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Abstract

We introduce a new model addressing feature selection from a large dictionary oflesiiadat

can be computed from a signal or an image. Features are extracted accordmeffiziancy
criterion, on the basis of specified classification or recognition tasks. This is done bgptasgim

a probability distributionP on the complete dictionary, which distributes its mass over the more
efficient, or informative, components. We implement a stochastic gradientrdedgerithm, using

the probability as a state variable and optimizing a multi-task goodness of fit criteriong$eifides
based on variable randomly chosen according.t&Ve then generate classifiers from the optimal
distribution of weights learned on the training set. The method is first tested on severai patte
recognition problems including face detection, handwritten digit recognition, spessification

and micro-array analysis. We then compare our approach with other step-wise algditims
random forests or recursive feature elimination.

Keywords: stochastic learning algorithms, Robbins-Monro application, pattern recognition, clas-
sification algorithm, feature selection

1. Introduction

Most of the recent instances of pattern recognition problems (whether in comsuber, image un-
derstanding, biology, text interpretation, or spam detection) involve highly candjalea sets with

a huge number of possible explanatory variables. For many reasons, this rteiodaariables
significantly harms classification or recognition tasks. Weakly informative features adifiasah
noise in data and limit the accuracy of classification algorithms. Also, the variance of a sthtistic
model is typically an increasing function of the number of variables, whereasthesta decreasing
function of this same quantity (Bias-Variance dilemma discussed by Geman et al); E2Ring
the dimension of the feature space is necessary to infer reliable conclusions. There igreceffic
issues, too, since the speed of many classification algorithms is largely improved whamthe
plexity of the data is reduced. For instance, the complexity ofgdnearest neighbor algorithm
varies proportionally with the number of variables. In some cases, the applicatiorssificition
algorithms like Support Vector Machines (see Vapnik, 1998, 200@j)mearest neighbors on the
full feature space is not possible or realistic due to the time needed to apply the decisidgkisole
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there are many applications for which detecting the pertinent explanatory varislolétscal, and
as important as correctly performing classification tasks. This is the case, for exampldogy,bio
where describing the source of a pathological state is equally important to just dete@@uogon
et al., 2002; Golub et al., 1999).

Feature selection methods are classically separated into two classes. The first adjjteach (
method} uses statistical properties of the variables to filter out poorly informative variables. This
is done before applying any classification algorithm. For instance, singular valoengdesition
or independent component analysis of Jutten agdatlt (1991) remain popular methods to limit
the dimension of signals, but these two methods do not always yield relevaniaetdoariables.

In Bins and Draper (2001), superpositions of several efficient filters has beersptbfmremove
irrelevant and redundant features, and the use of a combinatorial feature seltgigthra has
provided results achieving high reduction of dimensions (more than 80 % of feataresvaoved)
preserving good accuracy of classification algorithms on real life problems of imagesging.
Xing et al. (2001) have proposed a mixture model and afterwards an informatioorgarion and

a Markov Blanket Filtering method to reach very low dimensions. They next apply classiiica
algorithms based on Gaussian classifier and Logistic Regression to get very accuratewitbdels
few variables on the standard database studied in Golub et al. (1999). The heuristic o Mark
Blanket Filtering has been likewise competitive in feature selection for video appli¢ation and
Render (2003).

The second approactv(apper methoddss computationally demanding, but often is more accu-
rate. A wrapper algorithm explores the space of features subsets to optimize the imdigidthm
that uses the subset for classification. These methods based on penalization fad®ratooial
challenge when the set of variables has no specific order and when the seatdhendone over
its subsets since many problems related to feature extraction have been shown to lvd {ha
and Rivest, 1992). Therefore, automatic feature space construction and variabiersétem a
large set has become an active research area. For instance, in Fleuret aard(@@o1), Amit and
Geman (1999), and Breiman (2001) the authors successively build tree-structured dassifie
sidering statistical properties like correlations or empirical probabilities in order to achiede g
discriminant properties . In a recent work of Fleuret (2004), the author suggests toutisa m
information to recursively select features and obtain performance as good asttiaedlwith a
boosting algorithm (Friedman et al., 2000) with fewer variables. Weston et al. (200@tzapelle
et al. (2002) construct another recursive selection method to optimize generalizhtiity with
a gradient descent algorithm on the margin of Support Vector classifiers. Anofbetivef ap-
proach is the Automatic Relevance Determination (ARD) used in MacKay (1992hwitioduce
a learning hierarchical prior over weights in a Bayesian Network, the weightectethto irrelevant
features are automatically penalized which reduces their influence near zéast, A interesting
work of Cohen et al. (2005) use an hybrid wrapper and filter approach to régdis hccurate and
selective results. They consider an empirical loss function as a Shapley value amchzarficera-
tive ranking method combined with backward elimination and forward selection. Htis/tak is
not so far from the ideas we develop in this paper.

In this paper, we provide an algorithm which attributes a weight to each feature,tiomeddth
their importance for the classification task. The whole set of weights is optimized by @ntparn
algorithm based on a training set. This weighting technique is not so new in the confieature
selection since it has been used in Sun and Li (2006). In our work, these weights result in
estimated probability distribution over features. This estimated probability will also be used to
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generate randomized classifiers, where the randomization is made on the variablethaatton
the training set, an idea introduced by Amit and Geman (1997), and formalized inyeBré2001).
The selection algorithm and the randomized classifier will be tested on a series of examples.
The article is organized as follows. In Section 2, we describe our feature extractiohandde
the related optimization problem. Next, in Sections 3 and 4, we define stochastic algonthom
solve the optimization problem and discuss its convergence properties. In SectiorpBwae
several applications of our method, first with synthetic data, then on image classifisaéon de-
tection and on microarray analysis. Section 6 is the conclusion and addresses futloprdenes.

2. Feature Extraction Model

We start with some notations.

2.1 Primary Notation

We follow the general framework of supervised statistical pattern recognition: the inpat,sign
belonging to some sef, is modeled as a realization of a random variable, from which several
computable quantities are accessible, forming a complete set of variables (or tesetugshe
denoted¥ = {dy,...9# }. This set is assumed to be finite, although| can be a very large
number, and our goal is to select the most useful variables. We dé(gtehe complete set of
features extracted from an input sigmal

A classification task is then specified by a finite partit©r- {Ci,...Cy} of I; the goal is to
predict the class from the observatidfi ). For such a partitio” andl € 1, we write C(1) for the
classC; to whichl belongs, which is assumed to be deterministic.

2.2 Classification Algorithm

We assume that a classification algorithm, dendigeid available, for both training and testing. We
assume thaA can be adapted to a subset_ ¥ of active variablesand to a specific classification
taskC. (There may be some restriction grassociated té, for example, support vector machines
are essentially designed for binary (two-class) problems.) In training miodees a database to
build an optimal classifieA, ¢ : I — C, such that4,, (I) only depends om(l). We shall drop
the subscripC when there is no ambiguity concerning the classification prolgerfhe test mode
simply consists in the application ¢f, on a given signal.

We will work with a randomized version df, for which the randomization is with respect to
the set of variables (see Amit and Geman, 1997; Breiman, 2001, 1998). In the training phase, this
works as follows: first extract a collectiqmV), ..., w™} of subsets off, and build the classifiers
Ay,...,Aym. Then, perform classification in test phase using a majority rule for thesas-
sifiers. This final algorithm will be denotetl- = A(wV,...,w™, ). Itis run with fixedw()’s,
which are obtained during learning.

Note that in this paper, we are not designing the classification algorithrior which we use
existing procedures; rather, we focus on the extraction mechanism creating theraumoleets of
. This randomization process depends on the way variables are sampled framd we will
see that the design of a suitable probability Bnfor this purpose can significantly improve the
classification rates. This probability therefore comes as a new parameter and will bel fieame
the training set.
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Figure 1 summarizes the algorithm in test phase.

[ Input signal ofI

[ |  |-dimensional vecto%

[ Computation ot (1),..., @™ (1) ]

[ Resulting individual decisionsa ) (1),..., A (1) ]

| Combination of individual decisions A(l)

Figure 1: Global algorithm in test phase.

2.3 Measuring the Performance of the AlgorithmA

The algorithmA provides a different classifiek, for each choice of a subsetC F. We letq be
the classification errog(w, C) = P(Ay(l) # C(1)), which will be estimated by

q* (0, C) = P(Au(l) # C(1)) (1)

whereP is the empirical probability on the training set.
We shall consider two particular cases for a given

e Multi-class algorithm: assume thatis naturally adapted to multi-class problems (likg-a
nearest neighbor, or random forest classifier). We theg(tel = g*(w, C) as defined above.

e Two-class algorithms: this applies to algorithms like support vector machines, which are
designed for binary classification problems. We use the idea of the one-against-all method
denote byG the binary partitionC;, 7\ C;}. We then denote:

1 N
90) = 3 ¢'(©0)

which is the average classification rate of the one vs. all classifiers. This “one against all
strategy” can easily be replaced by others, like methods using error correcting cadst ¢
(see Dietterich and Bakiri, 1995).

2.4 A Computational Amendment

The computatiog*(w, C), as defined in Equation (1), requires training a new classification algo-
rithm with variables restricted tw, and estimating the empirical error; this can be rather costly with
large data set (this has to be repeated at each of the steps of the learning algorithm).
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Because of this, we use a slightly different evaluation of the error. In the algorithim tieze
an evaluation ofyf*(w, C) is needed, we use the following procedufeleing a fixed integer and
Tirain Will be the training set):

1. Sample a subséf of sizeT (with replacements) from the training set.

2. Learn the classification algorithm on the basiso@nd 7.

3. Sample, with the same procedure, a subligdtom the training set, and defirmﬁTlsz) (w,C)
to be the empirical error of the classifier learneal7; on T5.

SinceZ; and‘%; are independent, we will usgd, C) defined by

G(,C) =E, 4 [Q(Tl-"fz) (@, C)}

to quantify the efficiency of the subs&{ where the expectation is computed over all the samples
T1,T, of signals taken from the training set of siZe It is also clear that defining such a cost
function contributes in avoiding overfitting in the selection of variables. For the multictabtem,

we define

. 1Y
g‘Tla’fz(w) = N _Zlq('rl,frz) (0.), CI)
i=

and we replace the previous expressiog bl the one below:

9(w) =Eq g [05,5(w)] |

This modified functiorg will be used later in combination with a stochastic algorithm which
will replace the expectation over the training and validation subsets by empiricqalgese The
selection of smaller training and validation sets for the evaluatiog;of, then represents a huge
reduction of computer time. The selection of the siz80&nd‘7, depends on the size of the original
training set and of the chosen learning machine. It has so far been selectettby ha

In the rest of our paper, the notati@[.] will refer to the expectation usingas the integration
variable.

2.5 Weighting the Feature Space
To select a group a variables which are most relevant for the classification task ahankdinst of
ahard selection methgdhat is, search such that

G(w, C) = argming(w, C).

we F ol

But sampling all possible subsets ¢overs¥!“)) may be untractable sind¢ | can be thousands
and|w| ten or hundreds.
We address this with a soft selection procedure that attributes weights to the fegatures
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2.6 Feature Extraction Procedure

Consider a probability distributioBi on the set of feature$ . For an integek, the distributionP®k
corresponds t& independent trials with distributio. We define the cost functiof by

E(P) = Epag(w) = Y 9(@)P™(w). (2)
we FK
Our goal is to minimize this averaged error rate with respect to the selection paramtétéris
the probability distributior®. The relevant features will then be the set of variables? for which
P(d) is large. The global (iterative) procedure that we propose for estim&tisgsummarized in
Figure 2.

Sety

Y

[ Feature sampling usirigy w]

Y

[ ClassificationA on w( 1) ] Parameters’ selection feedback

A

H Computing the mean performangg) on the training seﬂ

Figure 2: Scheme of the procedure for learning the probalitlity

Remark: We useP here as a control parameter: we first make a random selection of features before
setting the learning algorithm. It is thus natural to optimize our way to select featuregfrand
formalize it as a probability distribution off. The number of sampled featurdg {s a hyper-
parameter of the method. Although we have set it by hand in our experimecds) lite estimated

by cross-validation during learning.

3. Search Algorithms

We describe in this section three algorithmic options to minimize the en&rgyth respect to
the probabilitylP. This requires computing the gradient &f and dealing with the constraints
implied by the fact thalP must be a probability distribution. These constraints are summarized in
the following notation.

We denote bysy the set of all probability measures @it a vectorP of R/7| belongs taQSy if

Y P8 =1 ©)
dcF
and
Voe F P(d) >0. (4)

We also denote; the hyperplane ifRl?| which containsss, defined by (3).
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We define the projections of an elementRf | onto the closed convex sefg and #. Let
T, (X) be the closest point ofe RI¥ | in 5¢

— i — x[[,2
s, (%) —argygjgp{Hy Xll2 }

and similarly

. 2 1
Ty, (9 = arg min {ly =Xz} =x— - PR
The latter expression comes from the fact that the orthogonal projection of a xexttur a hyper-
plane isx— (x, N)N whereN is the unit normal to the hyperplane. Fé&f, N is the vector with all
coordinates equal to/1/] F|.
Ouir first option will be to use projected gradient descent to minirdizeaking only constraint
(3) into account. This implies solving the gradient descent equation

e = Ty, (OE(R) ®

which is well-defined as long @ € S¢. We will also refer to the discretized form of (5),
Pn_l,_]_ — Pn - SnT[}[f (DZ(P[‘])) (6)

with positive (€n) .- Again, this equation can be implemented as lon§as Sr. We will later
propose two new strategies to deal with the positivity constraint (4), the first one using tigeecha
of variablesP — logP, and the second being a constrained optimization algorithm, that we will
implement as a constrained stochastic diffusiorsgn

3.1 Computation of the Gradient

However, returning to (5), our first task is to compute the gradient of the energfiraddo it in the
standard case of the Euclidean metric®n that is we comput&lpE(8) = dE /0P(3). Forwe FK
andd € ¥, denote byC(w, d) the number of occurrences &fn w:

C@d=|{ic{l. .k | w=3}|

C(w,.) is then the F |-dimensional vector composed by the set of valdés,5),0 € F. Then, a
straightforward computation gives:

Proposition 1 If P is any point ofS#, then

eef  BEQ) = g(w). (7)

we Fk

Consequently, the expanded version of (6) is

Pria(8) =Pn(8) —£n 3 P@k(w)g(w)(

weFk

C(a. ) ) | @)
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In the case wheR(d) = 0, then, necessari@(w, 5) = 0 and the ternC(w, d) /P(d) is by convention
equal to 0.

The positivity constraint is not taken in account here, but this can be dealt wittgszribed in
the next section, by switching to an exponential parameterization. It is also be passilaisign
a constrained optimization algorithm, exploring the faces of the simplex when ddaalethis is
a rather complex procedure, which is harder to conciliate with the stochastic apptmximwe
will describe in Section 4. This approach will in fact be computationally easier toldavith a
constrained stochastic diffusion algorithm, as described in Section 3.3.

3.2 Exponential Parameterization and Riemannian Gradient
Definey(6) = logP(d) and

y = {yz ¥(8).8eF)| Y &= 1}

ocF
which is in one-to-one correspondence wsth (allowing for the choice/(d) = —). Define
E(y)=E@)= § e g(q).
we Fk

Then, we have:

Proposition 2 The gradient ofE with respect to these new variables is given by:

DVE@®) = 5 @ YOI (w,5)g(w). 9)

we Fk

We can interpret this gradient on the variabjess a gradient on the variablBswith a Rieman-
nian metric

(u,V)yp = z u(d)v(d)/P(d).

a2

The geometry of the spacg- with this metricD has the property that the boundary poids: are
at infinite distance from any point into the interior.&f .
Denotingld for the gradient with respect to this metric, we have in fact, withlogP:

EE) =E= Y P™Hw)C(w,38)g(w).

weFk

To handle the unit sum constraint, we need to project this gradient on the tangeettefy at
pointy. Denoting this projection by, we have

(W) = w— (we) /]| €']|?

wheree’ is the vector with coordinates(®). This yields the evolution equation in thyevariables

dyét@ — —Oy E(3) + keeh®), (10)
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where

Kt = ( )3 Dyt%(a')evdé’)) / ( S e2yt<5’>>

de¥F decF

does not depend ah
The associated evolution equation Bbbecomes

(m;t(é) = —Py(8) (Op, E(5) — ki P1(3)) - (11)

Consider now a discrete time approximation of (11), under the form

R 12)

where the newly introduced constafy ensures that the probabilities sum to 1. This provides an
alternative scheme of gradient descent®nvhich has the advantage of satisfying the positivity
constraints (4) by construction.

e Start withPo = Uy — yo = logPo ,
e Until convergence: Comput®,.; from Equation (12).
Remark: In terms ofy,, (12) yields
Yn+1(8) = Yn(8) — &n (02, £(8) — KnPn(8)) — logKn.
The definition of the constalit, implies that

K, = Z Pnefsn(ipnz(a)fxnpn(a))'
deF

We can write a second order expansion of the above expression to deduce that

Kn="S Pn(8) —&nPn(8) (T, E(8) — KnPn(8)) +Aneh = 1+ Angh
ocF

since, by definition okp: N
Z Pn(8)(Op,E(8) — KnPn(d)) = 0.
0cF

Consequently, there exists a const8ntvhich depends otk and maxe,) such that, for alln,
|logKn| < Be2.

3.3 Constrained Diffusion

The algorithm (8) can be combined with reprojection steps to provide a consistent ymectde
implement this using a stochastic diffusion process constrained to the sifiplekhe associated
stochastic differential equation is

dP; = —Op, Edt + /odW + dZ;
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where is the cost function introduced in (2),is a positive non-degenerate matrix &fy and &
is a stochastic process which accounts for the jumps which appear when a rgpmagneeded.
In other words, (7] is positive if and only ifP; hits the boundarg.S4 of our simplex.

The rigorous construction of such a process is linked to the theory of Skorokhod maps, a
can be found in works of Dupuis and Ishii (1991) and Dupuis and Raman&0).1Existence and
unigueness are true under general geometric conditions which are satisfied here.

4. Stochastic Approximations

The evaluation ofJ‘£ in the previous algorithms requires summing the efficiency meagiicas
over allwin K. This is, as already discussed, an untractable sum. This however can be handled
using a stochastic approximation, as described in the next section.

4.1 Stochastic Gradient Descent

We first recall general facts on stochastic approximation algorithms.

4.1.1 APPLYING THEODE METHOD
Stochastic approximations can be seen as noisy discretizations of deterministic ODE'lisee B
veniste et al., 1990; Beima, 2000; Duflo, 1996). They are generally expressed under the form

Xor1 = X+ €nF (Xn, Ens1) + €200 (13)

whereX, is the current state of the procegg, 1 a random perturbation, any, a secondary error
term. If the distribution o€, 1 only depends on the current value Xf (Robbins-Monro case),
then one defines an average dKft- G(X) by

G(X) =E[F(X,&)]

and the Equation (13) can be shown to evolve similarly to the OGEG(X), in the sense that the
trajectories coincide wheftn)nen goes to 0 (a more precise statement is given in Section 4.1.4).

4.1.2 APPROXIMATION TERMS

To implement our gradient descent equations in this framework, we therefatemekentify two
random variabledy, or d, such that

Eldy] =1y [Op, 2]  and  E[d)] =m, [Oy,Z]. (14)
This would yield the stochastic algorithm:

efsndNn

Pni1 =Pn—&ndn O Ppyp =Py K
n

¢ From (7), we have:
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Using the linearity of the projection,, , we get

P()

Consequently, following (14), it is natural to define the approximation term of the gitadie
descent (5) by:

g (OE() 3 =E, [mg (“529 ) ).

(15)

=11, (C(oon,.)?;jn(,?(%c)>

where the set ok featureswy, is a random variable extracted frofn with law PSK and 7", 7" are
independently sampled into the training gét

In a similar way, we can compute the approximation term of the gradient descat ba (9)
since

OyE(3) = E,, [9(w)C(w, )]
yielding
o = 15, (Cleon, )z (60 )

wherery, is the projection on the tangent space” to the sub-manifold)” at pointy, andw, is a
random variable extracted frofi with the lawP&k,
By construction, we therefore have the proposition

Proposition 3 The mean effect of random variables ahd d, is the global gradient descent, in
other words:

E [dn] = 1y, (OZ(Py))
and y 3
E[dn] = Ty, (DE(Yn)) .

4.1.3 LEARNING THE PROBABILITY MAP (Pn)cy

We now make explicit the learning algorithms for Equations (5) and (10). We recalkfiivétion
of

Clwd) =|{ie{l...kt | w=>3}

whered is a given feature ana a given feature subset of lendthwhich is an hyperparameter (see
bottom of page 6).04 ,(w, C), which is the empirical classification error af3 for a classifier
trained on7; using features i.

¢ Euclidean gradient (Figure 3):

¢ Riemannian Gradient: For the Riemannian case, we have to give few modifgciiahe update
step (Figure 4).

The mechanism of the two former algorithms summarized by Figures 3,4 can be ihguitive
explained looking carefully at the update step. For instance, in the first case, af steppcan see
that for all features od € wy,, we substract fron,(6) amount proportional to the error performed
with w and inversely proportional t&,(d) although for other features out af,, weights are a
little bit increased. Consequently, worst features with poor error of classification will leeedgv
decreased, particularly when they are suspected to be bad (small Wgight
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Let ¥ = (81,...9)#)), integergy, T and a real numbex (stoping criterion)
n = 0: definePy to be the uniform distributiortZs on F.
While [Py |n/u — Pn|,, > o andP, > O:

Extractw, with replacement fron * with respect taP2k.

ExtractZ;" and 7" of sizeT with uniform independent samples 0V&fain.

Computeqzn zn(wn, C)and the drift vectod, where

o C(on, ) C(oon, 1)
() = .z (o, €) ( Pa®) T!Pn(u)) |

UpdatePp, 1 with Pp. 1 = P — €,.0n.
n—n+1.

Figure 3: Euclidean gradient Algorithm.

Remark We provide the Euclidean gradient algorithm, which is subject to failure (one weight m
become nonpositive) because it may converge for some applications, areséndases, is much
faster than the exponential formulation.

4.1.4 (GONVERGENCE OF THEAPPROXIMATION SCHEME

This more technical section can be skipped without harming the understandingrestha the
paper. We here rapidly describe in which sense the stochastic approximations weehmyred
converge to their homologous ODE's. This is a well-known fact, especially in tidiRs-Monro
case that we consider here, and the reader may refer to works of Benveniktéle0@); Duflo
(1996); Kushner and Yin (2003), for more details. We follow the terminology emplayeke
approach of Benaim (1996).

Fix a finite dimensional open sEt A differential flow(t, x) — @ (X) is a time-indexed family of
diffeomorphisms satisfying the semi-group conditipn, = @, 0 @ andg = Id; @ (X) is typically
given as the solution of a differential equati%%: G(y), at timet, with initial conditiony(0) = x.
Asymptotic pseudotrajectories of a differential flow are defined as follows:

Let ¥ = (81,...9)#)), integergy, T and a real numbex (stoping criterion)
n = 0: definePq to be the uniform distributiorily on 7.
While ‘Pn_m/m —Pn‘oo >

Extractwy, from FX with respect ta&k,

ExtractZ;" andZ;" of sizeT with uniform independent samples 0V&fain.

Computegzn zn(n, C).

UpdatePy, 1 with:

—€n(C(th,8)Gzn 0 (wn,C)+KnPn(9))
Pn+1(6) _ Pn(é)e Kl 2
n

Kn= (Zé’e%c((*)nvé,)lpn(él)) /((Zé’eﬂf Pn(&)z)
andK, is a normalization constant.
n—n+1

with

Figure 4: Riemannian gradient Algorithm.
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Definition 4 A map X: R™ — E is an asymptotic pseudotrajectory of the flpif, for all positive
numbers T

lim sup |IX(t+h)—@n(X(t))||=0.

t=0 o<t

In other words, the tails of the trajectory X asymptotically coincides, within any fintiedmo T,
with the flow trajectories.

Consider algorithms of the form

Xni1 = Xn+ €nF (X, Ent1) + €2Nns1

with X, € E, &,,.1 afirst order perturbation (such that the conditional distribution knowing all present
and past variables only dependsXy), andn, a secondary noise process. The variahean be

n
linearly interpolated into a time-continuous process as follows: defire 5 & andX;, = Xy, then
k=1

let X; be linear and continuous betwegpandt,, 1, forn > 0.
Consider the mean ODE

dx
dt
and its associated flog@. Then, under mild conditions df andny, and under the assumption that

> gl < o for somea > 0, the linearly interpolated proceXgis an asymptotic pseudotrajectory
n>0

of @. We will consequently choosg, = €/(n+ C) wheree andC are positive constants fixed

at start of our algorithms. We can here apply this result Wih= yn, &np1 = (wn, Z}",Z;") and

Nns1 = logKy/€2 for which all the required conditions are satisfied since for the Euclidean case,
whenwn, ~ P& and (73, ) ~ U527

G(x) =E[F(X, &)X =X

B [F(Pr,en)] = E,, . o, [On(wn, 71, B2))]

g [ (N

C((*)ﬂv ')E’]‘l.‘fz [q‘fly‘fz((*)ﬂa C)}
Ty Pa(.)

_E, [n}[{f (C(%@)n?,(;% C))]

E y [F(Pn, 0n)] = Ty, (DE(Pn)) -

=E

wn

4.2 Numerical Simulation of the Diffusion Model

We use again (15) for the approximation of the gradienEofThe theoretical basis for the conver-
gence of this type of approximation can be found in Buche and Kushner)20@1Kushner and
Yin (2003), for example. A detailed convergence proof is provided in Ga@a(2

This results in the following numerical scheme. We recall the definition of

C(w,0)={ie{l,...k} | w=0}
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and ofdy; 4 (w, C),which is the empirical classification error @ for a classifier trained of;
using features iwo.

Let F = (&,.. .6‘7‘), an integer
n = 0: definePy to be the uniform distributiortZs on F.
Iterate the loop:
Extractwy, from FX with respect ta&k,
ExtractZ;" andZ)" of sizeT with uniform independent samples oV&Fain.
Computeqin 2 (o, C).
Compute the intermediate sta@g (may be out ofSy):
C )Ggn gn
O RC )?P,Tl LACO IS
where &, is a centere%l normaff | dimensional vector.
ProjectQ on S« to obtainPp.1:
Pni1 =T, (Qn) = Qn+dz,.

n—n4+1.

Figure 5: Constrained diffusion.

4.3 Projection onS#
The natural projection o5 can be computed in a finite number of steps as follows.

1. Definex? = X, if X% does not belong to the hyperplafg-, project firstX® to #y
X =1, (X9).
2. - If X*belongs taS«, stop the recursion.
— Else, callJ* the set of integerssuch thatxk < 0 and definex*** by
vieJk  x<l=o.
1
Vi ¢ J¥ MLk = [1- XK.
PR w2

One can show that the former recursion stops in at issteps (see Gadat, 2004, chap. 4).

5. Experiments

This section provides a series of experimental results using the previous algorithmsl babky
summarizes the parameters of the several experiments performed.

5.1 Simple Examples

We start with a simple, but illustrative, small dimensional example.
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Data Set Dim. A Classes Training Set Test Set
Synthetic 100 N.N. 3 500 100
IRIS 4 CART 3 100 50
Faces 1926 SVM 2 7000 23000
SPAM 54 N.N. 2 3450 1151
USPS 2418 SVM 10 7291 2007

Leukemia 3859 SVM 2 72 0
ARCENE 10000 SVM 2 100 100
GISETTE 5000 SVM 2 6000 1000
DEXTER 20000 SVM 2 300 300
DOROTHEA 100000 SVM 2 800 350
MADELON 500 N.N. 2 2000 600

Table 1: Characteristics of the data sets used in experiments.

5.1.1 SYNTHETIC EXAMPLE

Data We considelf# | = 100 ternary variables and 3 classes (similar results can be obtained with
more classes and variables). Wellet {—1;0;1} f and the featurd; (1) simply be theth coordinate

of | € I. Let G be a subset off. We define the probability distributiom(; G) in I to be the one

for which all d in #F are independend(l) follows a uniform distribution o —1;0;1} if 8¢ G
andd(l) =1if 8 € G. We model each class by a mixture of such distributions, including a small
proportion of noise. Mare precisely, for a cld@si = 1,2, 3, we define

w(l) = g (U FY +u; F2) +u(; F3) + (21— a)u(; 0)

withg=0.9 and
Fl={81,03;85:87},  F2={01;8s},  F2={88},
F = {02:04:86;88},  FF={520a}, %5’ = {3},
F4 = {B1;04;08; 8o}, T4 = {01, 38}, F3 = {84; 8}

In other words, these synthetic data are generated with almost deterministic values oraseme
ables (which depends on the class the sample belongs to) and with a uniform noideestsaNe
expect our learning algorithm to put large weights on featuresjirand ignore the other ones. The
algorithm A we use in this case is @ nearest neighbour classification algorithm, with distance
given by
dls,12) = 3 Xopysony-
dcw

This toy example is interesting because it is possible to compute the exact gradierioof
small values ofM andk = |w|. Thus, we can compare the stochastic gradient algorithms with
the exact gradient algorithm and evaluate the speed of deca@y doreover, one can see in the
construction of our signals that some features are relevant with several classes (scliesdibies),
some features are important only for one class and others are simply noise on the inputillTh
permit to evaluate the model of "frequency of goodness” used by OFW.
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Figure 6: Note that the left and right figures are drawn on different scales. Left: Exali¢igra
descent (full line) vs. stochastic exponential gradient descent (dashed line) cldenifica
rates on the training set. Right: Stochastic Euclidean gradient descent (full line) vs.
stochastic exponential gradient descent (dashed line) classification rates on the training

set.

Results We provide in Figure 6 the evolution of the mean erfbon our training set set against
the computation time for exact and stochastic exponential gradient descenihaigo The exact
algorithm is faster but is quickly captured in a local minimum although exponesttiahastic de-
scent avoids more traps. Also shown in Figure 6, is the fact that the stochastic Euclidéendm
achieved better results faster than the exponential stochastic approach ared awoié traps than
the exponential algorithm to reach lower error rates.

Note that Figure 6 (and similar plots in subsequent experiments) is drawn for the compdriso
the numerical procedures that have been designed to minimize the training setén®does not
relate to the generalization error of the final classifier, which is evaluated on test sets.

Finally, Figure 7 shows that the efficiency of the stochastic gradient descent aredrefldtted
diffusion are almost similar in our synthetic example. This has in fact always bdaroso exper-
iments: the diffusion is slightly better than the gradient when the latter convergethi$-oeason,
we will only compare the exponential gradient and the diffusion in the experindcs follow.
Finally, we summarize this instructive synthetic experiments in Figure 8. Remark that inythis to
example; the exact gradient descent and the Euclidean stochastic gradient @it8tralgf Section
4.1.3) are almost equivalent.

In Figure 9, we provide the probabilities of the first 15 features in functiok of|w|. (The
graylevel is proportional to the probability obtained at the limit).

Interpretation We observe that the features which are preferably selected are those which lie in
several subspacef I and which bring information for at least two classes. Thesaeaursable
features the knowledge of which being very precious information for the understandipgttern
recognition problems. This result can be compared to selection methods based oratfimiorm
theory. One simple method is to select the variables which provide the most informatioa to
class, and therefore minimize the conditional entropy (see Cover and Thomas,of %3¢ )class
given each variable. In this example, this conditional entropy is 1.009 forressatontained in
none of the setsfi‘, 0.852 for those contained in only one set and approximatively 0.856 for those
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Figure 7: Stochastic Euclidean gradient descent (dashed line) vs. reflected diffusiongjudidis-
sification rate on the training set.

contained in two of these sets. This implies that this information-based criterion would correctly
discard the non-informative variables, but fail to discriminate between the last twogyroup

Remark finally that the features selected by OFW after the reusables ones are still felevant
the classification task.

5.1.2 IRIS DATABASE

We use in this section the famous Fisher’s IRIS database where data are describedvayitides:
“Sepal Length”, “Sepal Width”, “Petal Length” and “Petal Width”. Even thougin framework is
to select features in a large dictionary of variables, it will be interesting to look at thevioeh
of our algorithm on IRIS since results about feature selection are already known otatsgal
example. We use here a Classification and Regression Tree (CART) using the Gini index. W
extract 2 variables at each step of the algorithm, 100 samples out of 150 ate treéad our feature
weighting procedure. The Figures 10 and 11 describe the behavior of our algo(ityith and
without the noise term).

We remark here that for each one of our two approaches, we approximatéte geitire weight
on the last two variables “ Petal Length” (70%) and “Petal Width” (30%). This result is consisten
with the selectiorperformed by CART on this database since we obtain similar results as seen in
Figure 12. Moreover, a selection based on the Fisher score reaches the same resultsdoy this
simple and low dimensional example.

The classification on Test Set is improved selecting two features (with OFW as Fisher Scoring)
since we obtain an error rate 0626 although without any selection, CART provides an error rate
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Figure 8: Comparison of the mean error rate computed on the test set with the 4restachastics
gradient descents.
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Figure 9: Probability histogram for several valuegof

of 4%. In this small low dimensional example, OFW quickly converges to the optiriglht and
we obtain a ranking coherent with the selection performed by Fisher Score or CART.

5.2 Real Classification Problems

We now address real pattern recognition problems. We also compare our results withlgthe
rithms: no selection method, Fisher scoring method, Recursive Feature Elimination meftif)d (R
of Guyon et al. (2002), LO-Norm for linear support vector machines of Westah ¢2003) and
Random Forests (RF) of Breiman (2001). We used for these algorithms Matlab implenrentatio
provided by the Spider package for RFE and LO-S¥Mnd the random forest package of Leo
Breiman? In our experiments, we arbitrarily fixed the number of features per classifier (to 100
for the Faces, Handwritten Digits and Leukemia data and to 15 for the email dgtaliaseuld

be possible to also optimize it, through cross-validation, for example, once the optimaal been

1. This package is available at http://www.kyb.tuebingen.mpg.de/bs/peage/spain.html.
2. Codes are available on http://www.stat.berkeley.edu/users/breiman/RandomForests.
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Figure 10: Evolution witm of the distribution on the 4 variables using a stochastic Euclidean al-

gorithm.
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Figure 11: Evolution witm of the distribution on the 4 variables using a stochastic Euclidean dif-
fusion algorithm.

computed (running this optimization online, while also estimalingould be too computationally
intensive). We have remarked in our experiments that the estimatiBnaafs fairly robust to to
variations of the number of features extracted at each ktepolur notation). In particular, takink
too large does not help much.

527



GADAT AND YOUNES

Petal.Length< 2.45
Petal.Length>=2.45

Petal Width>=1.75

VIRgInica

0/2/45

Figure 12: Complete classification tree of IRIS generated from recursive partitioning (CART im-
plementation is using the rpart library of R).

5.2.1 FACE DETECTION

Experimental framework We use in this section the face database from MIT, which contains
19x 19 gray level images; samples extracted from the database are represented in Fidure 13.
database contains almost 7000 images to train and more than 23000 images to test.

The features irff are binary edge detectors, as developed in works of Amit and Geman (1999);
Fleuret and Geman (2001). This feature space has been shown to be efficiensddicalion in
visual processing. We therefore have as many variables and dimensions asawmésible edge
detectors on images. We perform among the whole set of these edge detectorseegsipg step
described in Fleuret and Geman (2001). We then obtain 1926 binary featuresneaiéfioed by
its orientation, vagueness and localisation.

The classification algorithrd which is used here is an optimized version of Linear Support
Vector Machines developed by Joachims and Klinkenberg (2000); Joach@@g)(&with linear
kernel).

Results We first show the improvement of the mean performance of our extraction metaotkde
on the training set, and computed on the test set, from a random uniform sampling ofd¢aigre
ure 14).

528



A STOCHASTICALGORITHM FOR FEATURE SELECTION IN PATTERN RECOGNITION

-
e |
=
|

]
[
]

Figure 13: Sample of images taken from MIT database.
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Figure 14: Left: Evolution withk of the average classification error of faces recognition on the
test setusing a uniform law (dashed line) aiid, (full line), learned with a stochastic
gradient method with exponential parameterization. Right: same comparisongfor th
constrained diffusion algorithm.

Our feature extraction method based on learning the distribftionproves significantly the
classification rate, particularly for weak classifieks= 20 or 30 for example) as shown in Figure
14. We remark again that the constrained diffusion performs better than the stochpstiermtial
gradient. We achieve a@% error rate after learning with a reflected diffusion, or% with a
stochastic exponential gradient (2% before learning). The analysis of the most likelee@vhich
are the most weighted variables) is also interesting, and occurs in meaningful posgishsya
in Figure 15.

Figure 16 shows a comparison of the efficiency (computed on the test set) of Fishet,(RFE,
SVM and our weighting procedure to select features; besides we have shown thienpade ofA
without any selection and the best performance of Random Forests (as an asymptote

We observe that our method is here less efficient with a small number of feature {éatures
selected, we obtain.3% while RFE and LO selections get 4% an@% of misclassification rate).
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Figure 15: Representation of the main edge detectors after learning.
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Figure 16: Efficiency of several feature extractions methods for the faces databiaset

However, for a larger set of features, our weighting method is more effectivedther methods
since we obtained.6% of misclassification for 100 features selected 2 for LO selection and
3.6% for RFE).
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The comparison with the Random Forest algorithm is more difficult to estimate: one tree
achieves 2% error but the length of this tree is more than 1000 and this error rate is obtained
by the 3 former algorithms using only 200 features. The final best performance onttiigskis
obtained using Random Forests with 1000 trees. We obtain then a misclassification r&fé.of 0

5.2.2 SPAM QASSIFICATION

Experimental framework This example uses a text database available at D.J. Newman and Merz
(1998), which contains emails received by a research engineer from the HPrdldiyiaed into
SPAM and non SPAM categories. The features here are the rates of appearance képaords

(from a list of 57) in each text. As the problem is quite simple using the last 3 features of the
previous list, we choose to remove these 3 variables (which depends on the mdicdgstal letters

in an email), we start consequently with a list of 54 features. We use here a 4-nearebbneigh
algorithm and we extract 15 features at each step. The database is composed med6ages and

we use 75% of the email database to learn our probalfilityrepresenting our extraction method
while the 25% samples of data is left to form the test set.
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Figure 17: Time evolution of the energy; for the spam/email classification D.J. Newman and
Merz (1998) computed on the test,sg$ing a stochastic gradient descent with an expo-
nential parameterization (left) and with a constrained diffusion (right).

Results We plot the average error on the test set in Figure 17. On our test set, the methodrbased
the exponential parameterization achieves better results than those obtaineddigdefifusion
which is slower because of our Brownian noise. The weighting method is here effjaient in
improving the performances of the Nearest Neighbor algorithm.

Moreover, we can analyze the words selected by our probalfility In the next table, two
columns provide the features that are mainly selected. We achieve in a differeaimiar results
to those noticed in Hastie et al. (2001) regarding the ranking importance of the veedion spam
detection.

The words which are useful for spam recognition (left columns) are not surprising (“business”
“remove”, “receive” or “free” are highly weighted). More interesting are the wordiscséed in the
right column; these words are here useful to enable a personal email detectiomaPerfeoma-
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Words favored for SPAM Frequency|| Words favored for NON SPAM Frequency!
remove 8.8% cs 5.4%
business 8.7% 857 4.6%

[ 6% 415 4.4%
report 5.9% project 4.3%
receive 5.6% table 4.2%
internet 4.4% conference 4.2%

free 4.1% lab 3.9%
people 3.7% labs 3.2%
000 3.6% edu 2.8%
direct 2.3% 650 2.7%
! 1.2% 85 2.5%
$ 1% george 1.6%

Figure 18: Words mostly selected Wy, (exponential gradient learning procedure) for the
spam/email classification.

tions like phone numbers (“650”, “857") or first name (“george”) are hewerad to detect real
email messages. The database did not provide access to the original messagesnipdrtance
of the phone numbers or first name is certainly due to the fact that many nonrspasages are
replies to previous messages outgoing from the mailbox, and would generally tepemiginal
sender’s signature, including its first name, address and phone number.

We compare next the performances obtained by our method with RFE, RF and LOFsIve
19 show relative efficiency of these algorithms on the spam database.

Without any selection, the linear SVM has more than 15% error rate while each dhe of
former feature selection algorithms achieve better results using barely 5 words. The bettralg
is here the LO-SVM method, while the performance of our weighting methdd@¥%@ with 20 words)
is located between RFE (11B6 with 20 words) and LO-SVM (47% with 20 words). In addition,
RF high performance is obtained using a small forest of 5 trees (not as deep asarnimesof
faces recognition) and we obtain with this algorithi@42%6 of misclassification rate using trees of
size varying from 50 to 60 binary tests.

5.2.3 HANDWRITTEN NUMBER RECOGNITION

Experimental framework A classical benchmark for pattern recognition algorithms is the classi-
fication of handwritten numbers. We have tested our algorithm on the USPS databasedtdstie
2001; Schlkopf and Smola, 2002): each image is a segment from a ZIP code isolating a sitiigle dig
The 7291 images of the training set and 2007 of the test set axel®Gight-bit grayscale maps,
with intensity between 0 and 255. We use the same featurefseds in the faces example. We
obtain a feature spacg of 2418 edge detectors with one precise orientation, location and blurring
parameter. The classification algorithfirwe used is here again a linear support vector machine.

Results Since our reference wrapper algorithms (RFE and LO-SVM) are restricted to 2 class prob-
lems, we present only results obtained on this database with the algaithinich is a SVM based
on the “one versus all” idea.
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Figure 19: Efficiency of several feature extractions methods on the tdst skeé SPAM database.

Class | G |G | G| G| G| G| G| G| G| G
Imagel Ol [2]/3[d|S|e|7|8|19
Ol 1 |2[3[2|S|L[7]9]%

Figure 20: Sample of images taken from the USPS database.

The improvement of the detection rate is also similar to the previous example, asistiéigure
21. We first plot the mean classification error rate before and after learning the probabpif§. ma
These rates are obtained by averagit®@) over samples of features uniformly distributed $rin
the first case, and distributed accordingPtin the second case. These numbers are computed on
training dataand therefore serve for evaluation of the efficiency of the algorithm in improving the
energy function fromE; (U ) to Z1(Pw). Figure 21 provides the variation of the mean error rate in
function of the number of featurdsused in eaclw. The ratio between the two errors (before and
after learning) rates, is around 90% independently on the vallke of

Figure 22 provides the result of the classification algorithm (using the voting procedure) on
the test set. The majority vote is based on 10 binary SVM-classifiers on each binary classification
problemGC; vs. | \ Ci. The features are extracted first with the uniform distributiép on ¥, then
using the finalP.

The learning procedure significantly improves the performance of the classification algorithm
The final average error rate on the USPS database is al#%tf8r 10 elementary classifiers per

533



GADAT AND YOUNES

T T T T
Random Uniform Selection Random Uniform Selection
Stochastic Exponential ——+—+ Stochastic Constrained Diffusion ---x--+

Mean error rate
Mean error rate
o

L L L L L L L L L L
40 50 60 70 80 90 100 40 50 60 70 80 90 100
Number of Features k Number of Features k

Figure 21: Mean error rate over the training S&PS fork varying from 40 to 100, before (dashed
line) and after (full line) a stochastic gradient learning based on exponential garame
ization (left) and constrained diffusion (right).
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Figure 22: Evolution withk of the mean error of classification on the test settraction based

on random uniform selection (dashed line) dhgselection (full line) for USPS data,
learning computed with stochastic gradient using exponential parameterization (@eft) an
constrained diffusion (right).

classé, with 100 binary features per elementary classifier. The performance is not as good a
the one obtained by the tangent distance method of Simard and LeCun (1988)g&or rate of
classification), but we here use very simple (edge) features. And the result is bettegrfglex
than linear or polynomial Support Vector Machine9® and 4% error rate) computed without any
selection and than sigmoid kernels1%) (see Schikopf et al., 1995) with a reduced complexity
(measured, for example by the needed amount of memory).

Since the features we consider can be computed at every location in the imag®geitdsting
to visualize where the selection has occurred. This is plotted in Figure 23, for the fosrdipe
edges we consider (horizontal, vertical and two diagonal), with grey levels prapairtathe value
of P, for each feature.
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Figure 23: Representation of the selected features after a stochastic exponential ¢ggadneng
for USPS digits. Greyscales are proportional to weights of features

5.2.4 (ENE SELECTION FORLEUKEMIA AML-ALL RECOGNITION

Experimental framework We carry on our experiments with feature selection and classification
for microarray data. We have used the Leukemia Database AML-ALL of Golub et aR)19&
have a very small number of samples (72 signals) described by a very largemufngle@es. We
run a preselection method to obtain the database used by Deb and Reddy (2003)tdias 3859
genes’ Our algorithmA is here a linear support vector machines. As we face a numerical problem

with few samples on each class (AML and ALL), we decide to benchmark each of thétlahgs
we have tested using a 10-fold cross validation method.
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Figure 24: Evolution of the mean ener@ycomputed by the constrained diffusion method on the
training set with time fok = 100.

3. Data Set is available on http://www.Isp.ups-tlse.fr/Fp/Gadat/leukemia.txt.
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Results Figure 24 shows the efficiency of our method of weighting features in reducingeha m
error E on the training set. We remark that with random uniform selection of 100 features, linear
support vector machines obtain a poor rate larger than 15% while ledPainge achieve a mean
error rate less than 1%.

We now compare our result to RFE, RF and LO-SVM using the 10-fold cross validation method
Figure 25 illustrates this comparison between these former algorithms. In this exampletaime ob

0.45 ™ —— r ——
% Random Forest ----4&---
ST Fisher ---x---
/// \\\ LO 777@77
04 ></ \\\ : OFW e ]
>§ /“\\ RFE ——R---
| i Without Selection ---v---
0.35 - \ X |
E 0.3 X\XXX .
T \
Q \
‘s 025 - X%\ ]
(—“ \
g S o
= 0.2 X X _
6 \l
L >§\<X X
¢ " %
015} o W%MXX _
- \ X RS
G'*:?"E}\. \~><\\\\
\-.\. ‘~\\\\\
0.1 \“_\‘ e A
\\ ] - RN
BoO'd, BpEo ;— Vi o
L 8" ] e S )
0.05 LS S o e .. R O mmme B S
g s {d =l e e o T
0 1 1 P
1 10 100 1000

Number of Trees

Figure 25: Efficiency of several feature extractions methods for the Leukemia sataBarfor-
mances are computed using 10 CV.

better results without any selection, but in fact the classification of one linear SV&dg@ermit
to rank features by importance effect on the classification task. We note here againrtivaight-
ing method is less effective for short size subsets (5 genes) while our method istitivmpéth

larger subsets (20-25 genes). Here again, we note that LO-SVM outperforms RFE (likS ke

study Section 5.2.2). Finally, the Random Forest algorithm obtains results which aieregwar
in connection with the number of trees as one can see in Figure 26.

5.2.5 FEATURE SELECTION CHALLENGE

We conclude our experiments with results on the Feature Selection Challenge descgan
et al. (2004) Data sets cover a large field of the feature selection problem since examples are

4. Data sets are available on http://www.nipsfsc.ecs.soton.ac.uk/datasets/.
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Figure 26: Error bars of Random Forests in connection with the number of treesampdted by
cross-validation.

taken in several areas (Microarray data, Digit classification, Synthetic examples, Tegmit&En
and Drug discovery). Results are provided using the Balanced Error Rate (BER) oluaittes
validation set rather than the classical error rate.

We first performed a direct Optimal Feature Weighting algorithm on theses data sets without
any feature preselection using a linear SVM for our base claséifi€or four of the five data sets
(DEXTER, DOROTHEA, GISETTE and MADELON) the numerical performances of the algorithm
are significantly improved if a variable preselection is performed before running it. This mtesele
was based on the Fisher Score:

Heren; andny are the numbers of samples of the training set of classes 1 a?ﬁd(%andxi assign
the mean of featureon class 1, 2 and over the whole training set. We preselect the features with
Fisher Score higher than 0.01.

We then perform our Optimal Feature Weighting algorithm with the new set of featuréseibta
by the Fisher preselection using féra support vector machine with linear kernel. Figure 27 show
the decreasing evolution of the mean BER on the training set for each data sets adtthre fe
selection challenge. One instantaneously can see that OFW is much more effic@IBERTE
or ARCENE than on other data sets since the evolution of mean BER is faster amd farger
amplitude.

For computational efficiency, our weight distributinis learned using a linear SVM for the
basic algorithmA. Once this is done, an optimal nonlinear SVM is used for the final classification
(the parameters of the kernel of this final SVM being estimated via cross-validation). Ve sele
the number of features used for the classification on the validation set on the basi®-66ld 1
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Figure 27: Evolution with iterations of the Balanced Error Rate on the training. set

cross validation procedure on the training set. Table 2 summarizes results obtained@i\Vgu
algorithm and, Linear SVM,and others algorithms of feature selection (Transductive SVM of Wu
and Li (2006), combined filter methods with svm as F+SVM of Chen and Lin (2006) and R8+SV
of Lal et al. (2006), G-flip of Gilad-Bachrach et al. (2004), Information-Based Featueet®a

of Lee et al. (2006), and analysis of redundancy and relevance (FCBF) ofdvuiait2004)). We
select these methods since they are meta algorithms (as OFW method) whose aim isize dfpgim
feature subset entry of standard algorithms. These results are those obtained on the V&l&tation
since most of the papers previously cited do not report results on the TeDSeican show that
most of these methods outperform the performance of SVM without any selection.

5. Reader can refer at http://www.nipsfsc.ecs.soton.ac.uk/results for other retailiedlby feature selection procedure
or different classification algorithms.
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Fisher criterion is numerically effective and can exhibit very reduced sets of fedbutassing
it alone provides performances that are below those reported in Table 2. FS+SVM and FiK&VM,
all filter approaches, are equally effective and perform quite well, but requirestiheaéion of sev-
eral thresholds, and suffer from lack of theoretical optimization background. The @gbpthm
is to find a growing sequence of features that successively maximize the margm déasdsifier.
The main idea is consequently not so far from the OFW approach, even thoughknugm new
feature subset at each iteration. Results are comparable with OFW and authors aj#agradiza-
tion error bounds. The Transductive SVM incorporates a local optimization on the traigiifior a
cost function related to the performances of SVM, and updates a parameter defisgchdeature
using coefficients of the hyperplanes constructed at each step. This appreable keawback of
high computation cost, can fail in the local optimization step and requires to tunepasameters,
but obtains interesting results and suggests further developments on model seFCB&nwhich
does not intend directly to increase the accuracy of any classifier as a wrappéhaigselects the
features by identifying the redundancy between features and relevance anflaisioles. The
resulting algorithms (FCBF-NBC and FCBF-C4.5) obtains very good results and is numerically
simple to handle. However, this approach does not provide any theoretiesuneeof efficiency
selection with respect to the accuracy of classification.

Our method is competitive on all data sets but DOROTHEA. The OFW algorithm is parlycula
good on the GISETTE data set. Moreover, we outperform most of methods based on asfiter +
approach.

Table 3 provides our results on the Test 8stwell as the results of the best challenge par-
ticipants. Looking at BER, best results of the challenge outperforms our OFW applmachis
comparison seems unfair since best entries are classification algorithm rather than sedéatem
algorithm (most of features are kept to treat the data) and the difference of BERskatistically
significantly different except for the DOROTHEA database. We add moreovertrezsrits on
these 5 data sets obtained by quite simple filter methods Guyon et al. (2006) tatewackable
BER results.

6. Discussion and Conclusion

We first start with a detailed comparison of the several results obtained during the exparimen
section.

6.1 Discussion

¢, From the previous empirical study, we can conclude that OFW can dramaticalte théudimen-
sion of the feature space while preserving the accuracy of classification and evaenesitiramany
cases. We observe likewise that we obtain results comparable to those of referencenaddu@h
RFE or RF. In most cases, the learning proces&oi numerically easy to handle with our method
and the results on test set are convincing. Besides the accuracy of classifiery amtetlesting
advantage of OFW is the stability of the subsets which are selected when we run sewtstabp
version of our algorithm. Further works could include numerical comparisons ostabéity of
several algorithms using for instance a bootstrap average of Hamming distancespasfirsed
in Dune et al. (2002).

Nevertheless, in some rare cases (DEXTER or DOROTHEA), learning the optimal weights
is more complicated: in the case of DEXTER database, we can guess from Figure 2drthat o
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Figure 28: Performances of several algorithms on the Validation Set of the FSC. Zerortgar ¢
spond to missing values.

stochastic algorithm has been temporarily trapped in a neighborhood of a local mmromour
energy’E. Even if the OFW has succeeded in escaping the local minimum after a while, this
still reduces drastically the convergence speed and the final performance of classificathe
validation set. In the case of DOROTHEA, the results of SVM are quite irregular according to
subsets selected along time (see Figure 27) and the final performance, as all mettei®
SVM classifiers noticed in Table 2, is not as good as other reported for OFW (see besf BEER 0
challenge in Table 3 obtained without using any SVM as final classifier). At last, resulinabta

by OFW are a little bit worse than those obtained by filtering techniques of Guyon et @6)(@&e
Table 3) that perform efficient feature selection. Note also that all the results obtaijuée darger
feature subsets than OFW and use a larger amount of probes in the set of sel¢gted.féda make
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Best entries
FCBD+C4.5
FCBF+NBC
IBSFS
FS+SVM
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Figure 29: Performances of several algorithms on the Validation Set of the FSC. Zerortgar ¢
spond to missing values.

a comparison of their efficiency, we compute the subsets obtained by these filtetimgpserith
the number of features used for OFW. These results are reported in the last line of T@ahke&n
see that filter methods obtained poorer performances with a reduced numbatuoé$e one can
note that on the DOROTHEA data set, the SVM completely miss one of the two unbdlclass
and obtained bad results.

Another point of interest is the fraction of probes finally selected by each methodsesPae
artificial features added at random in each data set with statistical distributions similar toethe on
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Data Set ARCENE | DEXTER | DOROTHEA | GISETTE | MADELON
BER of SVM 17.86 7.33 33.98 2.10 40.17
BER of OFW 11.04 5.67 8.53 11 6.83
BER of Fisher + SVM| 31.42 12.63 21.84 7.38 17.4
% features selected| (3.80) (1.43) (0.01) (6.54) (2.80)
BER of TSVM 14.2 5.33 10.63 2 10.83
% features selected| (100) (29.47) (0.5) (15) (2.60)
BER of F+SVM 21.43 8 21.38 1.8 13
% features selected| (6.66) (1.04) (0.445) (18.2) (2.80)
BER of G-flip 12.66 7.61
% features selected| (0.76) (3.60)
BER of FS+SVM 12.76 3.3 16.34 1.3 11.22
% features selected 47) (18.6) (1) (34) (4)
BER of IBFS 18.41 14.60 15.26 2.74 38.5
% features selected| (1.85) (5.09) (0.77) (9.30) (2.40)
BER of FCBF+NBC 7 10 2.5
% features selected| (0.24) (0.17) (0.5)
BER of FCBF+C4.5 17 16.3 7.8
% features selected| (0.24) (0.17) (0.5)

Table 2: Performances of OFW and other meta algorithms on the Validation Set of th8ERC
are given in percentage. The best results are in bold characters. The second lineesomp

OFW with the simple Fisher scoring method with the same amount of features and show

the error bars obtained by OFW.

Data Set ARCENE | DEXTER | DOROTHEA | GISETTE | MADELON

BER of OFW 11.54 4.8 14.43 1.35 6.78

% features (3.80) (1.31) (0.04) (8.18) (3.2)
Best Challenge BER  13.3 3.9 8.7 1.3 7.2

(200) (1.52) (100) (100) (100)

Guyon et al. (2006)| 10.48 3.25 9.3 0.98 6.22
(14) (22.5) (0.7) (15.68) 4)

BER of Filters 14.21 4.8 41.33 4.54 7.33

(3.80) (1.31) (0.04) (8.18) (3.2)

Table 3: Performances of OFW on the Test Set of the FSC, BER are given in percentage

Data Set ARCENE | DEXTER | DOROTHEA | GISETTE | MADELON
Probes of OFW 0.79 19.47 2.56 0 0
Probes of Best entry 30 12.87 50 50 96
Guyon et al. (2006) 0.36 55.38 22.14 49.23 0
Probes of Filters methods 7.63 54.58 33.33 45.97 0

Table 4: Fractions of probes selected by OFW and other algorithms on the FSC, fractigigen

in percentage.
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of some real features, but these probes do not carry any information on the cldsofadignals.
Thus, a good feature selection algorithm should obtained a small fraction of probes fimathe
selection. We show in Table 4 the fraction of probes obtained by the methods citadlén3l One
can remark that OFW is particularly effective to reduce the amount of probey ofedia sets (see
GISETTE for instance).

Better results of OFW have been obtained for two special cases of databaseamehitbroar-
ray data (ARCENE and Leukemia) and image recognition data (USPS, GISETTE and Faces). SVM
initially performs well on this data sets, but OFW significantly improve the performance without
any selection.

More generally, OFW seems to behave well and to boost accuracy of algorithives have
initial performance that vary smoothly with respect to small changes in the feature setif Bue
learning procedure is computed in a very large dimensional training set, recenhaxlshown
that in the context of classification, bootstrap approaches (as it is done in OFW) iddraduce a
supplementary important bias (Singhi and Liu, 2006) and it is equally what wearartude in our
case.

In the first synthetic example, one can make the important remark that reusable feagures
mainly favored by OFW. The algorithm classes those which are relevant, but not leeusab
second group. This point looks favorable to our model of "frequency of.use”

Our approach does not address the issue of redundancy (two similar featuresnestlikely
receive the same weight). Some ideas in how to take this into account are sketttfeeddncluding
section.

6.2 Computational Considerations

We have performed our experiments using a C++ compiler with a 2.2 GHz 1 Go RAd&gs0r
pentium IV PC on a Debian system. The learning time of OFW mostly depends on the initial
number of variables in the feature space and the step of our stochastic scheme;Lfeultemia
database which contains 3859 genes, learning took about one hour.

However, OFW can be easily implemented with parallel techniques since at epabf $he
stochastic procedure, one can test several subsets of the feature set still using the datme up
formula of P,,. Moreover, we remark that it can be effective for the calculation time to first filter out
very irrelevant features (selected for instance by a Fisher Score) and run the OFW peocedu

Another option would be to use algorithinsimpler than SVM, CART or NN, based on basic
statistical tools as likelihood or mutual information whilst performing a final decision with SVM
for instance.

6.3 Conclusion, Future Work

Our approach introduces a mathematical model to formalize the search for ofgahaks. Our
selection of features is done by learning a probability distribution on the original featubaset
on a gradient descent of an ener@yithin the simplexs.

The numerical results show that the performance is significantly improved over an irgiai ru
which features are simply uniformly distributed. Our Optimal Feature Weighting methodres mo
over competitive in comparison with other feature selection algorithms and leadsatgaithm
which does not depend on the nature of the classifiamich is used, whereas, for instance, RFE
or LO-SVM are only based on SVM.
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Our future work will enable the feature spageto be also modified during the algorithm, by
allowing for combination rules, creation and deletion of tests, involving a hybrid evolitithe
set of probability measures and in the feature space. This will be implemented asraligation
of our constrained diffusion algorithm to include jumps in the underlying feature space.

Another development would be to speed up the learning procedure using stoelgtitthm
techniques to handle even larger databases without using a combination afiilt@rapper method.
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