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Abstract
We introduce a new model addressing feature selection from a large dictionary of variables that
can be computed from a signal or an image. Features are extracted according to an efficiency
criterion, on the basis of specified classification or recognition tasks. This is done by estimating
a probability distributionP on the complete dictionary, which distributes its mass over the more
efficient, or informative, components. We implement a stochastic gradient descent algorithm, using
the probability as a state variable and optimizing a multi-task goodness of fit criterion for classifiers
based on variable randomly chosen according toP. We then generate classifiers from the optimal
distribution of weights learned on the training set. The method is first tested on several pattern
recognition problems including face detection, handwritten digit recognition, spamclassification
and micro-array analysis. We then compare our approach with other step-wise algorithmslike
random forests or recursive feature elimination.
Keywords: stochastic learning algorithms, Robbins-Monro application, pattern recognition, clas-
sification algorithm, feature selection

1. Introduction

Most of the recent instances of pattern recognition problems (whether in computer vision, image un-
derstanding, biology, text interpretation, or spam detection) involve highly complex data sets with
a huge number of possible explanatory variables. For many reasons, this abundance of variables
significantly harms classification or recognition tasks. Weakly informative features act as artificial
noise in data and limit the accuracy of classification algorithms. Also, the variance of a statistical
model is typically an increasing function of the number of variables, whereas the bias is a decreasing
function of this same quantity (Bias-Variance dilemma discussed by Geman et al., 1992); reducing
the dimension of the feature space is necessary to infer reliable conclusions. There are efficiency
issues, too, since the speed of many classification algorithms is largely improved when thecom-
plexity of the data is reduced. For instance, the complexity of theq-nearest neighbor algorithm
varies proportionally with the number of variables. In some cases, the application of classification
algorithms like Support Vector Machines (see Vapnik, 1998, 2000) orq-nearest neighbors on the
full feature space is not possible or realistic due to the time needed to apply the decision rule. Also,
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there are many applications for which detecting the pertinent explanatory variablesis critical, and
as important as correctly performing classification tasks. This is the case, for example, in biology,
where describing the source of a pathological state is equally important to just detectingit (Guyon
et al., 2002; Golub et al., 1999).

Feature selection methods are classically separated into two classes. The first approach (filter
methods) uses statistical properties of the variables to filter out poorly informative variables. This
is done before applying any classification algorithm. For instance, singular value decomposition
or independent component analysis of Jutten and Hérault (1991) remain popular methods to limit
the dimension of signals, but these two methods do not always yield relevant selection of variables.
In Bins and Draper (2001), superpositions of several efficient filters has been proposed to remove
irrelevant and redundant features, and the use of a combinatorial feature selection algorithm has
provided results achieving high reduction of dimensions (more than 80 % of features are removed)
preserving good accuracy of classification algorithms on real life problems of image processing.
Xing et al. (2001) have proposed a mixture model and afterwards an information gain criterion and
a Markov Blanket Filtering method to reach very low dimensions. They next apply classification
algorithms based on Gaussian classifier and Logistic Regression to get very accurate modelswith
few variables on the standard database studied in Golub et al. (1999). The heuristic of Markov
Blanket Filtering has been likewise competitive in feature selection for video applicationin Liu and
Render (2003).

The second approach (wrapper methods) is computationally demanding, but often is more accu-
rate. A wrapper algorithm explores the space of features subsets to optimize the induction algorithm
that uses the subset for classification. These methods based on penalization face a combinatorial
challenge when the set of variables has no specific order and when the search must be done over
its subsets since many problems related to feature extraction have been shown to be NP-hard (Blum
and Rivest, 1992). Therefore, automatic feature space construction and variable selection from a
large set has become an active research area. For instance, in Fleuret and Geman (2001), Amit and
Geman (1999), and Breiman (2001) the authors successively build tree-structured classifiers con-
sidering statistical properties like correlations or empirical probabilities in order to achieve good
discriminant properties . In a recent work of Fleuret (2004), the author suggests to use mutual
information to recursively select features and obtain performance as good as that obtained with a
boosting algorithm (Friedman et al., 2000) with fewer variables. Weston et al. (2000) and Chapelle
et al. (2002) construct another recursive selection method to optimize generalization ability with
a gradient descent algorithm on the margin of Support Vector classifiers. Another effective ap-
proach is the Automatic Relevance Determination (ARD) used in MacKay (1992) which introduce
a learning hierarchical prior over weights in a Bayesian Network, the weights connected to irrelevant
features are automatically penalized which reduces their influence near zero. Atlast, an interesting
work of Cohen et al. (2005) use an hybrid wrapper and filter approach to reach highly accurate and
selective results. They consider an empirical loss function as a Shapley value and perform an itera-
tive ranking method combined with backward elimination and forward selection. This last work is
not so far from the ideas we develop in this paper.

In this paper, we provide an algorithm which attributes a weight to each feature, in relation with
their importance for the classification task. The whole set of weights is optimized by a learning
algorithm based on a training set. This weighting technique is not so new in the context of feature
selection since it has been used in Sun and Li (2006). In our work, these weights result inan
estimated probability distribution over features. This estimated probability will also be used to
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generate randomized classifiers, where the randomization is made on the variables rather than on
the training set, an idea introduced by Amit and Geman (1997), and formalized by Breiman (2001).
The selection algorithm and the randomized classifier will be tested on a series of examples.

The article is organized as follows. In Section 2, we describe our feature extraction model and
the related optimization problem. Next, in Sections 3 and 4, we define stochastic algorithms which
solve the optimization problem and discuss its convergence properties. In Section 5, weprovide
several applications of our method, first with synthetic data, then on image classification, spam de-
tection and on microarray analysis. Section 6 is the conclusion and addresses future developments.

2. Feature Extraction Model

We start with some notations.

2.1 Primary Notation

We follow the general framework of supervised statistical pattern recognition: the input signal,
belonging to some setI , is modeled as a realization of a random variable, from which several
computable quantities are accessible, forming a complete set of variables (or tests, or features)
denotedF = {δ1, . . .δ|F |}. This set is assumed to be finite, although|F | can be a very large
number, and our goal is to select the most useful variables. We denoteδ(I) the complete set of
features extracted from an input signalI .

A classification task is then specified by a finite partitionC = {C1, . . .CN} of I ; the goal is to
predict the class from the observationδ(I). For such a partitionC andI ∈ I , we writeC (I) for the
classCi to whichI belongs, which is assumed to be deterministic.

2.2 Classification Algorithm

We assume that a classification algorithm, denotedA, is available, for both training and testing. We
assume thatA can be adapted to a subsetω ⊂ F of active variablesand to a specific classification
taskC . (There may be some restriction onC associated toA, for example, support vector machines
are essentially designed for binary (two-class) problems.) In training mode,A uses a database to
build an optimal classifierAω,C : I → C , such thatAω,C (I) only depends onω(I). We shall drop
the subscriptC when there is no ambiguity concerning the classification problemC . The test mode
simply consists in the application ofAω on a given signal.

We will work with a randomized version ofA, for which the randomization is with respect to
the set of variablesω (see Amit and Geman, 1997; Breiman, 2001, 1998). In the training phase, this
works as follows: first extract a collection{ω(1), . . . ,ω(n)} of subsets ofF , and build the classifiers
Aω(1) , . . . ,Aω(n) . Then, perform classification in test phase using a majority rule for thesen clas-
sifiers. This final algorithm will be denoted̄AC = Ā(ω(1), . . . ,ω(n),C ). It is run with fixedω(i)’s,
which are obtained during learning.

Note that in this paper, we are not designing the classification algorithm,A, for which we use
existing procedures; rather, we focus on the extraction mechanism creating the random subsets of
F . This randomization process depends on the way variables are sampled fromF , and we will
see that the design of a suitable probability onF for this purpose can significantly improve the
classification rates. This probability therefore comes as a new parameter and will be learned from
the training set.
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Figure 1 summarizes the algorithm in test phase.

Input signal ofI I ∈ I

|F |-dimensional vector

Computation ofω(1)(I), . . . ,ω(n)(I)

Resulting individual decisions:Aω(1)(I), . . . ,Aω(n)(I)

Combination of individual decisions Ā(I)

Figure 1: Global algorithm in test phase.

2.3 Measuring the Performance of the AlgorithmA

The algorithmA provides a different classifierAω for each choice of a subsetω ⊂ F . We letq be
the classification error:q(ω,C ) = P(Aω(I) 6= C (I)), which will be estimated by

q⋆(ω,C ) = P̂(Aω(I) 6= C (I)) (1)

whereP̂ is the empirical probability on the training set.
We shall consider two particular cases for a givenA.

• Multi-class algorithm: assume thatA is naturally adapted to multi-class problems (like aq-
nearest neighbor, or random forest classifier). We then letg(ω) = q⋆(ω,C ) as defined above.

• Two-class algorithms: this applies to algorithms like support vector machines, which are
designed for binary classification problems. We use the idea of the one-against-all method:
denote byCi the binary partition{Ci , I \Ci}. We then denote:

g(ω) =
1
N

N

∑
i=1

q⋆(ω,Ci)

which is the average classification rate of the one vs. all classifiers. This “one against all
strategy” can easily be replaced by others, like methods using error correcting output codes
(see Dietterich and Bakiri, 1995).

2.4 A Computational Amendment

The computationq⋆(ω,C ), as defined in Equation (1), requires training a new classification algo-
rithm with variables restricted toω, and estimating the empirical error; this can be rather costly with
large data set (this has to be repeated at each of the steps of the learning algorithm).

512



A STOCHASTIC ALGORITHM FOR FEATURE SELECTION IN PATTERN RECOGNITION

Because of this, we use a slightly different evaluation of the error. In the algorithm, each time
an evaluation ofq⋆(ω,C ) is needed, we use the following procedure (T being a fixed integer and
Ttrain will be the training set):

1. Sample a subsetT1 of sizeT (with replacements) from the training set.

2. Learn the classification algorithm on the basis ofω andT1.

3. Sample, with the same procedure, a subsetT2 from the training set, and define ˆq
(T1,T2)

(ω,C )
to be the empirical error of the classifier learnedvia T1 on T2.

SinceT1 andT2 are independent, we will use ˆq(ω,C ) defined by

q̂(ω,C ) = E
(T1,T2)

[

q̂
(T1,T2)

(ω,C )
]

to quantify the efficiency of the subsetω, where the expectation is computed over all the samples
T1,T2 of signals taken from the training set of sizeT. It is also clear that defining such a cost
function contributes in avoiding overfitting in the selection of variables. For the multiclass problem,
we define

ĝT1,T2(ω) =
1
N

N

∑
i=1

q̂
(T1,T2)

(ω,Ci)

and we replace the previous expression ofg by the one below:

g(ω) = ET1,T2

[

ĝT1,T2(ω)
]

.

This modified functiong will be used later in combination with a stochastic algorithm which
will replace the expectation over the training and validation subsets by empirical averages. The
selection of smaller training and validation sets for the evaluation of ˆgT1,T2 then represents a huge
reduction of computer time. The selection of the size ofT1 andT2 depends on the size of the original
training set and of the chosen learning machine. It has so far been selected by hand.

In the rest of our paper, the notationEξ [.] will refer to the expectation usingξ as the integration
variable.

2.5 Weighting the Feature Space

To select a group a variables which are most relevant for the classification task one canthink first of
ahard selection method, that is, searchω such that

q̂(ω,C ) = argmin
ω∈F |ω|

q̂(ω,C ).

But sampling all possible subsets (ω coversF |ω|) may be untractable since|F | can be thousands
and|ω| ten or hundreds.

We address this with a soft selection procedure that attributes weights to the featuresF .
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2.6 Feature Extraction Procedure

Consider a probability distributionP on the set of featuresF . For an integerk, the distributionP⊗k

corresponds tok independent trials with distributionP. We define the cost functionE by

E(P) = EP⊗kg(ω) = ∑
ω∈F k

g(ω)P⊗k(ω). (2)

Our goal is to minimize this averaged error rate with respect to the selection parameter,which is
the probability distributionP. The relevant features will then be the set of variablesδ ∈ F for which
P(δ) is large. The global (iterative) procedure that we propose for estimatingP is summarized in
Figure 2.

I ∈ I SetF

Feature sampling usingP: ω

ClassificationA on ω(I )

Computing the mean performanceg(ω) on the training set

Parameters’ selection feedback

Figure 2: Scheme of the procedure for learning the probabilityP.

Remark: We useP here as a control parameter: we first make a random selection of features before
setting the learning algorithm. It is thus natural to optimize our way to select features fromF and
formalize it as a probability distribution onF . The number of sampled features (k) is a hyper-
parameter of the method. Although we have set it by hand in our experiments, itcan be estimated
by cross-validation during learning.

3. Search Algorithms

We describe in this section three algorithmic options to minimize the energyE with respect to
the probabilityP. This requires computing the gradient ofE , and dealing with the constraints
implied by the fact thatP must be a probability distribution. These constraints are summarized in
the following notation.

We denote bySF the set of all probability measures onF : a vectorP of R|F | belongs toSF if

∑
δ∈F

P(δ) = 1 (3)

and
∀δ ∈ F P(δ) ≥ 0. (4)

We also denoteHF the hyperplane inR|F | which containsSF , defined by (3).
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We define the projections of an element ofR|F | onto the closed convex setsSF andHF . Let
πSF

(x) be the closest point ofx∈ R|F | in SF

πSF
(x) = arg min

y∈SF

{

‖y−x‖2
2
}

and similarly

πHF
(x) = arg min

y∈HF

{

‖y−x‖2
2
}

= x− 1
|F | ∑

δ∈F

x(δ).

The latter expression comes from the fact that the orthogonal projection of a vectorx onto a hyper-
plane isx−〈x,N〉N whereN is the unit normal to the hyperplane. ForHF , N is the vector with all
coordinates equal to 1/

√

|F |.
Our first option will be to use projected gradient descent to minimizeE , taking only constraint

(3) into account. This implies solving the gradient descent equation

dPt

dt
= −πHF

(∇E(Pt)) (5)

which is well-defined as long asPt ∈ SF . We will also refer to the discretized form of (5),

Pn+1 = Pn− εnπHF
(∇E(Pn)) (6)

with positive(εn)n∈N
. Again, this equation can be implemented as long asPn ∈ SF . We will later

propose two new strategies to deal with the positivity constraint (4), the first one using the change
of variablesP 7→ logP, and the second being a constrained optimization algorithm, that we will
implement as a constrained stochastic diffusion onSF .

3.1 Computation of the Gradient

However, returning to (5), our first task is to compute the gradient of the energy. We first do it in the
standard case of the Euclidean metric onSF , that is we compute∇PE(δ) = ∂E/∂P(δ). Forω ∈ F k

andδ ∈ F , denote byC(ω,δ) the number of occurrences ofδ in ω:

C(ω,δ) = |{i ∈ {1, . . .k} | ωi = δ}| .

C(ω, .) is then the|F |-dimensional vector composed by the set of valuesC(ω,δ),δ ∈ F . Then, a
straightforward computation gives:

Proposition 1 If P is any point ofSF , then

∀δ ∈ F ∇PE(δ) = ∑
ω∈F k

C(ω,δ)P⊗k(ω)

P(δ)
g(ω). (7)

Consequently, the expanded version of (6) is

Pn+1(δ) = Pn(δ)− εn ∑
ω∈F k

P⊗k(ω)g(ω)

(

C(ω,δ)

P(δ)
− 1

|F | ∑
µ∈ω

C(ω,µ)

P(µ)

)

. (8)
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In the case whenP(δ) = 0, then, necessarilyC(ω,δ) = 0 and the termC(ω,δ)/P(δ) is by convention
equal to 0.

The positivity constraint is not taken in account here, but this can be dealt with, as described in
the next section, by switching to an exponential parameterization. It is also be possibleto design
a constrained optimization algorithm, exploring the faces of the simplex when needed, but this is
a rather complex procedure, which is harder to conciliate with the stochastic approximations we
will describe in Section 4. This approach will in fact be computationally easier to handle with a
constrained stochastic diffusion algorithm, as described in Section 3.3.

3.2 Exponential Parameterization and Riemannian Gradient

Definey(δ) = logP(δ) and

Y =

{

y = (y(δ),δ ∈ F ) | ∑
δ∈F

ey(δ) = 1

}

which is in one-to-one correspondence withSF (allowing for the choicey(δ) = −∞). Define

Ẽ(y) = E(P) = ∑
ω∈F k

ey(ω1)+···+y(ωk)g(ω).

Then, we have:

Proposition 2 The gradient ofE with respect to these new variables is given by:

∇yẼ(δ) = ∑
ω∈F k

ey(ω1)+···+y(ωk)C(ω,δ)g(ω). (9)

We can interpret this gradient on the variablesy as a gradient on the variablesP with a Rieman-
nian metric

〈u,v〉P = ∑
δ∈F

u(δ)v(δ)/P(δ).

The geometry of the spaceSF with this metricD has the property that the boundary points∂SF are
at infinite distance from any point into the interior ofSF .

Denoting∇̃ for the gradient with respect to this metric, we have in fact, withy = logP:

∇̃PE(δ) = ∇yẼ = ∑
ω∈F k

P⊗k(ω)C(ω,δ)g(ω).

To handle the unit sum constraint, we need to project this gradient on the tangent space toY at
pointy. Denoting this projection byπy, we have

πy(w) = w−〈w|ey〉/‖ey‖2

whereey is the vector with coordinatesey(δ). This yields the evolution equation in they variables

dyt(δ)

dt
= −∇yt Ẽ(δ)+κte

yt(δ), (10)
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where

κt =

(

∑
δ′∈F

∇yt Ẽ(δ′)eyt(δ′)

)

/

(

∑
δ′∈F

e2yt(δ′)

)

does not depend onδ.
The associated evolution equation forP becomes

dPt(δ)

dt
= −Pt(δ)

(

∇̃Pt E(δ)−κtPt(δ)
)

. (11)

Consider now a discrete time approximation of (11), under the form

Pn+1(δ) =
Pn(δ)

Kn
e−εn(∇̃PnE(δ)−κnPn(δ)) (12)

where the newly introduced constantKn ensures that the probabilities sum to 1. This provides an
alternative scheme of gradient descent onE which has the advantage of satisfying the positivity
constraints (4) by construction.

• Start withP0 = UF 7−→ y0 = logP0 ,

• Until convergence: ComputePn+1 from Equation (12).

Remark: In terms ofyn, (12) yields

yn+1(δ) = yn(δ)− εn
(

∇̃PnE(δ)−κnPn(δ)
)

− logKn .

The definition of the constantKn implies that

Kn = ∑
δ∈F

Pne−εn(∇̃PnE(δ)−κnPn(δ)).

We can write a second order expansion of the above expression to deduce that

Kn = ∑
δ∈F

Pn(δ)− εnPn(δ)
(

∇̃PnE(δ)−κnPn(δ)
)

+Anε2
n = 1+Anε2

n

since, by definition ofκn:

∑
δ∈F

Pn(δ)(∇̃PnE(δ)−κnPn(δ)) = 0.

Consequently, there exists a constantB which depends onk and max(εn) such that, for alln,
| logKn| ≤ Bε2

n.

3.3 Constrained Diffusion

The algorithm (8) can be combined with reprojection steps to provide a consistent procedure. We
implement this using a stochastic diffusion process constrained to the simplexSF . The associated
stochastic differential equation is

dPt = −∇Pt Edt +
√

σdWt +dZt
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whereE is the cost function introduced in (2),σ is a positive non-degenerate matrix onHF and dZt

is a stochastic process which accounts for the jumps which appear when a reprojection is needed.
In other words, d|Zt | is positive if and only ifPt hits the boundary∂SF of our simplex.

The rigorous construction of such a process is linked to the theory of Skorokhod maps, and
can be found in works of Dupuis and Ishii (1991) and Dupuis and Ramanan (1999). Existence and
uniqueness are true under general geometric conditions which are satisfied here.

4. Stochastic Approximations

The evaluation of∇E in the previous algorithms requires summing the efficiency measuresg(ω)
over allω in F k. This is, as already discussed, an untractable sum. This however can be handled
using a stochastic approximation, as described in the next section.

4.1 Stochastic Gradient Descent

We first recall general facts on stochastic approximation algorithms.

4.1.1 APPLYING THE ODE METHOD

Stochastic approximations can be seen as noisy discretizations of deterministic ODE’s (see Ben-
veniste et al., 1990; Benaı̈m, 2000; Duflo, 1996). They are generally expressed under the form

Xn+1 = Xn + εnF(Xn,ξn+1)+ ε2
nηn (13)

whereXn is the current state of the process,ξn+1 a random perturbation, andηn a secondary error
term. If the distribution ofξn+1 only depends on the current value ofXn (Robbins-Monro case),
then one defines an average driftX 7→ G(X) by

G(X) = Eξ [F(X,ξ)]

and the Equation (13) can be shown to evolve similarly to the ODEẊ = G(X), in the sense that the
trajectories coincide when(εn)n∈N goes to 0 (a more precise statement is given in Section 4.1.4).

4.1.2 APPROXIMATION TERMS

To implement our gradient descent equations in this framework, we therefore need to identify two
random variablesdn or d̃n such that

E [dn] = πHF
[∇PnE ] and E

[

d̃n
]

= πyn

[

∇ynẼ
]

. (14)

This would yield the stochastic algorithm:

Pn+1 = Pn− εndn or Pn+1 = Pn
e−εnd̃n

Kn
.

¿From (7), we have:

∇PE(δ) = Eω

[

C(ω,δ)g(ω)

P(δ)

]

.

518



A STOCHASTIC ALGORITHM FOR FEATURE SELECTION IN PATTERN RECOGNITION

Using the linearity of the projectionπHF
, we get

πHF
(∇E(P))(δ) = Eω

[

πHF

(

C(ω, .)g(ω)

P(.)

)

(δ)

]

.

Consequently, following (14), it is natural to define the approximation term of the gradient
descent (5) by:

dn = πHF

(

C(ωn, .)q̂T n
1 ,T n

2
(ωn,C )

Pn(.)

)

(15)

where the set ofk featuresωn is a random variable extracted fromF with law P⊗k
n andT n

1 ,T n
2 are

independently sampled into the training setT .
In a similar way, we can compute the approximation term of the gradient descent based on (9)

since
∇yẼ(δ) = Eω [g(ω)C(ω,δ)]

yielding

d̃n = πyn

(

C(ωn, .)q̂T n
1 ,T n

2
(ωn,C ))

)

whereπy is the projection on the tangent spaceT Y to the sub-manifoldY at pointy, andωn is a
random variable extracted fromF with the lawP⊗k

n .
By construction, we therefore have the proposition

Proposition 3 The mean effect of random variables dn and d̃n is the global gradient descent, in
other words:

E [dn] = πHF
(∇E(Pn))

and
E [d̃n] = πyn

(

∇Ẽ(yn)
)

.

4.1.3 LEARNING THE PROBABILITY MAP (Pn)n∈N

We now make explicit the learning algorithms for Equations (5) and (10). We recall thedefinition
of

C(ω,δ) = |{i ∈ {1, . . .k} | ωi = δ}|
whereδ is a given feature andω a given feature subset of lengthk which is an hyperparameter (see
bottom of page 6). ˆqT1,T2(ω,C ), which is the empirical classification error onT2 for a classifier
trained onT1 using features inω.
• Euclidean gradient (Figure 3):

• Riemannian Gradient: For the Riemannian case, we have to give few modifications for the update
step (Figure 4).

The mechanism of the two former algorithms summarized by Figures 3,4 can be intuitively
explained looking carefully at the update step. For instance, in the first case, at stepn, one can see
that for all features ofδ ∈ ωn, we substract fromPn(δ) amount proportional to the error performed
with ω and inversely proportional toPn(δ) although for other features out ofωn, weights are a
little bit increased. Consequently, worst features with poor error of classification will be severely
decreased, particularly when they are suspected to be bad (small weightPn).
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Let F = (δ1, . . .δ|F |), integersµ,T and a real numberα (stoping criterion)
n = 0: defineP0 to be the uniform distributionUF on F .
While

∣

∣Pn−⌊n/µ⌋−Pn
∣

∣

∞ > α andPn ≥ 0:
Extractωn with replacement fromF k with respect toP⊗k

n .
ExtractT n

1 andT n
2 of sizeT with uniform independent samples overTtrain.

Compute ˆqT n
1 ,T n

2
(ωn,C )and the drift vectordn where

dn(δ) = q̂T n
1 ,T n

2
(ωn,C )

(

C(ωn,δ)

Pn(δ)
− ∑

µ∈ωn

C(ωn,µ)

|F |Pn(µ)

)

.

UpdatePn+1 with Pn+1 = Pn− εn.dn.
n 7→ n+1.

Figure 3: Euclidean gradient Algorithm.

Remark We provide the Euclidean gradient algorithm, which is subject to failure (one weight might
become nonpositive) because it may converge for some applications, and in these cases, is much
faster than the exponential formulation.

4.1.4 CONVERGENCE OF THEAPPROXIMATION SCHEME

This more technical section can be skipped without harming the understanding of therest of the
paper. We here rapidly describe in which sense the stochastic approximations we havedesigned
converge to their homologous ODE’s. This is a well-known fact, especially in the Robbins-Monro
case that we consider here, and the reader may refer to works of Benveniste et al. (1990); Duflo
(1996); Kushner and Yin (2003), for more details. We follow the terminology employedin the
approach of Benaim (1996).

Fix a finite dimensional open setE. A differential flow(t,x) 7→ φt(x) is a time-indexed family of
diffeomorphisms satisfying the semi-group conditionφt+h = φh ◦φt andφ0 = Id; φt(x) is typically
given as the solution of a differential equationdy

dt = G(y), at timet, with initial conditiony(0) = x.
Asymptotic pseudotrajectories of a differential flow are defined as follows:

Let F = (δ1, . . .δ|F |), integersµ,T and a real numberα (stoping criterion)
n = 0: defineP0 to be the uniform distributionUF on F .
While

∣

∣Pn−⌊n/µ⌋−Pn
∣

∣

∞ > α:
Extractωn from F k with respect toP⊗k

n .
ExtractT n

1 andT n
2 of sizeT with uniform independent samples overTtrain.

Compute ˆqT n
1 ,T n

2
(ωn,C ).

UpdatePn+1 with:

Pn+1(δ) =
Pn(δ)e

−εn(C(ωn,δ)q̂T n
1 ,T n

2
(ωn,C )+κnPn(δ))

Kn
with

κn =
(

∑δ′∈ωn
C(ωn,δ′)Pn(δ′)

)

/(
(

∑δ′∈F Pn(δ′)2
)

andKn is a normalization constant.
n 7→ n+1

Figure 4: Riemannian gradient Algorithm.
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Definition 4 A map X: R+ 7−→ E is an asymptotic pseudotrajectory of the flowφ if, for all positive
numbers T

lim
t 7→∞

sup
0≤h≤T

‖X(t +h)−φh(X(t))‖ = 0.

In other words, the tails of the trajectory X asymptotically coincides, within any finite horizon T ,
with the flow trajectories.

Consider algorithms of the form

Xn+1 = Xn + εnF(Xn,ξn+1)+ ε2
nηn+1

with Xn∈E, ξn+1 a first order perturbation (such that the conditional distribution knowing all present
and past variables only depends onXn), andηn a secondary noise process. The variableXn can be

linearly interpolated into a time-continuous process as follows: defineτn =
n
∑

k=1
εk andXτn = Xn; then

let Xt be linear and continuous betweenτn andτn+1, for n≥ 0.
Consider the mean ODE

dx
dt

= G(x) = Eξ [F(X,ξ)|X = x]

and its associated flowφ. Then, under mild conditions onF andηn, and under the assumption that
∑

n>0
ε1+α

n < ∞ for someα > 0, the linearly interpolated processXt is an asymptotic pseudotrajectory

of φ. We will consequently chooseεn = ε/(n+C) whereε andC are positive constants fixed
at start of our algorithms. We can here apply this result withXn = yn, ξn+1 = (ωn,T n

1 ,T n
2 ) and

ηn+1 = logKn/ε2
n for which all the required conditions are satisfied since for the Euclidean case,

whenωn ∼ P⊗k
n and(T1,T2) ∼ U⊗2T

T :

Eωn
[F(Pn,ωn)] = Eωn,T1,T2

[dn(ωn,T1,T2)]

= Eωn,T1,T2

[

πHF

(

C(ωn, .)q̂T1,T2(ωn,C )

Pn(.)

)]

= Eωn

[

πHF

(

C(ωn, .)ET1,T2

[

q̂T1,T2(ωn,C )
]

Pn(.)

)]

= Eωn

[

πHF

(

C(ωn, .)q̂(ωn,C )

Pn(.)

)]

Eωn
[F(Pn,ωn)] = πHF

(∇E(Pn)) .

4.2 Numerical Simulation of the Diffusion Model

We use again (15) for the approximation of the gradient ofE . The theoretical basis for the conver-
gence of this type of approximation can be found in Buche and Kushner (2001) and Kushner and
Yin (2003), for example. A detailed convergence proof is provided in Gadat (2004).

This results in the following numerical scheme. We recall the definition of

C(ω,δ) = |{i ∈ {1, . . .k} | ωi = δ}|
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and of q̂T1,T2(ω,C ),which is the empirical classification error onT2 for a classifier trained onT1

using features inω.

Let F = (δ1, . . .δ|F |), an integer
n = 0: defineP0 to be the uniform distributionUF on F .
Iterate the loop:

Extractωn from F k with respect toP⊗k
n .

ExtractT n
1 andT n

2 of sizeT with uniform independent samples overTtrain.
Compute ˆqT n

1 ,T n
2
(ωn,C ).

Compute the intermediate stateQn (may be out ofSF ):

Qn = Pn− εn
C(ωn, .)q̂T n

1 ,T n
2
(ωn)

Pn
+
√

εn
√

σdξn

where dξn is a centered normal|F | dimensional vector.
ProjectQn on SF to obtainPn+1:

Pn+1 = πSF
(Qn) = Qn +dzn.

n 7→ n+1.

Figure 5: Constrained diffusion.

4.3 Projection onSF

The natural projection onSF can be computed in a finite number of steps as follows.

1. DefineX0 = X, if X0 does not belong to the hyperplaneHF , project firstX0 to HF :

X1 = πHF
(X0).

2. – If Xk belongs toSF , stop the recursion.

– Else, callJk the set of integersi such thatXk
i ≤ 0 and defineXk+1 by

∀i ∈ Jk Xk+1
i = 0.

∀i /∈ Jk Xk+1
i = Xk

i +
1

|F |− |Jk|

(

1− ∑
j /∈Jk

Xk
j

)

.

One can show that the former recursion stops in at most|F | steps (see Gadat, 2004, chap. 4).

5. Experiments

This section provides a series of experimental results using the previous algorithms. Table1 briefly
summarizes the parameters of the several experiments performed.

5.1 Simple Examples

We start with a simple, but illustrative, small dimensional example.
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Data Set Dim. A Classes Training Set Test Set
Synthetic 100 N.N. 3 500 100

IRIS 4 CART 3 100 50
Faces 1926 SVM 2 7000 23000
SPAM 54 N.N. 2 3450 1151
USPS 2418 SVM 10 7291 2007

Leukemia 3859 SVM 2 72 /0
ARCENE 10000 SVM 2 100 100
GISETTE 5000 SVM 2 6000 1000
DEXTER 20000 SVM 2 300 300

DOROTHEA 100000 SVM 2 800 350
MADELON 500 N.N. 2 2000 600

Table 1: Characteristics of the data sets used in experiments.

5.1.1 SYNTHETIC EXAMPLE

Data We consider|F | = 100 ternary variables and 3 classes (similar results can be obtained with
more classes and variables). We letI = {−1;0;1} f and the featureδi(I) simply be theith coordinate
of I ∈ I . Let G be a subset ofF . We define the probability distributionµ( ;G) in I to be the one
for which all δ in F are independent,δ(I) follows a uniform distribution on{−1;0;1} if δ 6∈ G
andδ(I) = 1 if δ ∈ G . We model each class by a mixture of such distributions, including a small
proportion of noise. More precisely, for a classCi , i = 1,2,3, we define

µi(I) =
q
3

(

µ(I ;F 1
i )+µ(I ;F 2

i )+µ(I ;F 3
i )
)

+(1−q)µ(I ; /0)

with q = 0.9 and

F 1
1 = {δ1;δ3;δ5;δ7}, F 2

1 = {δ1;δ5}, F 3
1 = {δ3;δ7},

F 1
2 = {δ2;δ4;δ6;δ8}, F 2

2 = {δ2;δ4}, F 3
2 = {δ6;δ8},

F 1
3 = {δ1;δ4;δ8;δ9}, F 2

3 = {δ1;δ8}, F 3
3 = {δ4;δ9}.

In other words, these synthetic data are generated with almost deterministic values on somevari-
ables (which depends on the class the sample belongs to) and with a uniform noise elsewhere. We
expect our learning algorithm to put large weights on features inF j

i and ignore the other ones. The
algorithmA we use in this case is anM nearest neighbour classification algorithm, with distance
given by

d(I1, I2) = ∑
δ∈ω

χδ(I1)6=δ(I2)
.

This toy example is interesting because it is possible to compute the exact gradient ofE for
small values ofM and k = |ω|. Thus, we can compare the stochastic gradient algorithms with
the exact gradient algorithm and evaluate the speed of decay ofE . Moreover, one can see in the
construction of our signals that some features are relevant with several classes (reusables features),
some features are important only for one class and others are simply noise on the input. This will
permit to evaluate the model of ”frequency of goodness” used by OFW.
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Figure 6: Note that the left and right figures are drawn on different scales. Left: Exact gradient
descent (full line) vs. stochastic exponential gradient descent (dashed line) classification
rates on the training set. Right: Stochastic Euclidean gradient descent (full line) vs.
stochastic exponential gradient descent (dashed line) classification rates on the training
set.

Results We provide in Figure 6 the evolution of the mean errorE on our training set set against
the computation time for exact and stochastic exponential gradient descent algorithms. The exact
algorithm is faster but is quickly captured in a local minimum although exponentialstochastic de-
scent avoids more traps. Also shown in Figure 6, is the fact that the stochastic Euclidean method
achieved better results faster than the exponential stochastic approach and avoided more traps than
the exponential algorithm to reach lower error rates.

Note that Figure 6 (and similar plots in subsequent experiments) is drawn for the comparison of
the numerical procedures that have been designed to minimize the training set errors.This does not
relate to the generalization error of the final classifier, which is evaluated on test sets.

Finally, Figure 7 shows that the efficiency of the stochastic gradient descent and of the reflected
diffusion are almost similar in our synthetic example. This has in fact always been soin our exper-
iments: the diffusion is slightly better than the gradient when the latter converges. Forthis reason,
we will only compare the exponential gradient and the diffusion in the experimentswhich follow.
Finally, we summarize this instructive synthetic experiments in Figure 8. Remark that in this toy
example; the exact gradient descent and the Euclidean stochastic gradient (first algorithm of Section
4.1.3) are almost equivalent.

In Figure 9, we provide the probabilities of the first 15 features in function ofk = |ω|. (The
graylevel is proportional to the probability obtained at the limit).

Interpretation We observe that the features which are preferably selected are those which lie in
several subspacesF j

i , and which bring information for at least two classes. These arereusable
features, the knowledge of which being very precious information for the understanding ofpattern
recognition problems. This result can be compared to selection methods based on information
theory. One simple method is to select the variables which provide the most information tothe
class, and therefore minimize the conditional entropy (see Cover and Thomas, 1991)of the class
given each variable. In this example, this conditional entropy is 1.009 for features contained in
none of the setsF j

i , 0.852 for those contained in only one set and approximatively 0.856 for those
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Figure 7: Stochastic Euclidean gradient descent (dashed line) vs. reflected diffusion (full line) clas-
sification rate on the training set.

contained in two of these sets. This implies that this information-based criterion would correctly
discard the non-informative variables, but fail to discriminate between the last two groups.

Remark finally that the features selected by OFW after the reusables ones are still relevantfor
the classification task.

5.1.2 IRIS DATABASE

We use in this section the famous Fisher’s IRIS database where data are described by the 4variables:
“Sepal Length”, “Sepal Width”, “Petal Length” and “Petal Width”. Even though our framework is
to select features in a large dictionary of variables, it will be interesting to look at the behavior
of our algorithm on IRIS since results about feature selection are already known on this classical
example. We use here a Classification and Regression Tree (CART) using the Gini index. We
extract 2 variables at each step of the algorithm, 100 samples out of 150 are usedto train our feature
weighting procedure. The Figures 10 and 11 describe the behavior of our algorithms (with and
without the noise term).

We remark here that for each one of our two approaches, we approximately getthe entire weight
on the last two variables “ Petal Length” (70%) and “Petal Width” (30%). This result is consistent
with the selectionperformed by CART on this database since we obtain similar results as seen in
Figure 12. Moreover, a selection based on the Fisher score reaches the same results for thisvery
simple and low dimensional example.

The classification on Test Set is improved selecting two features (with OFW as Fisher Scoring)
since we obtain an error rate of 2.6% although without any selection, CART provides an error rate
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Figure 8: Comparison of the mean error rate computed on the test set with the 4 exact or stochastics
gradient descents.

F δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15 . . .
|ω| = 2
|ω| = 3
|ω| = 4

Figure 9: Probability histogram for several values of|ω|.

of 4%. In this small low dimensional example, OFW quickly converges to the optimalweight and
we obtain a ranking coherent with the selection performed by Fisher Score or CART.

5.2 Real Classification Problems

We now address real pattern recognition problems. We also compare our results with other algo-
rithms: no selection method, Fisher scoring method, Recursive Feature Elimination method (RFE)
of Guyon et al. (2002), L0-Norm for linear support vector machines of Weston etal. (2003) and
Random Forests (RF) of Breiman (2001). We used for these algorithms Matlab implementations
provided by the Spider package for RFE and L0-SVM;1 and the random forest package of Leo
Breiman.2 In our experiments, we arbitrarily fixed the number of features per classifier (to 100
for the Faces, Handwritten Digits and Leukemia data and to 15 for the email database). It would
be possible to also optimize it, through cross-validation, for example, once the optimalP has been

1. This package is available at http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html.
2. Codes are available on http://www.stat.berkeley.edu/users/breiman/RandomForests.
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Figure 10: Evolution withn of the distribution on the 4 variables using a stochastic Euclidean al-
gorithm.
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Figure 11: Evolution withn of the distribution on the 4 variables using a stochastic Euclidean dif-
fusion algorithm.

computed (running this optimization online, while also estimatingP would be too computationally
intensive). We have remarked in our experiments that the estimation ofP was fairly robust to to
variations of the number of features extracted at each step (k in our notation). In particular, takingk
too large does not help much.
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|

Petal.Length< 2.45

Petal.Width< 1.75

Petal.Length>=2.45

Petal.Width>=1.75

setosa    
50/50/50

setosa    
50/0/0

versicolor
0/50/50

versicolor
0/49/5

virginica 
0/1/45

 

Figure 12: Complete classification tree of IRIS generated from recursive partitioning (CART im-
plementation is using the rpart library of R).

5.2.1 FACE DETECTION

Experimental framework We use in this section the face database from MIT, which contains
19×19 gray level images; samples extracted from the database are represented in Figure 13.The
database contains almost 7000 images to train and more than 23000 images to test.

The features inF are binary edge detectors, as developed in works of Amit and Geman (1999);
Fleuret and Geman (2001). This feature space has been shown to be efficient for classification in
visual processing. We therefore have as many variables and dimensions as we have possible edge
detectors on images. We perform among the whole set of these edge detectors a preprocessing step
described in Fleuret and Geman (2001). We then obtain 1926 binary features, each one defined by
its orientation, vagueness and localisation.

The classification algorithmA which is used here is an optimized version of Linear Support
Vector Machines developed by Joachims and Klinkenberg (2000); Joachims (2002) (with linear
kernel).

Results We first show the improvement of the mean performance of our extraction method, learned
on the training set, and computed on the test set, from a random uniform sampling of features (Fig-
ure 14).
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Figure 13: Sample of images taken from MIT database.
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Figure 14: Left: Evolution withk of the average classification error of faces recognition on the
test setusing a uniform law (dashed line) andP∞ (full line), learned with a stochastic
gradient method with exponential parameterization. Right: same comparison, for the
constrained diffusion algorithm.

Our feature extraction method based on learning the distributionP improves significantly the
classification rate, particularly for weak classifiers (k = 20 or 30 for example) as shown in Figure
14. We remark again that the constrained diffusion performs better than the stochastic exponential
gradient. We achieve a 1.6% error rate after learning with a reflected diffusion, or 1.7% with a
stochastic exponential gradient (2% before learning). The analysis of the most likely features (which
are the most weighted variables) is also interesting, and occurs in meaningful positions, as shown
in Figure 15.

Figure 16 shows a comparison of the efficiency (computed on the test set) of Fisher, RFE,L0-
SVM and our weighting procedure to select features; besides we have shown the performance ofA
without any selection and the best performance of Random Forests (as an asymptote).

We observe that our method is here less efficient with a small number of features (for20 features
selected, we obtain 7.3% while RFE and L0 selections get 4% and 3.2% of misclassification rate).
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Figure 15: Representation of the main edge detectors after learning.
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Figure 16: Efficiency of several feature extractions methods for the faces databasetest set.

However, for a larger set of features, our weighting method is more effective than other methods
since we obtained 1.6% of misclassification for 100 features selected (2.7% for L0 selection and
3.6% for RFE).
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The comparison with the Random Forest algorithm is more difficult to estimate: one tree
achieves 2.4% error but the length of this tree is more than 1000 and this error rate is obtained
by the 3 former algorithms using only 200 features. The final best performance on this database is
obtained using Random Forests with 1000 trees. We obtain then a misclassification rate of 0.9%.

5.2.2 SPAM CLASSIFICATION

Experimental framework This example uses a text database available at D.J. Newman and Merz
(1998), which contains emails received by a research engineer from the HP labs, and divided into
SPAM and non SPAM categories. The features here are the rates of appearance of some keywords
(from a list of 57) in each text. As the problem is quite simple using the last 3 features of the
previous list, we choose to remove these 3 variables (which depends on the numberof capital letters
in an email), we start consequently with a list of 54 features. We use here a 4-nearest neighbor
algorithm and we extract 15 features at each step. The database is composed by 4601 messages and
we use 75% of the email database to learn our probabilityP∞, representing our extraction method
while the 25% samples of data is left to form the test set.
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Figure 17: Time evolution of the energyE1 for the spam/email classification D.J. Newman and
Merz (1998) computed on the test set, using a stochastic gradient descent with an expo-
nential parameterization (left) and with a constrained diffusion (right).

Results We plot the average error on the test set in Figure 17. On our test set, the method basedon
the exponential parameterization achieves better results than those obtained by reflected diffusion
which is slower because of our Brownian noise. The weighting method is here againefficient in
improving the performances of the Nearest Neighbor algorithm.

Moreover, we can analyze the words selected by our probabilityP∞. In the next table, two
columns provide the features that are mainly selected. We achieve in a different way similar results
to those noticed in Hastie et al. (2001) regarding the ranking importance of the words used for spam
detection.

The words which are useful for spam recognition (left columns) are not surprising (“business”,
“remove”, “receive” or “free” are highly weighted). More interesting are the words selected in the
right column; these words are here useful to enable a personal email detection. Personal informa-
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Words favored for SPAM Frequency Words favored for NON SPAM Frequency
remove 8.8% cs 5.4%
business 8.7% 857 4.6%

[ 6% 415 4.4%
report 5.9% project 4.3%
receive 5.6% table 4.2%
internet 4.4% conference 4.2%

free 4.1% lab 3.9%
people 3.7% labs 3.2%

000 3.6% edu 2.8%
direct 2.3% 650 2.7%

! 1.2% 85 2.5%
$ 1% george 1.6%

Figure 18: Words mostly selected byP∞ (exponential gradient learning procedure) for the
spam/email classification.

tions like phone numbers (“650”, “857”) or first name (“george”) are here favored to detect real
email messages. The database did not provide access to the original messages, but the importance
of the phone numbers or first name is certainly due to the fact that many non-spammessages are
replies to previous messages outgoing from the mailbox, and would generally repeatthe original
sender’s signature, including its first name, address and phone number.

We compare next the performances obtained by our method with RFE, RF and L0-SVM.Figure
19 show relative efficiency of these algorithms on the spam database.

Without any selection, the linear SVM has more than 15% error rate while each one ofthe
former feature selection algorithms achieve better results using barely 5 words. The best algorithm
is here the L0-SVM method, while the performance of our weighting method (7.47% with 20 words)
is located between RFE (11.1% with 20 words) and L0-SVM (4.47% with 20 words). In addition,
RF high performance is obtained using a small forest of 5 trees (not as deep as in the example of
faces recognition) and we obtain with this algorithm 7.24% of misclassification rate using trees of
size varying from 50 to 60 binary tests.

5.2.3 HANDWRITTEN NUMBER RECOGNITION

Experimental framework A classical benchmark for pattern recognition algorithms is the classi-
fication of handwritten numbers. We have tested our algorithm on the USPS database (Hastieet al.,
2001; Scḧolkopf and Smola, 2002): each image is a segment from a ZIP code isolating a single digit.
The 7291 images of the training set and 2007 of the test set are 16×16 eight-bit grayscale maps,
with intensity between 0 and 255. We use the same feature set,F , as in the faces example. We
obtain a feature spaceF of 2418 edge detectors with one precise orientation, location and blurring
parameter. The classification algorithmA we used is here again a linear support vector machine.

Results Since our reference wrapper algorithms (RFE and L0-SVM) are restricted to 2 class prob-
lems, we present only results obtained on this database with the algorithmA which is a SVM based
on the “one versus all” idea.
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Figure 19: Efficiency of several feature extractions methods on the test setfor the SPAM database.

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

ImageI

Figure 20: Sample of images taken from the USPS database.

The improvement of the detection rate is also similar to the previous example, as shownin Figure
21. We first plot the mean classification error rate before and after learning the probability map P.
These rates are obtained by averagingg(ω) over samples of features uniformly distributed onF in
the first case, and distributed according toP in the second case. These numbers are computed on
training dataand therefore serve for evaluation of the efficiency of the algorithm in improving the
energy function fromE1(UF ) to E1(P∞). Figure 21 provides the variation of the mean error rate in
function of the number of featuresk used in eachω. The ratio between the two errors (before and
after learning) rates, is around 90% independently on the value ofk.

Figure 22 provides the result of the classification algorithm (using the voting procedure) on
the test set. The majority vote is based on 10 binary SVM-classifiers on each binary classification
problemCi vs. I \Ci . The features are extracted first with the uniform distributionUF on F , then
using the finalP∞.

The learning procedure significantly improves the performance of the classification algorithms.
The final average error rate on the USPS database is about 3.2% for 10 elementary classifiers per
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Figure 21: Mean error rate over the training setUSPS fork varying from 40 to 100, before (dashed
line) and after (full line) a stochastic gradient learning based on exponential parameter-
ization (left) and constrained diffusion (right).
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Figure 22: Evolution withk of the mean error of classification on the test set, extraction based
on random uniform selection (dashed line) andP∞ selection (full line) for USPS data,
learning computed with stochastic gradient using exponential parameterization (left) and
constrained diffusion (right).

classCi , with 100 binary features per elementary classifier. The performance is not as good as
the one obtained by the tangent distance method of Simard and LeCun (1998) (2.7% error rate of
classification), but we here use very simple (edge) features. And the result is better, for example,
than linear or polynomial Support Vector Machines (8.9% and 4% error rate) computed without any
selection and than sigmoid kernels (4.1%) (see Scḧolkopf et al., 1995) with a reduced complexity
(measured, for example by the needed amount of memory).

Since the features we consider can be computed at every location in the image, it isinteresting
to visualize where the selection has occurred. This is plotted in Figure 23, for the four types of
edges we consider (horizontal, vertical and two diagonal), with grey levels proportional to the value
of P∞ for each feature.
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Horizontal edges Vertical edges Diagonal edges “+π/4” Diagonal edges “−π/4”

Figure 23: Representation of the selected features after a stochastic exponential gradient learning
for USPS digits. Greyscales are proportional to weights of features

5.2.4 GENE SELECTION FORLEUKEMIA AML-ALL RECOGNITION

Experimental framework We carry on our experiments with feature selection and classification
for microarray data. We have used the Leukemia Database AML-ALL of Golub et al. (1999). We
have a very small number of samples (72 signals) described by a very large number of genes. We
run a preselection method to obtain the database used by Deb and Reddy (2003) that contains 3859
genes.3 Our algorithmA is here a linear support vector machines. As we face a numerical problem
with few samples on each class (AML and ALL), we decide to benchmark each of the algorithms
we have tested using a 10-fold cross validation method.
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Figure 24: Evolution of the mean energyE computed by the constrained diffusion method on the
training set with time fork = 100.

3. Data Set is available on http://www.lsp.ups-tlse.fr/Fp/Gadat/leukemia.txt.
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Results Figure 24 shows the efficiency of our method of weighting features in reducing the mean
errorE on the training set. We remark that with random uniform selection of 100 features, linear
support vector machines obtain a poor rate larger than 15% while learningP∞, we achieve a mean
error rate less than 1%.

We now compare our result to RFE, RF and L0-SVM using the 10-fold cross validation method.
Figure 25 illustrates this comparison between these former algorithms. In this example, we obtain

Figure 25: Efficiency of several feature extractions methods for the Leukemia database. Perfor-
mances are computed using 10 CV.

better results without any selection, but in fact the classification of one linear SVM does not permit
to rank features by importance effect on the classification task. We note here again thatour weight-
ing method is less effective for short size subsets (5 genes) while our method is competitive with
larger subsets (20-25 genes). Here again, we note that L0-SVM outperforms RFE (like in theSPAM
study Section 5.2.2). Finally, the Random Forest algorithm obtains results which are veryirregular
in connection with the number of trees as one can see in Figure 26.

5.2.5 FEATURE SELECTION CHALLENGE

We conclude our experiments with results on the Feature Selection Challenge describedin Guyon
et al. (2004).4 Data sets cover a large field of the feature selection problem since examples are

4. Data sets are available on http://www.nipsfsc.ecs.soton.ac.uk/datasets/.
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Figure 26: Error bars of Random Forests in connection with the number of trees used computed by
cross-validation.

taken in several areas (Microarray data, Digit classification, Synthetic examples, Text recognition
and Drug discovery). Results are provided using the Balanced Error Rate (BER) obtainedon the
validation set rather than the classical error rate.

We first performed a direct Optimal Feature Weighting algorithm on theses data sets without
any feature preselection using a linear SVM for our base classifierA. For four of the five data sets
(DEXTER, DOROTHEA, GISETTE and MADELON) the numerical performances of the algorithm
are significantly improved if a variable preselection is performed before running it. This preselection
was based on the Fisher Score:

Fi =
(x1

i −xi)
2 +(x2

i −xi)
2

1
n1−1

n1

∑
k=1

(x1
k,i −x1

i )
2 +

1
n2−1

n2

∑
k=1

(x2
k,i −x2

i )
2
.

Heren1 andn2 are the numbers of samples of the training set of classes 1 and 2,x1
i ,x

2
i andxi assign

the mean of featurei on class 1, 2 and over the whole training set. We preselect the features with
Fisher Score higher than 0.01.

We then perform our Optimal Feature Weighting algorithm with the new set of features obtained
by the Fisher preselection using forA a support vector machine with linear kernel. Figure 27 show
the decreasing evolution of the mean BER on the training set for each data sets of the feature
selection challenge. One instantaneously can see that OFW is much more efficient onGISETTE
or ARCENE than on other data sets since the evolution of mean BER is faster and have a larger
amplitude.

For computational efficiency, our weight distributionP is learned using a linear SVM for the
basic algorithm,A. Once this is done, an optimal nonlinear SVM is used for the final classification
(the parameters of the kernel of this final SVM being estimated via cross-validation). We select
the number of features used for the classification on the validation set on the basis of a 10-fold
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Figure 27: Evolution with iterationsn of the Balanced Error Rate on the training set.

cross validation procedure on the training set. Table 2 summarizes results obtained by our OFW
algorithm and, Linear SVM,5 and others algorithms of feature selection (Transductive SVM of Wu
and Li (2006), combined filter methods with svm as F+SVM of Chen and Lin (2006) and FS+SVM
of Lal et al. (2006), G-flip of Gilad-Bachrach et al. (2004), Information-Based Feature Selection
of Lee et al. (2006), and analysis of redundancy and relevance (FCBF) of Yu and Liu (2004)). We
select these methods since they are meta algorithms (as OFW method) whose aim is to optimize the
feature subset entry of standard algorithms. These results are those obtained on the ValidationSet
since most of the papers previously cited do not report results on the Test Set. One can show that
most of these methods outperform the performance of SVM without any selection.

5. Reader can refer at http://www.nipsfsc.ecs.soton.ac.uk/results for other results obtained by feature selection procedure
or different classification algorithms.

538



A STOCHASTIC ALGORITHM FOR FEATURE SELECTION IN PATTERN RECOGNITION

Fisher criterion is numerically effective and can exhibit very reduced sets of features,but using
it alone provides performances that are below those reported in Table 2. FS+SVM and F+SVM,like
all filter approaches, are equally effective and perform quite well, but requires the estimation of sev-
eral thresholds, and suffer from lack of theoretical optimization background. The G-flipalgorithm
is to find a growing sequence of features that successively maximize the margin of the classifier.
The main idea is consequently not so far from the OFW approach, even though we pick up a new
feature subset at each iteration. Results are comparable with OFW and authors obtainedgeneraliza-
tion error bounds. The Transductive SVM incorporates a local optimization on the training set for a
cost function related to the performances of SVM, and updates a parameter defined on each feature
using coefficients of the hyperplanes constructed at each step. This approach has the drawback of
high computation cost, can fail in the local optimization step and requires to tune many parameters,
but obtains interesting results and suggests further developments on model selection.FCBF, which
does not intend directly to increase the accuracy of any classifier as a wrapper algorithm, selects the
features by identifying the redundancy between features and relevance analysis of variables. The
resulting algorithms (FCBF-NBC and FCBF-C4.5) obtains very good results and is numerically
simple to handle. However, this approach does not provide any theoretical measure of efficiency
selection with respect to the accuracy of classification.

Our method is competitive on all data sets but DOROTHEA. The OFW algorithm is particularly
good on the GISETTE data set. Moreover, we outperform most of methods based on a filter +svm
approach.

Table 3 provides our results on the Test Setas well as the results of the best challenge par-
ticipants. Looking at BER, best results of the challenge outperforms our OFW approach, but this
comparison seems unfair since best entries are classification algorithm rather than featuresselection
algorithm (most of features are kept to treat the data) and the difference of BER is notstatistically
significantly different except for the DOROTHEA database. We add moreover recent results on
these 5 data sets obtained by quite simple filter methods Guyon et al. (2006) that reach remarkable
BER results.

6. Discussion and Conclusion

We first start with a detailed comparison of the several results obtained during the experimental
section.

6.1 Discussion

¿From the previous empirical study, we can conclude that OFW can dramatically reduce the dimen-
sion of the feature space while preserving the accuracy of classification and even enhance it in many
cases. We observe likewise that we obtain results comparable to those of reference algorithms like
RFE or RF. In most cases, the learning process ofP∞ is numerically easy to handle with our method
and the results on test set are convincing. Besides the accuracy of classifier, another interesting
advantage of OFW is the stability of the subsets which are selected when we run several bootstrap
version of our algorithm. Further works could include numerical comparisons on thestability of
several algorithms using for instance a bootstrap average of Hamming distances as it isperformed
in Dune et al. (2002).

Nevertheless, in some rare cases (DEXTER or DOROTHEA), learning the optimal weights
is more complicated: in the case of DEXTER database, we can guess from Figure 27 that our

539



GADAT AND YOUNES

D
E

X
T

E
R

G
IS

E
T

T
E

Best entries
FCBD+C4.5
FCBF+NBC
IBSFS
FS+SVM
G−flip
F+SVM
TSVM
Fisher+SVM
OFW
SVM

BER

0 5 10 15 20

Figure 28: Performances of several algorithms on the Validation Set of the FSC. Zero bar corre-
spond to missing values.

stochastic algorithm has been temporarily trapped in a neighborhood of a local minimum of our
energyE . Even if the OFW has succeeded in escaping the local minimum after a while, this
still reduces drastically the convergence speed and the final performance of classification on the
validation set. In the case of DOROTHEA, the results of SVM are quite irregular according to
subsets selected along time (see Figure 27) and the final performance, as all methods based on
SVM classifiers noticed in Table 2, is not as good as other reported for OFW (see best BER of the
challenge in Table 3 obtained without using any SVM as final classifier). At last, results obtained
by OFW are a little bit worse than those obtained by filtering techniques of Guyon et al. (2006) (see
Table 3) that perform efficient feature selection. Note also that all the results obtained require larger
feature subsets than OFW and use a larger amount of probes in the set of selected features. To make
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Figure 29: Performances of several algorithms on the Validation Set of the FSC. Zero bar corre-
spond to missing values.

a comparison of their efficiency, we compute the subsets obtained by these filtering methods with
the number of features used for OFW. These results are reported in the last line of Table 3.One can
see that filter methods obtained poorer performances with a reduced number of features, one can
note that on the DOROTHEA data set, the SVM completely miss one of the two unbalanced class
and obtained bad results.

Another point of interest is the fraction of probes finally selected by each methods. Probes are
artificial features added at random in each data set with statistical distributions similar to the one
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Data Set ARCENE DEXTER DOROTHEA GISETTE MADELON
BER of SVM 17.86 7.33 33.98 2.10 40.17
BER of OFW 11.04 5.67 8.53 1.1 6.83

BER of Fisher + SVM 31.42 12.63 21.84 7.38 17.4
% features selected (3.80) (1.43) (0.01) (6.54) (2.80)

BER of TSVM 14.2 5.33 10.63 2 10.83
% features selected (100) (29.47) (0.5) (15) (2.60)

BER of F+SVM 21.43 8 21.38 1.8 13
% features selected (6.66) (1.04) (0.445) (18.2) (2.80)

BER of G-flip 12.66 7.61
% features selected (0.76) (3.60)
BER of FS+SVM 12.76 3.3 16.34 1.3 11.22

% features selected (47) (18.6) (1) (34) (4)
BER of IBFS 18.41 14.60 15.26 2.74 38.5

% features selected (1.85) (5.09) (0.77) (9.30) (2.40)
BER of FCBF+NBC 7 10 2.5
% features selected (0.24) (0.17) (0.5)
BER of FCBF+C4.5 17 16.3 7.8
% features selected (0.24) (0.17) (0.5)

Table 2: Performances of OFW and other meta algorithms on the Validation Set of the FSC, BER
are given in percentage. The best results are in bold characters. The second line compares
OFW with the simple Fisher scoring method with the same amount of features and show
the error bars obtained by OFW.

Data Set ARCENE DEXTER DOROTHEA GISETTE MADELON
BER of OFW 11.54 4.8 14.43 1.35 6.78

% features (3.80) (1.31) (0.04) (8.18) (3.2)
Best Challenge BER 13.3 3.9 8.7 1.3 7.2

(100) (1.52) (100) (100) (100)
Guyon et al. (2006) 10.48 3.25 9.3 0.98 6.22

(14) (22.5) (0.7) (15.68) (4)
BER of Filters 14.21 4.8 41.33 4.54 7.33

(3.80) (1.31) (0.04) (8.18) (3.2)

Table 3: Performances of OFW on the Test Set of the FSC, BER are given in percentage.

Data Set ARCENE DEXTER DOROTHEA GISETTE MADELON
Probes of OFW 0.79 19.47 2.56 0 0

Probes of Best entry 30 12.87 50 50 96
Guyon et al. (2006) 0.36 55.38 22.14 49.23 0

Probes of Filters methods 7.63 54.58 33.33 45.97 0

Table 4: Fractions of probes selected by OFW and other algorithms on the FSC, fractionsare given
in percentage.
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of some real features, but these probes do not carry any information on the class labels of signals.
Thus, a good feature selection algorithm should obtained a small fraction of probes on thefinal
selection. We show in Table 4 the fraction of probes obtained by the methods cited in Table 3. One
can remark that OFW is particularly effective to reduce the amount of probes of any data sets (see
GISETTE for instance).

Better results of OFW have been obtained for two special cases of databases whichare microar-
ray data (ARCENE and Leukemia) and image recognition data (USPS, GISETTE and Faces). SVM
initially performs well on this data sets, but OFW significantly improve the performance without
any selection.

More generally, OFW seems to behave well and to boost accuracy of algorithmsA that have
initial performance that vary smoothly with respect to small changes in the feature set. Even if our
learning procedure is computed in a very large dimensional training set, recent workhave shown
that in the context of classification, bootstrap approaches (as it is done in OFW) do not introduce a
supplementary important bias (Singhi and Liu, 2006) and it is equally what we canconclude in our
case.

In the first synthetic example, one can make the important remark that reusable featuresare
mainly favored by OFW. The algorithm classes those which are relevant, but not reusable in a
second group. This point looks favorable to our model of ”frequency of use”.

Our approach does not address the issue of redundancy (two similar features wouldmost likely
receive the same weight). Some ideas in how to take this into account are sketched inthe concluding
section.

6.2 Computational Considerations

We have performed our experiments using a C++ compiler with a 2.2 GHz 1 Go RAM processor
pentium IV PC on a Debian system. The learning time of OFW mostly depends on the initial
number of variables in the feature space and the step of our stochastic scheme; for the Leukemia
database which contains 3859 genes, learning took about one hour.

However, OFW can be easily implemented with parallel techniques since at each step of the
stochastic procedure, one can test several subsets of the feature set still using the same update
formula ofPn. Moreover, we remark that it can be effective for the calculation time to first filter out
very irrelevant features (selected for instance by a Fisher Score) and run the OFW procedure.

Another option would be to use algorithmA simpler than SVM, CART or NN, based on basic
statistical tools as likelihood or mutual information whilst performing a final decision with SVM
for instance.

6.3 Conclusion, Future Work

Our approach introduces a mathematical model to formalize the search for optimalfeatures. Our
selection of features is done by learning a probability distribution on the original feature set,based
on a gradient descent of an energyE within the simplexSF .

The numerical results show that the performance is significantly improved over an initial rule in
which features are simply uniformly distributed. Our Optimal Feature Weighting method is more-
over competitive in comparison with other feature selection algorithms and leads to analgorithm
which does not depend on the nature of the classifierA which is used, whereas, for instance, RFE
or L0-SVM are only based on SVM.
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Our future work will enable the feature spaceF to be also modified during the algorithm, by
allowing for combination rules, creation and deletion of tests, involving a hybrid evolution in the
set of probability measures and in the feature space. This will be implemented as a generalization
of our constrained diffusion algorithm to include jumps in the underlying feature space.

Another development would be to speed up the learning procedure using stochasticalgorithm
techniques to handle even larger databases without using a combination of filterand wrapper method.
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