈ A] ds,

is tight and any weak limit is an invariant measure of (Pt, Xt)t≥0 since the process is
Feller–Markov. Uniqueness is derived from the nondegeneracy of the diffusion of the
process into each simplex and the weak reversibility between each simplex of (Pt,Ft).
Identification of this measure from the characterization of [14] is used, for example,
in [29].

We use here the well-posedness of the associated martingale problem. Define first
the core of this generator as

D =

⎧

⎨

⎩
f =

∑

F⊂F♯

1lSF
(P )fF (P ) | ∀F ⊂ F ♯ ∀P ∈ ∂SF ∇fF (P ) = 0

⎫

⎬

⎭
.

We start noticing that for any function in D, the mean effect of generator A with
distribution μ given by (10) is null.

Proposition 6.2. Assume f is an element of D; then we have

∫

Afdμ = 0.

Proof. This result is proved by integration by parts, using the Neumann conditions
on each simplex SF , where F ⊂ F♯, the Ostrogradski formula, and the stability
equation on the transition acceptance threshold (7). Similar arguments can be found
in [29].

We are now able to prove the next theorem.
Theorem 6.3. The Gibbs field μ given by (10) is the unique invariant measure

of the global reflected jump-diffusion process, and the martingale problem associated
to A on D is well-posed.

Proof. We first apply Echeverria’s theorem (see [14, Theorem 9.17, Chapter 9]) to
show that μ is stationary. Denote by E the compact set {(F, P ) F ⊂ F♯, P ∈ SF };
note first that D is dense in C(E) by the Uryshon lemma applied in each simplex SF .
Now, A satisfies the positive maximum principle on D (A is a classical jump-diffusion
generator) and the measure μ satisfies

∀f ∈ D,

∫

E

Afdμ = 0.

Consequently μ is stationary for A. Since A satisfies the maximum principle, A is
dissipative on C(E) and E is separable. Denote then by ν a measure on E; we can
apply the result of [14, Theorem 4.1, Chapter 4] to conclude that uniqueness holds
for the martingale problem (A, ν) and every solution of the martingale problem is
Markov. The martingale problem is well-posed on C(E), every solution of the mar-
tingale problem is a weak solution of the stochastic differential equation of jump
diffusion, and μ is the unique stationary distribution of (Ft,Pt).
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7. Stochastic approximations. We now address the computational part of
the algorithm, which is not trivial because the drift term involves a sum over an
untractable number of terms. Fortunately, this sum can be interpreted as an expec-
tation, which allows us to replace it by a stochastic approximation of Robbins–Monro
type. Before passing to the drift term, we first address the time discretization issues.

7.1. Time discretization. To solve (8), we use a time discretization scheme
with a discretization step α,

∀n ∈ N, Pn+1 = Pn − α∇FEerr(Pn) +
√
α
√
σdξn + dzn,

where dξn is a centered normal |F| dimensional vector and dzn is the smaller vector
that is added to make Pn+1 ∈ SF . In other words,

∀n ∈ N, Pn+1 = πF

(
Pn − α∇FEerr(Pn) +

√
α
√
σdξn

)
.

However, the computational issue comes from the gradient of Eerr, given in (9),
which requires a sum over all ω in Fp. This is an untractable sum, since |F| is
typically thousands and p hundreds. However, it can be replaced by the stochastic
approximation defined in the next section.

7.2. Stochastic differential equation method for approximation. Stochas-
tic approximation can be seen as noisy discretizations of stochastic differential equa-
tions ([26]). They are generally expressed under the form

(12) Xn+1 = Xn + αnF (Xn, ζn+1) +
√
αn

√
σξn + αnzn + α2

nTn,

where Xn is the current state of the process, ζn+1 a random perturbation, ξn a
random perturbation of known distribution, zn a random variable designed to ensure
the constraints, and Tn a secondary error term. If the distribution of ζn+1 depends
only on the current value of Xn, then one defines an average drift X �→ G(X) by

G(X) = E[F (X, ζ)|X],

and (12) can be shown to evolve similarly to the stochastic differential equation:
dXt = G(X)dt+

√
σdwt+dzt, in the sense that the trajectories coincide when (ǫn)n∈N

goes to 0 (a more precise statement is given below).
To implement our reflected diffusion equations (8) in this framework, we need to

design a random variable dn (identified as F (Xn, ζn) in (12)) such that

(13) E [dn] = −∇FEerr(Pn) = −Π−−→
HF

[∇Eerr(Pn)] ,

where Π−−→
HF

is the vectorial projection on the hyperplane supporting SF . We will then
define

Pn+1 = Pn − αndn +
√
αn

√
σξn + dzn = πF

(
Pn − αndn +

√
αn

√
σξn

)
.

From (9), we obtain

∇Eerr(P)(δ) = E
P⊗k

[
C(ω, δ)g(ω)

P(δ)

]

.

Using the linearity of the projection Π−−→
HF

, we get

Π−−→
HF

(∇E(P)) (δ) = E
P⊗k

[

Π−−→
HF

(
C(ω, .)g(ω)

P(.)

)

(δ)

]

.
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922 SÉBASTIEN GADAT

Consequently, following (13), it is now natural to define the approximation term of
the reflected diffusion (8) by

dn(δ) = Π−−→
HF

(
C(ωn, .)

Pn(.)

)

(δ),

where the set of k features ωn is a random variable extracted from F with law P
⊗k
n .

This results in the following numerical simulation scheme:
1. Step 0: Initialization: Set P0 = UF .
2. Step n: Draw a sample ωn in Fk with respect to P

⊗k
n .

3. Step n: Compute g(ωn).
4. Step n: Update Pn+1 with

Pn+1 = πF

(

Pn − αn

[
C(ωn, .)

Pn

]

+
√
αn

√
σdξn

)

(14)

= Pn − αn

[
C(ωn, .)

Pn

]

+
√
αn

√
σdξn + dzn,

where −αnC(ωn, .)/Pn is the approximated value of −∇Eerr(Pn) and dξn is
a centered normal |F| dimensional vector.

To simulate the stochastic approximation of the jump-diffusion algorithm, (14)
must be combined with transitions of (F ,P) at jump times. This results in the
following new complete scheme:

1. Step 0: Initialization: Set P0 = UF0 . Sample the first jumping time t1 with
an exponential distribution, set t = 0, and set n = 0.

2. Step j (j ≥ 1): While t < tj , run the previous discretization scheme (for the
reflected diffusion), t being iteratively computed by t = α0 + · · · + αn.

3. When t > tj : Update Ft and Pt according to the Markov transition rules.
4. Compute the next jump time with tj+1 by adding an exponential variable to

tj and return to 2.

7.3. Weak convergence of the numerical scheme. In the following para-
graphs, we will define (Pn(t)t≥0)n∈N as a sequence of continuous processes that inter-
polates the behavior of the discrete sequence of (Pn)n∈N.

7.3.1. Interpolated approximations. Following classic notation of [26], we
set up the time parameter τn as

τn =
∑

i≤n

αi,

and set up the map m permitting the association of continuous time and discrete
iteration as

m(t) = sup
τn≤t

{n ∈ N} .

Given that the jth jump occurs at time νj , we construct its values according to the
distribution Q((Fνj−,Pνj−), .) to obtain (Fνj

,Pνj
). It is thus possible to define the

discrete jump term in the discrete case as

qj = Pm(νj)+1 − Pm(νj),
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which corresponds to the term we add to compute the jump from νj− to νj .
We now define the sequence of right continuous interpolation processes (Pn(t))t≥0

initialized at Pn.
Definition 7.1 (processes (Pn(.), Y n(.),Wn(.), Zn(.))n∈N). We define the pro-

cesses (Pn, Y n,Wn, Zn) valued in R
F

♯

by

∀n ∈ N, ∀t ∈ R+, Y n(t) =

m(τn+t)
∑

i=n

αiyi,

where the term yi satisfies

∀δ ∈ F , yi(δ) = −C(ωi, δ)g(ωi)

Pi(δ)
if Pi(δ) �= 0 and yi(δ) = 0 if Pi(δ) = 0.

Likewise, we define

Wn(t) =

m(τn+t)
∑

i=n

√
αidξi,

where dξi is considered as an element of R
F

♯

,

Zn(t) =

m(τn+t)
∑

i=n

dzi.

Finally,

P
n(t) = Pn + Y n(t) + Wn(t) + Zn(t) +

∑

τn≤νj≤τn+t

qj .

With these definitions, it is obvious that P
n is a process on SF♯ , which is right

continuous with left limits (in the space D of càdlàg trajectories). To get theoretical
convergence results on these sequence of processes, we will now classically choose (αn)
such that

∑
αi = ∞ and

∑
α2
i < ∞ (see [5], [26], for instance).

7.3.2. Convergence of (Pn, Y n,Wn, Zn)n∈N. We will show that the family
of processes (Pn(.), Y n(.),Wn(.), Zn(.))n∈N is weakly compact in the space D. The
associated topology on this space is derived from the Skorokhod distance [6], [26] and
we consider weak convergence of trajectories of D([0;∞[).

Theorem 7.2. The processes (Pn, Zn)n∈N, which are stepwise constant, weakly
converge toward the unique invariant solution of the stochastic differential equation
without jumps and (Pn,Fn)n∈N converges toward the stationary measure μ.

The proof of Theorem 7.2 includes three steps: First, prove the tightness of the
family (Pn, Y n,Wn, Zn)n∈N, then identify the unique possible weak limit, and finally
show the convergence toward the stationary measure μ.

7.3.3. Tightness. To show tightness, we use the following criterion.
Theorem 7.3 (see [26], [6]). Let Xn be a sequence in D; (Xn)n∈N is tight iff
1. for any time T and ǫ > 0, there exist an integer n0 and a real K satisfying

(15) ∀n ≥ n0, P

[

sup
t≤T

|Xn(t)| ≥ K

]

≤ ǫ.
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2.

(16) ∀ǫ > 0, lim
δ �→0

lim sup
n

P [w′
Xn(δ) ≥ ǫ] = 0.

We establish successively (15) and (16) for our family of processes (Pn, Y n,Wn,
Zn)n∈N. The next proposition shows that (15) is true for (Pn, Y n,Wn, Zn)n∈N and
consequently guarantees the tightness of the family (Pn, Y n,Wn, Zn)n∈N.

Proposition 7.4. The sequence of processes (Pn, Y n,Wn, Zn)n∈N satisfies (15).
Proof. The result is obvious for P

n, since it is compactly supported. To get the
result for (Y n)n∈N, we define the sequence ỹn as

ỹn = yn − EPn
[yn]

︸ ︷︷ ︸

=hn

.

Fix any real time T and a real number ǫ > 0. We define the sequence of processes

Ỹ n(t) =

m(τn+t)
∑

i=n

αiỹi.

Since EPn
[yn] is bounded by M , the first tightness criterion is true for processes Hn:

Hn(t) =

m(τn+t)
∑

i=n

αihi,

and we study the sequence of (Ỹ n)n∈N. Now the sum Mn
p given by

Mn
p =

n+p
∑

i=n

αiỹi

is a martingale for the filtration generated by F
n
p = σ(Pi, ξi, wi−1, i ≤ n+ p). We can

use Doob’s inequality to show that

P

(

sup
q≤p

|Mn
q | > K

)

≤ 1

K
E
(
|Mn

p |
)
.

Now,

E
(
|Mn

p |
)
≤

p
∑

i=n

αiE[|ỹi|] ≤ sup
i

E[|ỹi|]
p

∑

i=n

αi.

Finally, E[|ỹi|] = E (E[|ỹi||Fn
i ]), and E[|ỹi||Fn

i ] is bounded by 2M . We have
∑p

i=n αi ≤
T and we can deduce from these upper-bounds that

lim
K �→∞

P

(

sup
q≤p

|Mn
q | > K

)

= 0.

The fact that

lim
K �→∞

sup
n∈N

P

[

sup
t≤T

|Wn(t)| ≥ K

]

= 0
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is standard and can be found in [26], [17]. Finally, since Zn = P
n−Y n−Wn, (Zn)n∈N

obviously satisfies (15).
We must now establish condition (16) to achieve tightness of (Pn, Y n,Wn, Zn)n∈N.
Proposition 7.5 (condition (16)). Each of the processes (Pn, Y n,Wn, Zn)n∈N

satisfies (16).
Proof. We first establish (16) for (Y n)n∈N. Note that

E [Y n(t + s) − Y n(t)] =

m(τn+t+s)
∑

i=m(τn+t)

αiE
[
E
[
yi|Fi

0

]]
.

Then, use the fact that the expectations of yk are bounded by M to obtain

E [|Y n(t + s) − Y n(t)|] ≤ Ms.

We thus conclude that (16) is true for (Y n)n∈N using the Markov inequality. The
argument is standard to get a similar result for (Wn)n∈N by Doob’s inequality (see
[26]). The jump component involved by terms qj defines also a sequence of processes:

Jn(t) =
∑

τn≤νj≤τn+t

qj .

Inequality (16) for (Jn)n∈N is here clearly satisfied since jumps occur exponentially
as each term qj is bounded. Consequently, we have

lim sup
n

P [w′
Jn(δ) ≥ ǫ] = o(δ).

To deal with the processes (Zn)n∈N, it is important to note that

|Zn(t + s) − Zn(t)| ≤ C

m(τn+t+s)
∑

i=m(τn+t)

|αiyi +
√
αidξi|,

since

(17) |zi| ≤ C|αiyi +
√
αidξi|.

Using inequality (16) for (Y n)n∈N and (Wn)n∈N, and (17), we obtain the second
tightness inequality needed on the processes (Zn)n∈N. The conclusion is immediate
for (Pn)n∈N.
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7.3.4. Proof of Theorem 7.2. We end the proof of Theorem 7.2 using com-
pactness of the trajectories. Note first that if (Pn, Y n,Wn, Zn) is weakly convergent
toward (P, Y,W,Z), then (P, Y,W,Z) is a solution of the reflected jump diffusion Φ
initialized to the weak limit of (Pn(0), Y n(0),Wn(0), Zn(0)) using the same argument
of [26, Theorem 2.3].

While replacing (Pn,Fn) by P
n and taking any sequence extracted from (Pn)n∈N,

we note (Nk)k∈N this extraction procedure and show that (PNk)k∈N is weakly conver-
gent to the unique invariant measure μ. Denote by ν∞ the weak limit of (PNk(0))k∈N;
it is then sufficient to show that for any measurable function φ,

Eν∞
φ = Eμφ.

Denote by P t
ν the law of our process at time t initialized by measure ν, since μ is the

unique stationary measure we have for any compact set of measures K:

(18) ∀ν ∈ K ∀ǫ > 0, ∃T > 0 ∀t ≥ T,
∣
∣
∣

∫

φ(y)dP t
ν −

∫

φ(y)dμ(y)
∣
∣
∣ ≤ ǫ.

Taking ǫ strictly positive and applying (18) to the family of measures K formed
by the law of (PNk)k∈N, which is tight and thus compact, we find T such that

∀t ≥ T,
∣
∣
∣

∫

φ(y)dP t
ν −

∫

φ(y)dμ(y)
∣
∣
∣ ≤ ǫ.

Now, if ν′∞ is the weak limit of the sequence of processes (PNk(. − T ))k∈N, which is
also the weak limit of (P(τNk

− T ))k∈N
, we have

∣
∣
∣

∫

φ(y)dν∞(y) −
∫

φ(y)dμ(y)
∣
∣
∣ ≤

∣
∣
∣

∫

φ(y)dν∞(y) − E [φ (P(τNk
))]

∣
∣
∣

+
∣
∣
∣E [φ (P(τNk

))] −
∫

φ(y)dPT
ν′
∞

(y)
∣
∣
∣

+
∣
∣
∣

∫

φ(y)dPT
ν′
∞

(y) −
∫

φ(y)dμ(y)
∣
∣
∣.

Making Nk �−→ ∞, then τNk
�−→ ∞, and under our hypotheses on T , ν∞, and ν′∞,

we obtain

∣
∣
∣

∫

φ(y)dν∞(y) −
∫

φ(y)dμ(y)
∣
∣
∣ ≤ ǫ.

Finally, we conclude that ν∞ = μ and this fact ensures that (Pn)n∈N and (Pn(0))n∈N

weakly converge toward μ.

8. Experiments. We present here three experiments. The first one is a syn-
thetic mixture model, and we compare our result with standard algorithms. The
other databases are real problems on image processing and microarray data. In
these last two cases, we use Fisher rule selection, random forest selection (see [8]),
foward/backward selection, and OFW (optimal feature weighting) (see [18]) to draw
comparisons with our method. In each of these cases, the number of selected features
is computed using an internal cross-validation step.
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8.1. Synthetic data.

8.1.1. Description of the database. We first test our algorithm on a simple
synthetic example. We consider f = 100 ternary variables (|F| = 100) and three
classes (similar results can be obtained with more classes and variables). We let
I ∈ {−1; 0; 1}100 and let G be a subset of F . We define the probability distribution
μ( ;G) on I to be the one for which all Xj in G are independent, Xj(I) follows a
uniform distribution on {−1; 0; 1} if Xj �∈ G, and Xj(I) = 1 if Xj ∈ G. We model
each class by a mixture of such a distribution, including a small proportion of noise.
More precisely, for a class Ci, i = 1, 2, 3, we define

μi(I) =
q

3

(
μ(I;G1

i ) + μ(I;G2
i ) + μ(I;G3

i )
)

+ (1 − q)μ(I; ∅),

with q = 0.9 and

G1
1 = {X1;X3;X5;X7}, G2

1 = {X1;X5}, G3
1 = {X3;X7},

G1
2 = {X2;X4;X6;X8}, G2

2 = {X2;X4}, G3
2 = {X6;X8},

G1
3 = {X1;X4;X8;X9}, G2

3 = {X1;X8}, G3
3 = {X4;X9}.

We sample with this mixture model enough data to obtain well-conditioned sta-
tistical problems. We expect our learning algorithm to put large weights on features
that compose the sets Gj

i and to filter out the other noisy ones. The algorithm A we
use in this case is a p nearest neighbor classification algorithm, with distance given
by

d(I1, I2) =
∑

j

1l
Xj(I1)�=Xj(I2)

.

This synthetic example is interesting because it makes it possible to compute the
exact gradient of E for small values of M and k = |ω|. See [17] and [18] for more
details on this experiment when the set of features is fixed.

8.1.2. Results and comparisons with existing methods.
OFW and jump algorithm. We compare first the reflected diffusion (OFW of [18])

with our jump algorithm. Performances obtained with the jump algorithm are better
than the ones without any jump as shown in Figure 3. The trees constructed by
our algorithm are deeper than elementary ones since the mean depth achieved by our
algorithm is 3. We compute the mean occupation measure of each tree in the process
Ft as

μt(A) =
1

t

∫ t

0

1lA∈Fts
ds.

We can then infer from this measure the importance of a tree while looking at the
real numbers μt(A). We rank the nodes of these trees by decreasing importance of
μt(A) and we give the main roots detected by our algorithm below:

{X2;X4}, {X1;X5}, {X4;X9}, {X1;X8}, {X6;X8}, {X3;X7}, X1, X4, X8.

It is important to remark that the nodes selected by our jump-diffusion algorithm are
very similar to the sources Gj

i , while the favored nodes are those which are reusable
features.

One can, however, consider using standard feature selection techniques such as
anova coupled with the logistic regression method or the more recent random forests
feature selection.
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Fig. 3. Evolution of the mean error rate for the reflected diffusion (crosses) and the reflected
jump diffusion (dashed line).

Backward selection, random forest, and Fisher selection. We run first a ternary
(three classes) logistic regression coupled with a backward selection based on the
anova criterion. In this particular case, the selected features cannot be composed
and interactions with features are completely missed. We logically obtain the subset
of selected variables

{
X1;X2;X3;X4;X5;X6;X7;X8;X9

}
with small p-value. This

result is not surprising and is coherent with the selected features of the OFW [18]
(diffusion algorithm without the jump process). Note also that the selected features
here are the same while running the random forest selection method and we are
convinced that in this simple example, several other classical criteria, such as PLS
(partial least square method), AIC, etc., achieve the same result. Lastly, we remark
that we do not run a forward selection method with the logistic regression because of
the high number of features, which make this greedy method numerically costly.

Learning composition: The forward/backward selection. Next, we use the classi-
cal forward/backward selection method combined with logistic regression [21] since
other feature selection methods, such as random forest, do not provide any composed
features. In this very simple example (there are “only” 100 variables although typical
real applications will use thousands of variables), the computational time to run this
forward/backward selection is much more important (it takes several hours to stabi-
lize the model). In addition to each singleton Xi, we obtain all subsets Gj

i given in
the description of the way we construct our synthetic example.

Comparison. To conclude this section on the synthetic data, we observe that
many other feature selection algorithms achieve the identification of useful variables.

Only one of them (the forward/backward method coupled with detection of inter-
actions) can also compose features. This method has an important numerical cost. If
this method succeeds in locating the interactions between features, it does not provide
a selection as small as our method does.

Moreover, the main drawback in this framework is that the forward/backward
criterion can be performed only with a sufficiently large database (we need to have
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Fig. 4. Sample of images taken from [27] database.

more observations than initial number of variables). This point is very annoying
in some real applications such as microarray analysis, where standard situations are
described with thousands of variables for less than 100 observations.

Lastly, the forward/backward algorithm is dedicated only to very special classi-
fication algorithms such as logistic regression, although we can apply our approach
to every classification algorithm A. It is an important point too since there does not
exist a universal classifier that beats all other algorithms. It can thus be helpful to run
our meta-jump algorithm to the more appropriate A regarding the database which
is studied.

8.2. Face recognition.

8.2.1. Description of the database. We use in this section the face database
from [27], which contains 19×19 grayscale images. The elementary features in F0 are
simply edge detectors constructed by Amit and Geman in [2]. The initial number of
elementary features in F0 is nearly 2000. The number of observations in this database
is 7000 in the training set and 23,000 in the test set. Figure 4 presents some examples
of images taken in this database.

8.2.2. Results and comparisons.

OFW and jump algorithm. Efficiency of the reflected diffusion (OFW algorithm)
is already described in [18]. In this paper, our approach permits largely improved
error rates on the same datasets and we can easily give an interpretation of features
constructed by our jump-diffusion process. To illustrate these advantages, we can plot
first in Figures 5 and 6 the evolution of the number of trees selected by our algorithm
with time t.

The decreasing of the number of trees is consequently important since starting
with almost 2000 features, we reduce the amount of variables to below 800. Even
if this number seems to be strictly decreasing in Figure 5, this is not the case if we
“zoom” the evolution of the cardinal t �−→ |Ft|, as shown in Figure 6.

Moreover, by using a linear SVM and a voting procedure with the subsets ω(i)

extracted with the process Pt, we obtain a null false positive rate (images taken from
the font class are perfectly classified) and the global misclassification rate is improved
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Fig. 5. Evolution of the number of trees in the forest Ft with time for the face recognition
problem.

 1575

 1580

 1585

 1590

 1595

 1600

 1605

 1610

 0  5  10  15  20  25  30  35  40

"histo.dat"

Fig. 6. Microscopic evolution of the number of trees in the forest Ft for the faces experiment.

since we get 1.2% misclassified test samples using only 650 features (3.5% error rate
with the OFW approach without jump and the same amount of features).

Comparison with random forest, Fisher selection, and forward/backward selection.
Without features composition, the random forest classifier provides more than 1000
useful features and gives a general misclassification rate of 1%; note also that this rate
has been achieved using 1000 trees in the random forest. The Fisher selection method
combined with a linear SVM algorithm yields an error rate of 4% with a selection



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEATURE SELECTION WITH JUMP DIFFUSION 931

Fig. 7. Representation of the main aggregation of edge detectors selected by our process.

of more than 1000 features. Lastly, the logistic regression algorithm combined with
forward/backward selection and composition performs poorly (more than 1000 useful
features and 12% of misclassified signals). It seems here that the classifier A used
by the forward/backward (logistic regression) is not adequate for this database. This
illustrates the fact that it is important to have a meta-algorithm to select features in
order to apply any classifier which seems adapted to the problem. It is not the case
with the forward/backward selection method.

In this case, the better global misclassification rate is obtained using the random
forest selection method. Our method obtains good results too since only 1.2% of
signals are misclassified. Lastly, the selection obtained using our jump algorithm is
much more compact than the one obtained by random forest.

Selected features. We show in Figure 7 the main composition of edges selected by
our process of jump diffusion. The important fact is that complex features (as well
as elementary ones) are constructed and used by our algorithm. It is this point that
permits us to obtain the perfect false positive rate since these complex compositions
of features filter out the background images.

8.3. Leukemia microarray classification.

Description of the database. Finally, we benchmark our selection of features on
the standard leukemia cancer dataset available online from the NCI.2 Data are prepro-
cessed and transformed into a collection of 3859 genes of 72 leukemia samples. They
are divided into 47 samples of Acute Lymphoblastic Leukemia (ALL) and 25 sam-
ples of Acute Myeloblastic Leukemia (AML). As we cannot provide a simple meaning
of concatenation of real variables, we only permit suppression (S) and rebirth (R) of
some genes in Ft. As this database does not contain any train or test sets, we estimate
the misclassification rate using a tenfold cross-validation method. The cross-validation
method is a good way to estimate performances of our algorithm [7].

2National Cancer Institute, http://www.cancer.gov.
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Fig. 8. Mean error rate on the training set of the ALL–AML database with time t.

Table 1
Rate of misclassified samples using several number of genes selected by our algorithm.

Number of genes OFW Reflected jump diffusion Random forest F-test
4-9 6.9% 4.8% 4% 5.5%

10-19 5.5% 4.3% 3.8% 4.2%
20-24 4.1% 2.1% 4.5% 4.1%
25-45 3.5% 0.9% 4.5% 4.8%

Comparison with random forest, Fisher selection, and forward/backward selection.
After a learning procedure, we then ranked genes by a decreasing importance criterion
based on the probability distribution Pt. For the jump-diffusion method, we do not
run a tenfold cross validation because of the time of computation needed by this
method, and we then employ a more simple three-fold cross validation.

We use for A a linear SVM classifier, and k = 100 genes are extracted at each
step. The evolution of the error rate all along our learning algorithm is shown in
Figure 8. We obtain in [9] interesting results on classification rates on this database
applying other algorithms such as CART to the OFW meta-algorithm.

We present in Table 1 results obtained using our jump process. We cannot run
here a logistic regression coupled with a forward/backward algorithm because of the
small number of signals in the database. The several selection methods used highlight
the good performance of our jump algorithm, comparing it to standard methods such
as Fisher tests.

Our results improve those referred to in [22], and the genes selected by our
algorithm are consistent with some of the genes selected in other works (such as
Zyxin in [11]). However, our selected features are nearly similar to those reported in
[19]. One can again note the improvement using the jump process (second and third
columns of Table 1).

Figure 9 represents the evolution of the number of genes selected at time t. In this
case, we note again the good dimensionality reduction that permits our algorithm.

Finally, we can extract from the set of variables the names of genes most selected
by our algorithm. We do not obtain exactly the same results for the 10 most important



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEATURE SELECTION WITH JUMP DIFFUSION 933

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

Iteration number * 100000

N
u
m

b
e
r 

o
f 
s
e
le

c
te

d
 g

e
n
e
s

Fig. 9. Evolution of the number of trees in the forest Ft with iteration number n.

OFW Algorithm Reflected jump diffusion
CTSD Cathepsin D CTSD Cathepsin D

MPO Myeloperoxidase MPO Myeloperoxidase
MB-1 gene MB-1 gene

Catalase (EC 1.11.1.6) Catalase (EC 1.11.1.6)
PROTEASOME IOTA CHAIN Kazal-type serine proteinase

Zyxin PROTEASOME IOTA CHAIN
Terminal transferase mRNA VIL2 Villin 2
Kazal-type serine proteinase PRG1 Proteoglycan 1

CCND3 Cyclin D3 CD37 CD37 antigen
CD37 CD37 antigen HLA CLASS I HISTO. ANTIGEN

Fig. 10. Genes most selected by our algorithm.

genes listed in Figure 10 whether we use the OFW or the jump-diffusion approach.

9. Conclusion. From a theoretical point of view, we provide in this paper a
mathematical algorithm to select variables in a large amount of features dealing with
the general untractable problems using full data. This is not the case of filter methods
(forward/backward, for instance) that use a heuristic strategy to compose features,
and these methods are not useful in some situations. Our approach is based on a
jump-diffusion stochastic differential equation, where jumps are transitions between
spaces of features. We have seen that the structure of trees is convenient to deal
with Markov processes since this enables us to identify the dynamical structure of
our method. This method is highly motivated by real problems and we have shown
(Theorem 7.2) the “optimality” of our algorithm since it converges toward the unique
Gibbs field measure inferred from an energy E .

From a practical point of view, we have reached interesting results in real data such
as face recognition and microarray analysis, even if we do not perform any composition
rule with this last database. We have obtained similar results as other standard
methods on the synthetic example and have clearly overcome the forward/backward
algorithm in the face recognition problem, which is the only other method known to
permit features composition. On this last point, one can consider two hypotheses.
Either the selected features are not so good with the forward/backward strategy
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(it would be surprising) or (and it is the more likely) the classifier used after this
selection is powerless compared to the SVM used with our method. This stresses the
fact that our approach is usable with any classification algorithm: One can use for
A SVMs, linear discriminant analysis, random forests, etc., and it is well known that
at the moment there does not exist one algorithm which performs best on all pattern
recognition problems.

In a forthcoming paper, we will present several computational results on this algo-
rithm applied to several databases described by thousands of variables. Numerically,
it would be interesting to use our composition strategy with real variables (instead
of binary or ternary ones) since we have not used it on the leukemia database, for
instance.

Similarly, it would be useful to interpret the composition of real variables as a
process to learn a kernel for the SVM. We believe that using a Rademacher penalty
term in energy E will improve the generalization ability of the algorithm and could
permit us to obtain Oracle’s inequality. Another improvement can be made using a
simulated annealing strategy to fix the selected features to a deterministic version in
the end of the algorithm.
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