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Université de Toulouse et CNRS (UMR 5219)

31062 Toulouse, Cedex 9, France
{Jeremie.Bigot, Claire.Christophe, Sebastien.Gadat}@math.univ-toulouse.fr

January 17, 2012

Abstract

This paper considers the problem of estimating a mean pattern in the setting of Grenan-
der’s pattern theory. Shape variability in a data set of curves or images is modeled by the
random action of elements in a compact Lie group on an infinite dimensional space. In the
case of observations contaminated by an additive Gaussian white noise, it is shown that
estimating a reference template in the setting of Grenander’s pattern theory falls into the
category of deconvolution problems over Lie groups. To obtain this result, we build an esti-
mator of a mean pattern by using Fourier deconvolution and harmonic analysis on compact
Lie groups. In an asymptotic setting where the number of observed curves or images tends
to infinity, we derive upper and lower bounds for the minimax quadratic risk over Sobolev
balls. This rate depends on the smoothness of the density of the random Lie group elements
representing shape variability in the data, which makes a connection between estimating a
mean pattern and standard deconvolution problems in nonparametric statistics.
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1 Introduction

In signal and image processing, data are often in the form of a set of n curves or images Y1, . . . , Yn.
In many applications, observed curves or images have a similar structure which may lead to the
assumption that these observations are random elements which vary around the same mean
pattern (also called reference template). However, due to additive noise and shape variability
in the data, this mean pattern is typically unknown and has to be estimated. In this setting,
a widely used approach is Grenander’s pattern theory [13, 14] which models shape variability
by the action of a Lie group on an infinite dimensional space of curves or images. In the last
decade, the study of transformation Lie groups to model shape variability of images has been an
active research field, and we refer to [29, 30] for a recent overview of the theory of deformable
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templates. Currently, there is also a growing interest in statistics on the problem of estimating
the mean pattern of a set of curves or images using deformable templates [1, 2, 3, 4, 5, 25].
In this paper, we focus on the problem of constructing asymptotically minimax estimators of a
mean pattern using noncommutative Lie groups to model shape variability. The main goal of
this paper is to show that estimating a reference template in the setting of Grenander’s pattern
theory falls into the category of deconvolution problems over Lie groups as formulated in [22].

To be more precise, let G be a connected, semi-simple, and compact Lie group. Let L2(G) be
the Hilbert space of complex valued, square integrable functions on the group G with respect to
the Haar measure dg. We propose to study the nonparametric estimation of a complex valued
function f? : G→ C in the following deformable white noise model

dYm(g) = fm(g) dg + εdWm(g), g ∈ G, m ∈ [[1, n]] (1.1)

where
fm(g) = f?(τ−1

m g).

The τm’s are independent and identically distributed (i.i.d) random variables belonging to G, the
Wm’s are independent copies of a standard Brownian sheet W on the topological space G with
reference measure dg, and ε > 0 is the level of noise in the measurements. For all m = 1, . . . , n,
τm is also supposed to be independent of Wm.

In (1.1) the function f? is the unknown mean pattern to estimate in the asymptotic setting
n→ +∞, and L2(G) represents an infinite dimensional space of curves or images. The τm’s are
random variables acting on L2(G) and they model shape variability in the data. The Wm model
intensity variability in the observed curves or images. In what follows, the random variables τm
are also supposed to have a known density h ∈ L2(G).

Some concrete examples of model (1.1) include the analysis of translated two-dimensional
images, which corresponds to the case G = R2/Z2 (the torus in dimension two), and which
founds its applications in biomedical imaging or satellite remote sensing (see e.g. [23, 12]). Other
examples are rotation models for two-dimensional or three-dimensional images for which either
G = SO(2) or G = SO(3) (the special orthogonal group in dimension 2 or 3) when the images at
hand are observed through the action of random rotations (see e.g. [26, 15, 27]). In particular,
it is shown in [27] that adopting a deconvolution approach over Lie groups (similar to the one
developed in this paper) yields very satisfactory estimators of a mean pattern for applications in
single-particle electron microscopy imaging. Therefore, the general methodology of this paper
can be used in various practical problems as, in many applications, shape variability in a set of
images can be seen as the random action of elements in a Lie group.

We will show that the density h of the random elements τm ∈ G plays the role of the kernel
a convolution operator that has to be inverted to construct an optimal (in the minimax sense)
estimator of f?. Indeed, since Wm has zero expectation, it follows that the expectation of the
m-th observation in (1.1) is equal to

Efm(g) =

∫
G
f?(τ−1g)h(τ) dτ for any m ∈ [[1, n]].

Therefore, Efm(g) = f? ∗ h is the convolution over the group G between the function f? and
the density h. Hence, we propose to build an estimator of f? using a regularized deconvolution
method over Lie groups. This class of inverse problems is based on the use of harmonic analysis
and Fourier analysis on compact Lie groups to transform convolution in a product of Fourier
coefficients. Note that in the case of Abelian groups, the Fourier coefficients (associated to the
irreducible representations of G) are one dimensional. However, when G is not a commutative
group, the Fourier coefficients of a function in L2(G) are no longer complex coefficients but
grow in dimension with increasing “frequency”. This somewhat complicates both the inversion
process and the study of the asymptotic minimax properties of the resulting estimators (unlike
standard Fourier deconvolution on the torus).
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In [6], a model similar to (1.1) has been studied where n is held fixed, and the τm’s are
not random but deterministic parameters to be estimated in the asymptotic setting ε→ 0 using
semi-parametric statistics techniques. The potential of using noncommutative harmonic analysis
for various applications in engineering is well described in [8]. The contribution of this paper is
thus part of the growing interest in nonparametric statistics and inverse problems on the use of
harmonic analysis on Lie groups [19, 20, 22, 21, 24, 27, 32].

Our construction of an estimator of the mean pattern in (1.1) is inspired by the following
problem of stochastic deconvolution over Lie groups introduced in [22]: estimate f? ∈ L2(G)
from the regression model

yj =

∫
G
f?(τ−1gj)h(τ) dτ + ηj , gj ∈ G, j ∈ [[1, n]] (1.2)

where h is a known convolution kernel, the gj ’s are “design points” in G, and the ηj ’s are
independent realizations of a random noise process with zero mean and finite variance. In [22]
a notion of asymptotic minimaxity over L2(G) is introduced, and the authors derive upper and
lower bounds for a minimax risk over Sobolev balls. In this paper we also introduce a notion
of minimax risk in model (1.1). However, deriving upper and lower bounds of the minimax risk
for the estimation of f? is significantly more difficult in (1.1) than in model (1.2). This is due to
the fact that there are two sources of noise in model (1.1): a source of additive Gaussian noise
Wm which is a classical one for studying minimax properties of an estimator, and a source of
shape variability due to the τm’s which is much more difficult to treat. In particular, standard
methods to derive lower bounds of the minimax risk in classical white noise models such as
Fano’s Lemma are not straightforward to use because of the source of shape variability in (1.1).
We show that one may use the Assouad’s cube technique (see e.g. [31] and references therein),
but it has to be carefully adapted to model (1.1).

The paper is organized as follows. In Section 2, we describe the construction of our estimator
using a deconvolution step and Fourier analysis on compact Lie groups. We also define a notion
of asymptotic optimality in the minimax sense for estimators of the mean pattern. In Section 3,
we derive an upper bound on the minimax risk that depends on smoothness assumptions on the
density h. A lower bound on the minimax risk is also given. All proofs are gathered in a technical
appendix. At the end of the paper, we have also included some technical materials about Fourier
analysis on compact Lie groups, along with some formula for the rate of convergence of the
eigenvalues of the Laplace-Beltrami operator which are needed to derive our asymptotic rates
of convergence.

2 Mean pattern estimation via deconvolution on Lie groups

In this section, we use various concepts from harmonic analysis on Lie groups which are defined
in Appendix B.

2.1 Sobolev space in L2(G)

Let Ĝ be the set of equivalence classes of irreducible representations of G that is identified to
the set of unitary representations of each class. For π ∈ Ĝ and g ∈ G one has that π(g) ∈
GLdπ×dπ(C) (the set of dπ × dπ nonsingular matrices with complex entries) where dπ is the
dimension of π. By the Peter-Weyl theorem (see Appendix B.2), any function f ∈ L2(G) can
be decomposed as

f(g) =
∑
π∈Ĝ

dπTr (π(g)cπ(f)) , (2.1)

where Tr is the trace operator and cπ(f) =
∫
G f(g)π(g−1) dg is the π-th Fourier coefficient of f

(a dπ × dπ matrix). Note that by the compactness of G and thanks to the Peter-Weyl theorem,
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the set Ĝ is countable. The decomposition formula (2.1) is an analogue of the usual Fourier
analysis in L2([0, 1]) which corresponds to the situation G = R/Z (the torus in dimension 1)
for which Ĝ = Z, the representations π are the usual trigonometric polynomials π(g) = ei2π`g

for some ` ∈ Z (with the bold symbol π denoting the number Pi). In this case, the matrices
cπ(f) are one-dimensional (dπ = 1) and they equal the standard Fourier coefficients cπ(f) =
c`(f) =

∫ 1
0 f(g)e−i2π`g dg. For G = R/Z, one thus retrieves the classical Fourier decomposition

of a periodic function f : [0, 1]→ R as f(g) =
∑

`∈Z c`(f)ei2π`g.

Definition 2.1. Let k ∈ N∗. Let A ∈Mk×k(C) (the set of k×k matrices with complex entries).

The Frobenius norm of A is defined by ‖A‖2F =

√
Tr
(
AA

t
)

. It is the norm induced by the

inner product 〈A,B〉F = Tr (AB
t
) of two matrices A,B ∈Mk×k(C).

By Parseval’s relation, it follows that ||f ||2 = ||f ||2L2(G) :=
∫
G |f(g)|2 dg =

∑
π∈Ĝ dπ ‖cπ(f)‖2F

for any f ∈ L2(G). The following definitions of a Sobolev norm and Sobolev spaces have been
proposed in [22].

Definition 2.2. Let f ∈ L2(G) and s > dim(G)/2. The Sobolev norm of order s of f is defined

by ‖f‖2Hs =
∫
G |f(g)|2 dg+

∑
π∈Ĝ λ

s
πdπTr

(
cπ(f)cπ(f)

t
)

=
∫
G |f(g)|2 dg+

∑
π∈Ĝ λ

s
πdπ ‖cπ(f)‖2F ,

where λπ is the eigenvalue value of π associated to the Laplace-Beltrami operator induced by
the Riemannian structure of the Lie group G.

Definition 2.3. Let s > dim(G)/2 and denote by C∞(G) the space of infinitely differentiable
functions on G. The Sobolev space Hs of order s is the completion of C∞(G) with respect to
the norm ‖ · ‖Hs . Let A > 0. The Sobolev ball of radius A and order S in L2(G) is defined as

Hs(A) =
{
f ∈ Hs(G) : ‖f‖2Hs ≤ A

2
}
.

It can be checked that Hs(G) corresponds to the usual notion of a Sobolev space in the case
G = R/Z. Now, let f̂ ∈ L2(G) be an estimator of f? i.e. a measurable mapping of the random
processes Ym,m = 1, . . . , n taking its value in L2(G). The quadratic risk of an estimator f̂ is
defined as

R(f̂ , f?) = E
(
‖f̂ − f?‖2

)
= E

(∫
G
|f̂(g)− f?(g)|2 dg

)
.

Definition 2.4. The minimax risk over Sobolev balls associated to model (1.1) is defined as

Rn(A, s) = inf
f̂∈L2(G)

sup
f?∈Hs(A)

R(f̂ , f?),

where the above infimum is taken over the set all estimators.

The main goal of this paper is then to compute an upper bound on R(f̂ , f?) and an asymp-
totic lower bound on the minimax risk Rn(A, s) as n→ +∞.

2.2 Construction of the estimator

First, note that the white noise model (1.1) has to be interpreted in the following sense. The
Wiener measure dW (g) (associated to the Brownian sheet W ) is defined through the Fourier
basis of L2(G) (which diagonalizes the Laplace-Beltrami operator on G, see the appendix for a
precise definition) as the random measure

dW (g) :=
∑
π∈Ĝ

dπ∑
k,l=1

Xπ
kl

√
dπ(π(g))k,ldg, (2.2)
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where (π(g))k,l is the (k, l) entry of the dπ × dπ matrix π(g), and the Xπ
kl are independent and

identically distributed normal variables with zero mean and variance 1. Let f ∈ L2(G). By
definition, the integral of f with respect to the random measure dW (g) is∫

G
f(g)dW (g) :=

∑
π∈Ĝ

dπ∑
k,l=1

Xπ
kl

√
dπ

∫
G
f(g)(π(g))k,ldg.

For further details on the pointwise correlation structure and the regularity properties of Brow-
nian sheets indexed by a manifold (compact Lie groups being a particular case), we refer to
[16, 17, 18].

Therefore, conditionally to τm each integral
∫
G f(g) dYm(g) of the “data” dYm(g) is a ran-

dom variable normally distributed with mean
∫
G f(g)f?(τ−1

m g) dg and variance ε2
∫
G |f(g)|2dg.

Moreover, E
(∫
G f1(g) dWm(g)

∫
G f2(g) dWm(g)

)
=
∫
G f1(g)f2(g) dg for f1, f2 ∈ L2(G) and any

m ∈ [[1, n]]. Hence, using Fourier analysis on compact Lie groups, one may re-write model (1.1)
in the Fourier domain as

cπ(Ym) =

∫
G
π(g−1) dYm(g) = cπ(fm) + εcπ(Wm), for π ∈ Ĝ and m ∈ [[1, n]], (2.3)

where

cπ(fm) =

∫
G
fm(g)π(g−1) dg and cπ(Wm) =

∫
G
π(g−1) dWm(g).

Note that cπ(fm) =
∫
G f

?(τ−1
m g)π(g−1) dg =

∫
G f

?(g)π((τmg)−1) dg which implies that

cπ(fm) = cπ(f?)π(τ−1
m ), m ∈ [[1, n]].

Remark also that the coefficients (cπ(Wm))k,l of the matrix cπ(Wm) ∈ Mdπ ,dπ(C) are indepen-
dent complex random variables that are normally distributed with zero expectation and variance
d−1
π . Moreover, note that

E
(
π(τ−1

m )
)

= cπ(h) and E (cπ(Ym)) = cπ(f?)cπ(h).

Therefore, if we assume that cπ(h) is an invertible matrix, it follows that an unbiased estimator
of the the π-th Fourier coefficient of f? is given by the following deconvolution step in the Fourier
domain

ĉπ(f?) =
1

n

n∑
m=1

cπ(Ym)cπ(h)−1. (2.4)

An estimator of f? can then be constructed by defining for g ∈ G

f̂?T (g) =
∑
π∈ĜT

dπTr
(
π(g)ĉπ(f?)

)

=
1

n

n∑
m=1

∑
π∈ĜT

dπTr
(
π(g)cπ(Ym)cπ(h)−1

)
, (2.5)

where ĜT =
{
π ∈ Ĝ : λπ < T

}
for some T > 0 whose choice has to be discussed (note that

the cardinal of ĜT is finite).

2.3 Regularity assumptions on the density h

It is well-known that the difficulty of a deconvolution problem is quantified by the smoothness
of the convolution kernel. The rate of convergence that can be expected from any estimator
depends on such smoothness assumptions. This issue has been well studied in the nonparametric
statistics literature on standard deconvolution problems (see e.g. [10]). Following the approach
proposed in [22], we now discuss a smoothness assumption on the convolution kernel h.
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Definition 2.5. Let k ∈ N∗ and |.|2 be the standard Euclidean norm on Ck. The operator norm

of A ∈Mk×k(C) is ‖A‖op = supu6=0
|Au|2
|u|2 .

Definition 2.6. A function f ∈ L2(G) is said to be smooth of order ν ≥ 0 if cπ(f) is an
invertible matrix for any π ∈ Ĝ, and if there exists two constants C1, C2 > 0 such that∥∥cπ(f)−1

∥∥2

op
≤ C1λ

ν
π and ‖cπ(f)‖2op ≤ C2λ

−ν
π for all π ∈ Ĝ.

Assumption 2.1. The density h is smooth of order ν ≥ 0.

Note that Assumption 2.1 corresponds to the case where, in most applications, the convolu-
tion kernel h leads to an inverse problem that is ill-posed, meaning in particular that there is no
bounded inverse deconvolution kernel. This can be seen in the assumption

∥∥cπ(f)−1
∥∥2

op
≤ C1λ

ν
π

which accounts for the setting where limλπ→+∞
∥∥cπ(f)−1

∥∥
op

= +∞ meaning that the mapping

f 7→ f ∗ h does not have a bounded inverse in L2(G). Example of such convolution kernels are
discussed in [21, 22], and we refer to these papers and references therein for specific examples.

3 Upper and lower bounds

The following theorem gives the asymptotic behavior of the quadratic risk of f̂T over Sobolev
balls using an appropriate choice for the regularization parameter T .

Theorem 3.1. Suppose that Assumption 2.1 holds. Let f̂T be the estimator defined in (2.5)

with T = Tn = bn
2

2s+2ν+dim(G) c. Let s > 2ν+ dim(G). Then, there exists a constant K1 > 0 such
that

lim sup
n→∞

sup
f?∈Hs(A)

n
2s

2s+2ν+dim(G)R(f̂Tn , f
?) ≤ K1.

Therefore, under Assumption 2.1 on the density h, Theorem 3.1 shows that the quadratic
risk R(f̂Tn , f

?) is of polynomial order of the sample size n, and that this rate deteriorates as
the smoothness ν of h increases. The fact that estimating f? becomes harder with larger ν
(the so-called degree of ill-posedness) is well known in standard deconvolution problems (see
e.g. [10] and references therein). Hence, Theorem 3.1 shows that a similar phenomenon holds

in model (1.1) when using the deconvolution step (2.4). The rate of convergence n
− 2s

2s+2ν+dim(G)

corresponds to the minimax rate in model (1.2) for the problem of stochastic deconvolution over
Lie groups as described in [22].

Then, thanks to the Theorem 3.2 below, there exists a connection between mean pattern
estimation in the setting of Grenander’s pattern theory [13, 14] and the analysis of deconvolution
problems in nonparametric statistics. Indeed, in the following theorem, we derive an asymptotic
lower bound on Hs(A) for the minimax risk Rn(A, s) which shows that the rate of convergence

n
− 2s

2s+2ν+dim(G) cannot be improved. Thus, f̂Tn is an optimal estimator of f? in the minimax
sense.

Theorem 3.2. Suppose that Assumption 2.1 holds. Let s > 2ν + dimG. Then, there exists a
constant K2 > 0 such that

lim inf
n→∞

inf
f̂∈L2(G)

sup
f?∈Hs(A)

n
2s

2s+2ν+dimGR(f̂ , f?) ≥ K2.

In the assumptions of Theorem 3.1 and Theorem 3.2, it is supposed that s > 2ν+dimG. For
the upper bound, it is possible to weaken this assumption since a similar result can be obtained
using the condition s > dim(G)/2. However, for the proof of the lower bound, the condition
s > 2ν + dimG is a key technical assumption in our proof to obtain Theorem 3.2.
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A Technical Appendix

A.1 Proof of Theorem 3.1

By the classical bias/variance decomposition of the risk one has

R(f̂?T , f
?) = E

(∥∥∥f̂?T − E
(
f̂?T

)∥∥∥2
)

+
∥∥∥E(f̂?T)− f?∥∥∥2

.

Let us first give an upper bound for the bias
∥∥∥E(f̂?T)− f?∥∥∥2

. By linearity of the trace operator

and by inverting expectation and sum (since Card(ĜT ) is finite) one obtains that∥∥∥E(f̂?T)− f?∥∥∥2
=

∥∥∥∥∥∥
∑
π∈ĜT

dπTr

[
π(g)

(
1

n

n∑
m=1

E (cπ(Ym)) cπ(h)−1 − cπ(f?)

)]

−
∑

π∈Ĝ\ĜT

dπTr [π(g)cπ(f?)]

∥∥∥∥∥∥
2

.

Since the (cπ(Ym))m’s are i.i.d. random variables and E(cπ(Ym)) = E(cπ(fm)) = cπ(f?)cπ(h) we

obtain that
∥∥∥E(f̂?T − f?)∥∥∥2

=
∥∥∥∑π∈Ĝ\ĜT dπTr [π(g)cπ(f?)]

∥∥∥2
. Then, by Theorem B.2, one has

that
∥∥∥E(f̂?T − f?)∥∥∥2

=
∑

π∈Ĝ\ĜT dπTr
[
cπ(f?)cπ(f?)

t
]
. Finally since π /∈ ĜT and ‖f‖2Hs ≤ A2

we obtain the following upper bound for the bias∥∥∥E(f̂?T − f?)∥∥∥2
≤ T−sA2. (A.1)

Let us now compute an upper bound for the variance term E
(∥∥∥f̂?T − E

(
f̂?T

)∥∥∥2
)

.

E
(∥∥∥f̂?T − E

(
f̂?T

)∥∥∥2
)

= E

∥∥∥∥∥∥
∑
π∈ĜT

dπTr

[
π(g)

(
1

n

n∑
m=1

cπ(Ym)cπ(h)−1 − cπ(f?)

)]∥∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥∥ 1

n

n∑
m=1

∑
π∈ĜT

dπTr
[
π(g)

(
cπ(fm)cπ(h)−1 − cπ(f?)

)]∥∥∥∥∥∥
2

︸ ︷︷ ︸
E1

+ 2E

∥∥∥∥∥∥ε
∑
π∈ĜT

dπTr

[
π(g)

1

n

n∑
m=1

cπ(Wm)cπ(h)−1

]∥∥∥∥∥∥
2

︸ ︷︷ ︸
E2

,

using that cπ(Ym) = cπ(fm) + εcπ(Wm).
Let us first consider the term E2. By Theorem B.2 and by decomposing the trace

E2 = ε2E

∑
π∈ĜT

dπTr

 1

n2

n∑
m,m′=1

cπ(Wm)cπ(h)−1cπ(W ′m)cπ(h)−1
t


= ε2E

∑
π∈ĜT

dπ
1

n2

n∑
m,m′=1

dπ∑
k,j=1

(
cπ(Wm)cπ(h)−1

)
kj

(
cπ(W ′m)cπ(h)−1

)
kj


= ε2E

∑
π∈ĜT

dπ
1

n2

n∑
m,m′=1

dπ∑
k,j=1

dπ∑
i,i′=1

(cπ(Wm))ki(cπ(h)−1)ij(cπ(W ′m)ki′ ((cπ(h)−1)i′j

 .
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By the Fubini-Tonneli theorem, we can invert sum and integral, and since (((cπ(Wm))kl)k,l are

i.i.d. Gaussian variables with zero expectation and variance d−1
π , it follows that

E2 = ε2
∑
π∈ĜT

dπ
1

n2

n∑
m=1

dπ∑
k,j,i=1

(cπ(h)−1)ij(cπ(h)−1)ijE
(

(cπ(Wm))ki((cπ(Wm))k,i

)

=
ε2

n

∑
π∈ĜT

dπ

dπ∑
k,j,i=1

|(cπ(h)−1)ij |2d−1
π =

ε2

n

∑
π∈ĜT

dπ

dπ∑
j,i=1

|(cπ(h)−1)ij |2

Then thanks to the properties of the operator norm, one has
∑dπ

j=1 |(cπ(h)−1)ij |2 ≤
∥∥cπ(h)−1

∥∥2

op
,

and therefore

E2 ≤
ε2

n

∑
π∈ĜT

d2
π

∥∥cπ(h)−1
∥∥2

op
. (A.2)

Let us now compute an upper bound for E1. Since cπ(fm) = cπ(f?)π(τ−1
m ) and by Theorem B.2,

E1 = E

∥∥∥∥∥∥
∑
π∈ĜT

dπTr

[
π(g)

(
cπ(f?)

1

n

n∑
m=1

π(τ−1
m )cπ(h)−1 − cπ(f?)

)]∥∥∥∥∥∥
2

= E

∑
π∈ĜT

dπ

∥∥∥∥∥(cπ(f?)
1

n

n∑
m=1

π(τ−1
m )cπ(h)−1 − cπ(f?)

∥∥∥∥∥
2

F

 .

By Fubini-Tonelli theorem, we invert sum and integral, and since the random variables τm are
i.i.d.

E1 =
1

n

∑
π∈ĜT

dπE
(∥∥cπ(f?)π(τ−1

1 )cπ(h)−1 − cπ(f?)
∥∥2

F

)
=

1

n

∑
π∈ĜT

dπE
(∥∥cπ(f?)π(τ−1

1 )cπ(h)−1
∥∥2

F
+ ‖cπ(f?)‖2F − 2Tr

[
cπ(f?)π(τ−1

1 )cπ(h)−1cπ(f?)
t
])
,

where the last equality follows by definition of the Frobenius norm. Now remark that,

E
(

Tr
[
cπ(f?)π(τ−1

1 )cπ(h)−1cπ(f?)
t
])

= Tr
[
cπ(f?)E(π(τ−1

1 ))cπ(h)−1cπ(f?)
t
]

= Tr
[
cπ(f?)cπ(h)cπ(h)−1cπ(f?)

t
]

= ‖cπ(f?)‖2F ,

and let us compute E
(∥∥cπ(f?)π(τ−1

1 )cπ(h)−1
∥∥2

F

)
. Recall that

‖PQ‖F ≤ ‖P‖F ‖Q‖op

for any P,Q ∈ Mdπ×dπ(C) and that the operator norm is a multiplicative norm, which implies
that

E
(∥∥cπ(f?)π(τ−1

1 )cπ(h)−1
∥∥2

F

)
= E

(
‖cπ(f?)‖2F

∥∥π(τ−1
1 )cπ(h)−1

∥∥2

op

)
= ‖cπ(f?)‖2F E

(∥∥π(τ−1
1 )
∥∥2

op

)∥∥cπ(h)−1
∥∥2

op
,

Since the operator norm is the smallest matrix norm one has that E
(∥∥π(τ−1

1 )
∥∥2

op

)
≤ E

(∥∥π(τ−1
1 )
∥∥2

F

)
.

Now since
∥∥π(τ−1

1 )
∥∥2

F
= Tr

[
π(τ−1

1 )π(τ−1
1 )

t
]

= Tr
[
π(τ−1

1 )π(τ1)
]

= Tr [Iddπ ], it follows that

8



E
(∥∥π(h−1

1 )
∥∥2

op

)
≤ dπ, and therefore

E1 ≤
1

n

∑
π∈ĜT

dπ ‖cπ(f?)‖2F
(
dπ
∥∥cπ(h)−1

∥∥2

op
− 1
)
. (A.3)

Thus, combining the bounds (A.2) and (A.3)

E
(∥∥∥f̂?T − E

(
f̂?T

)∥∥∥2
)
≤ 2

n

∑
π∈ĜT

d2
π

(
‖cπ(f?)‖2F

(∥∥cπ(h)−1
∥∥2

op
− 1

dπ

)
+ ε2

∥∥cπ(h)−1
∥∥2

op

)

≤ 2

n

∑
π∈ĜT

d2
π

∥∥cπ(h)−1
∥∥2

op

(
‖cπ(f?)‖2F + ε2

)
.

Since f? ∈ Hs(A), this implies that ‖cπ(f?)‖2F ≤ M , for some constant M that is independent
of π and f?. Hence ‖cπ(f?)‖2F + ε2 ≤ (M + ε2). Assumption 2.1 on the smoothness of h thus
implies

E
(∥∥∥f̂?T − E

(
f̂?T

)∥∥∥2
)
≤ 2C1(M + ε2)

n

∑
π∈ĜT

d2
πλ

ν
π ≤

2C1(M + ε2)

n
T ν

∑
π∈ĜT

d2
π

≤ C

n
T ν+(dim(G)/2), (A.4)

where the last inequality follows by Proposition C.1, and C > 0 is some constant that is in-
dependent of f? ∈ Hs(A). Therefore, combining the bounds (A.1) and (A.25) it follows that
R(f̂?T , f

?) ≤ L(T ) where L(T ) = T−sA2 + C
n T

ν+(dim(G)/2) (note that L(T ) does not depend

on f? ∈ Hs(A)). Let us now search among the estimators (f̂?T )T the ones which minimize
the upper bound of the quadratic risk. It is clear that the function T 7→ L(T ) has a mini-

mum at T = bn
2

2s+2ν+dim(G) c such that L(bn
2

2s+2ν+dim(G) c) ≤ A2n
−2s

2s+2ν+dim(G) + C
nn

2ν+dim(G)
2s+2ν+dim(G) ≤

C ′′n
−2s

2s+2ν+dim(G) . which completes the proof of Theorem 3.1. �

A.2 Proof of Theorem 3.2

To obtain a lower bound, we use an adaptation of the Assouad’s cube technique (see e.g. [31] and
references therein) to model (1.1) which differs from the standard white noise models classically
studied in nonparametric statistics. Note that for any subset Ω ⊂ Hs(A)

inf
f̂

sup
f?∈Hs(A)

R(f̂ , f?) ≥ inf
f̂

sup
f?∈Ω

R(f̂ , f?).

The main idea is to find an appropriate subset Ω of test functions that will allow us to compute
an asymptotic lower bound for inf f̂ supf?∈ΩR(f̂?, f?) and thus the result of Theorem 3.2 will
immediately follow by the above inequality.

A.2.1 Choice of a subset Ω of test functions

Let us consider a set Ω of the following form:

Ω = ΩD =

f∗w : G→ C : ∀g ∈ G, f∗w(g) =
√
µD

∑
π∈ĜD

dπ

dπ∑
k,l

wπ,kl(π(g))kl, wπ,kl ∈ {−d−1/2
π , d−1/2

π }

 ,

where ĜD =
{
π ∈ Ĝ : D ≤ λπ < 2D

}
and µD ∈ R+. To simplify the presentation of the

proof, we will write fw = f∗w. Let Ω̃ =
∏
π∈ĜD{−d

−1/2
π , d

−1/2
π }d2π . In what follows, the notation

9



w = (wπ,kl)π∈ĜD,1≤k,l≤dπ ∈ Ω̃ is used to denote the set of coefficients wπ,kl taking their value

in {−d−1/2
π , d

−1/2
π }. The notation Ew will be used to denote expectation with respect to the

distribution Pw of the random processes Ym,m ∈ [[1, n]] in model (1.1) under the hypothesis that
f? = fw.

Note that any fw ∈ Ω can be written as fw(g) =
√
µD
∑

π∈ĜD dπTr [π(g)wπ], where wπ =
(wπ,kl)1≤k,l≤dπ . Let |Ω| = Card(Ω) and let us search for a condition on µD such that Ω ⊂ Hs(A).
Note that cπ(fw) =

√
µDwπ which implies

fw ∈ Hs(A) ⇐⇒ ‖fw‖2Hs ≤ A
2

⇐⇒
∑
π∈ĜD

dπTr
[√

µDwπ
√
µDwπ

t
]

+
∑
π∈ĜD

λsπdπTr
[√

µDwπ
√
µDwπ

t
]
≤ A2

⇐⇒
∑
π∈ĜD

(1 + λsπ)µDd
2
π ≤ A2,

using the equality Tr
[
wπwπ

t
]

=
∑dπ

k,l=1w
2
π,kl = dπ which follows from the fact that |wπ,kl| =

d
−1/2
π . Since π ∈ ĜD, one has that λπ < 2D, and thus µD

∑
π∈ĜD d

2
π ≤ 2−sD−sA2/2 =⇒∑

π∈ĜD(1 + λsπ)µDd
2
π ≤ A2. Moreover by Proposition C.1 we have that for D sufficiently

large,
∑

π∈ĜD d
2
π ≤ CDdimG/2, for some constant C > 0, and therefore for such a D, it follows

that µD ≤ 2−sD−s−dimG/2(A2/2)C−1 =⇒ µD
∑

π∈ĜD d
2
π ≤ 2−sD−sA2/2. Hence, there exists

a sufficiently large D0 such that for all D ≥ D0 the condition µD ≤ KD−s−dimG/2 for some
K > 0 (independent of D) implies that Ω ⊂ Hs(A). In what follows, we thus assume that
µD = κD−s−dimG/2 for some 0 ≤ κ ≤ K and D ≥ D0.

A.2.2 Minoration of the quadratic risk over Ω

Note that the supremum over Ω of the quadratic risk of any estimator f̂ can be bounded from
below as follows. First, remark that by Theorem B.2

sup
fw∈Ω

R(f̂ , fw) = sup
fw∈Ω

Ew
(∥∥∥f̂ − fw∥∥∥2

)

≥ sup
w∈Ω̃

∑
π∈ĜD

dπ

dπ∑
k,l=1

Ew
(∣∣∣(cπ(f̂))kl −

√
µDwπ,kl

∣∣∣2)

≥ 1

|Ω̃|

∑
w∈Ω̃

∑
π∈ĜD

dπ

dπ∑
k,l=1

Ew
(∣∣∣(cπ(f̂))kl −

√
µDwπ,kl

∣∣∣2)

=
1

|Ω̃|

∑
π∈ĜD

dπ

dπ∑
k,l=1

∑
w∈Ω̃

Ew
(∣∣∣(cπ(f̂))kl −

√
µDwπ,kl

∣∣∣2) (A.5)

with |Ω| = 2
∑
π∈ĜD

d2π . Now, define for all π ∈ ĜD, k, l ∈ [[1, dπ]] the coefficients

w∗π,kl = argmin
v∈

{
−d−1/2

π ,d
−1/2
π

}
∣∣∣(cπ(f̂))kl −

√
µDv

∣∣∣ .
The inequalities

√
µD
∣∣wπ,kl − w∗π,kl∣∣ ≤ ∣∣∣√µDwπ,kl − (cπ(f̂))kl

∣∣∣+
∣∣∣√µDw∗π,kl − (cπ(f̂))kl

∣∣∣
≤ 2

∣∣∣√µDwπ,kl − (cπ(f̂))kl

∣∣∣ ,
10



imply that 1
4µD

∣∣∣wπ,kl − w∗π,kl∣∣∣2 ≤ ∣∣∣√µDwπ,kl − (cπ(f̂))kl

∣∣∣2 , and thus by inequality (A.5)

sup
fw∈Ω

R(f̂ , f) ≥ µD

4|Ω̃|

∑
π∈ĜD

dπ

dπ∑
k,l=1

∑
w∈Ω̃

Ew
(∣∣wπ,kl − w∗π,kl∣∣2)

≥ µD

4|Ω̃|

∑
π∈ĜD

dπ

dπ∑
k,l=1

∑
w∈Ω̃

wπ,kl=d
−1/2
π

Ew
(∣∣wπ,kl − w∗π,kl∣∣2)

+Ew(π,kl)

(∣∣∣w(π,kl)
π,kl − w

∗
π,kl

∣∣∣2) , (A.6)

where for all π′ ∈ ĜD, k′, l′ ∈ [[1, dπ]], we define

w(π,kl) = (w
(π,kl)
π′,k′l′) is such that


w

(π,kl)
π′,k′l′ = wπ′,k′l′ if π′ 6= π or (k′, l′) 6= (k, l)

w
(π,kl)
π′,k′l′ = −wπ,kl if π′ = π and (k′, l′) = (k, l)

.

Note that the above minoration depends on f̂ . Let us introduce the notation

Cπ,kl := Ew
(∣∣wπ,kl − w∗π,kl∣∣2)+ Ew(π,kl)

(∣∣∣w(π,kl)
π,kl − w

∗
π,kl

∣∣∣2) .
In what follows, we show that Cπ,kl can be bounded from below independently of f̂ .

A.2.3 A lower bound for Cπ,kl

Let π ∈ ĜD, k, l ∈ [[1, dπ]] be fixed. Denote by X = (cπ(Ym))
(π,m)∈Ĝ×[[1,n]]

the data set in the

Fourier domain. In what follows, the notation Ew,τ is used to denote expectation with respect
to the distribution Pw,τ of the random processes Ym,m ∈ [[1, n]] in model (1.1) conditionally to
τ = (τ1, . . . , τn) and under the hypothesis that f? = fw. The notation w = 0 is used to denote
the hypothesis f? = 0 in model (1.1). Therefore, using these notations, one can write that

Cπ,kl =

∫
Gn

[
Ew,τ

(∣∣wπ,kl − w∗π,kl∣∣2)+ Ew,τ
(∣∣∣w(π,kl)

π,kl − w
∗
π,kl

∣∣∣2)]h(τ1)...h(τn) dτ1...dτn,

=

∫
Gn

E0,τ

(∣∣wπ,kl − w∗π,kl∣∣2 dPw,τ
dP0,τ

(X) +
∣∣∣w(π,kl)

π,kl − w
∗
π,kl

∣∣∣2 dPw(π,kl),τ

dP0,τ
(X)

)
h(τ1)...h(τn) dτ1...dτn

=

∫
Gn

E0

(∣∣wπ,kl − w∗π,kl∣∣2 dPw,τ
dP0

(X) +
∣∣∣w(π,kl)

π,kl − w
∗
π,kl

∣∣∣2 dPw(π,kl),τ

dP0
(X)

)
h(τ1)...h(τn) dτ1...dτn,

where the last equality follows from the fact that, under the hypothesis f? = 0, the data X
in model (1.1) do not depend on τ . By inverting sum and integral, and using Fubini-Tonneli
theorem we obtain

Cπ,kl = E0

(∫
Gn

(∣∣wπ,kl − w∗π,kl∣∣2 dPw,τ
dP0

(X) +
∣∣∣w(π,kl)

π,kl − w
∗
π,kl

∣∣∣2 dPw(π,kl),τ

dP0
(X)

)
h(τ1)...h(τn) dτ1...dτn

)
= E0

(∣∣wπ,kl − w∗π,kl∣∣2 ∫
Gn

dPw,τ
dP0

(X)h(τ1)...h(τn) dτ1... dτn

+
∣∣∣w(π,kl)

π,kl − w
∗
π,kl

∣∣∣2 ∫
Gn

dPw(π,kl),τ

dP0
(X)h(τ1)...h(τn) dτ1...dτn

)
.

Introduce the notations

Q(X) =

∫
Gn

dPw,α
dP0

(X)h(α1)...h(αn) dα1...dαn and Q(π,kl)(X) =

∫
Gn

dPw(π,kl),α

dP0
(X)h(α1)...h(αn) dα1...dαn.

11



Since w
(π,kl)
π,kl −w

∗
π,kl = −wπ,kl−w∗π,kl with wπ,kl ∈

{
−d−1/2

π , d
−1/2
π

}
and w∗π,kl ∈

{
−d−1/2

π , d
−1/2
π

}
,

it follows that

Cπ,kl ≥ 4d−1
π E0

(
min

(
Q(X), Q(π,kl)(X)

))
= 4d−1

π E0

(
Q(X) min

(
1,
Q(π,kl)(X)

Q(X)

))

= 4d−1
π E0

(∫
Gn

dPw,τ
dP0

(X)h(τ1)...h(τn) dτ1...dτn min

(
1,
Q(π,kl)(X)

Q(X)

))

= 4d−1
π

∫
Gn

E0

(
dPw,τ
dP0

(X)h(τ1)...h(τn) dτ1...dτn min

(
1,
Q(π,kl)(X)

Q(X)

))

= 4d−1
π

∫
Gn

Ew,τ

(
min

(
1,
Q(π,kl)(X)

Q(X)

))
h(τ1)...h(τn) dτ1... dτn

= 4d−1
π Ew

(
min

(
1,
Q(π,kl)(X)

Q(X)

))
. (A.7)

Let us now compute a lower bound for Ew
(

min
(

1, Q
(π,kl)(X)
Q(X)

))
. Note that for any 0 < δ < 1,

Ew

(
min

(
1,
Q(π,kl)(X)

Q(X)

))
≥ δPw

(
Q(π,kl)(X)

Q(X)
> δ

)
. (A.8)

Proposition A.1. Let π ∈ ĜD, k, l ∈ [[1, dπ]] be fixed. Let µD = κD−s−dimG/2 and D =⌊
n

2
2s+2ν+dimG

⌋
. Suppose that s > 2ν+ dimG. Then, there exists 0 < δ < 1 and a constant C > 0

such that

lim inf
n→∞

Pw

(
Q(π,kl)(X)

Q(X)
> δ

)
> C.

Proof. Throughout the proof, we assume that µD = κD−s−dimG/2 and D =
⌊
n

2
2s+2ν+dimG

⌋
. To

simplify the presentation, we also write E = Ew and P = Pw. Then, thanks to Proposition
C.1, it follows that d2

π ∼ D(dimG)/2 for λπ ∈ ĜD, and therefore, under the assumption that
s > 2ν + dimG, one obtains the following relations (needed later on in the proof)

nµ
3/2
D d3

π → 0, nµ2
Dd

4
π → 0, nd4

πµ
2
DD

−ν → 0 as n→ +∞, (A.9)

and
nµDD

−ν = O(1) as n→ +∞. (A.10)

Without loss of generality, we consider the case where wπ,kl = −d−1/2
π and w

(π,kl)
π,kl = d

−1/2
π and

ε = 1. To simplify the presentation, we also introduce the notation w̃π = w
(π,kl)
π . In the proof,

we also make repeated use of the fact that

‖wπ‖2F = dπ and ‖w̃π‖2F = dπ. (A.11)

Since cπ(Ym) =
√
µDwππ(τ−1

m )+cπ(Wm) (under the hypothesis that f? = fw) and using the fact

that ‖w̃π‖2F = ‖wπ‖2F , simple calculations on the likelihood ratios
dPw,α
dP0

(X) and
dP
w(π,kl),α

dP0
(X)

yield that

Q(π,kl)(X)

Q(X)
=

∏n
m=1

∫
G exp(Z̃

(1)
m + Z̃

(2)
m )h(αm) dαm∏n

m=1

∫
G exp(Z

(1)
m + Z

(2)
m )h(αm) dαm

12



where

Z̃(1)
m = dπµD〈wππ(τ−1

m ), w̃ππ(α−1
m )〉F , Z̃(2)

m = dπ
√
µD〈cπ(Wm), w̃ππ(α−1

m )〉F ,
Z(1)
m = dπµD〈wππ(τ−1

m ), wππ(α−1
m )〉F , Z(2)

m = dπ
√
µD〈cπ(Wm), wππ(α−1

m )〉F .

Note that by Cauchy-Schwarz’s inequality

|Z̃(1)
m |2 ≤ d2

πµ
2
D‖wππ(τ−1

m )‖2F ‖w̃ππ(α−1
m )‖2F = d2

πµ
2
D‖wπ‖2F ‖w̃π‖2F ,

and
|Z(1)
m |2 ≤ d2

πµ
2
D‖wππ(τ−1

m )‖2F ‖wππ(α−1
m )‖2F = d2

πµ
2
D‖wπ‖4F .

Since the coefficients of the matrix cπ(Wm) are independent complex Gaussian random variables

with zero expectation and variance d−1
π , one has that Z̃

(2)
m (resp. Z

(2)
m ) is a Gaussian random vari-

able with zero mean and variance dπµD‖w̃ππ(α−1
m )‖2F = dπµD‖w̃π‖2F (resp. dπµD‖wππ(α−1

m )‖2F =
dπµD‖wπ‖2F ). Thence, by (A.11), one obtains that

E|Z̃(1)
m |2 ≤ µ2

Dd
4
π, E|Z(1)

m |2 ≤ µ2
Dd

4
π and E|Z̃(2)

m |2 = µDd
2
π, E|Z(2)

m |2 = µDd
2
π. (A.12)

Therefore, (A.9) and Markov’s inequality imply that

|Z̃(1)
m |2 = op

(
n−1

)
, |Z̃(2)

m |3 = op
(
n−1

)
, |Z̃(1)

m Z̃(2)
m | = op

(
n−1

)
, (A.13)

and
|Z(1)
m |2 = op

(
n−1

)
, |Z(2)

m |3 = op
(
n−1

)
, |Z(1)

m Z(2)
m | = op

(
n−1

)
. (A.14)

Hence, using (A.13), (A.14) and the second order Taylor expansion exp(z) = 1 + z+ z2

2 +O
(
z3
)

it follows that

log

(
Q(π,kl)(X)

Q(X)

)
=

n∑
m=1

log

(
1 +

∫
G

(
Z̃(1)
m + Z̃(2)

m +
1

2
|Z̃(2)
m |2

)
h(αm) dαm + op

(
n−1

))

−
n∑

m=1

log

(
1 +

∫
G

(
Z(1)
m + Z(2)

m +
1

2
|Z(2)
m |2

)
h(αm) dαm + op

(
n−1

))
.

Then, using (A.14) and the second order expansion log(1 + z) = z − z2

2 +O
(
z3
)

yield

log

(
Q(π,kl)(X)

Q(X)

)
=

n∑
m=1

∫
G

(
Z̃(1)
m + Z̃(2)

m +
1

2
|Z̃(2)
m |2

)
h(αm) dαm

−1

2

[∫
G

(
Z̃(1)
m + Z̃(2)

m +
1

2
|Z̃(2)
m |2

)
h(αm) dαm

]2

(A.15)

−
n∑

m=1

∫
G

(
Z(1)
m + Z(2)

m +
1

2
|Z(2)
m |2

)
h(αm) dαm

+
1

2

[∫
G

(
Z(1)
m + Z(2)

m +
1

2
|Z(2)
m |2

)
h(αm) dαm

]2

(A.16)

+ op(1) .

Let us now study the expansion of the quadratic term (A.16). Since cπ(h) =
∫
G π(τ−1

m )h(αm) dαm,
it follows by Cauchy-Schwarz’s inequality that

n∑
m=1

[∫
G
Z(1)
m h(αm) dαm

]2

= d2
πµ

2
D

n∑
m=1

〈wππ(τ−1
m ), wπcπ(h)〉2F ≤ nd2

πµ
2
D‖wπ‖2F ‖wπcπ(h)‖2F

≤ nd2
πµ

2
D‖wπ‖4F ‖cπ(h)‖2op ≤ C2nd

4
πµ

2
DD

−ν = o(1) .
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for some constant C2 > 0, where the last inequality is a consequence of Assumption 2.1, the fact
that λ−1

π ≤ D−1 for λπ ∈ ĜD and the third relation in (A.9).

By Jensen’s inequality and (A.9) and since the Z
(2)
m ’s are i.i.d. Gaussian random variables

with zero mean and variance µDd
2
π one obtains that

E
n∑

m=1

[∫
G
|Z(2)
m |2h(αm) dαm

]2

≤
n∑

m=1

∫
G
E|Z(2)

m |4h(αm) dαm ≤ 3nµ2
Dd

4
π = o(1) ,

and thus Markov’s inequality implies that
∑n

m=1

[∫
G |Z

(2)
m |2h(αm) dαm

]2
= op(1). Now, using

(A.9) and (A.12) it follows that

E

∣∣∣∣∣
n∑

m=1

(∫
G
Z(1)
m h(αm) dαm

)(∫
G
Z(2)
m h(αm) dαm

)∣∣∣∣∣ ≤ nµ3/2
D d3

π = o(1) ,

which implies that
∑n

m=1

(∫
G Z

(1)
m h(αm) dαm

)(∫
G Z

(2)
m h(αm) dαm

)
= op(1). Finally, using

(A.14), it follows that
∑n

m=1

(∫
G Z

(2)
m h(αm) dαm

)(∫
G |Z

(2)
m |2h(αm) dαm

)
= op(1). By applying

the same arguments to the expansion of the quadratic term (A.15), one finally obtains that

log

(
Q(π,kl)(X)

Q(X)

)
=

n∑
m=1

∫
G

(
Z̃(1)
m + Z̃(2)

m +
1

2
|Z̃(2)
m |2

)
h(αm) dαm

−1

2

[∫
G
Z̃(2)
m h(αm) dαm

]2

−
n∑

m=1

∫
G

(
Z(1)
m + Z(2)

m +
1

2
|Z(2)
m |2

)
h(αm) dαm

+
1

2

[∫
G
Z(2)
m h(αm) dαm

]2

+ op(1) .

Using that ‖w̃π‖2F = ‖wπ‖2F and the equality

〈−wπcπ(h), (w̃π − wπ)cπ(h)〉F −
1

2
‖wπcπ(h)‖2F +

1

2
‖w̃πcπ(h)‖2F −

1

2
‖(w̃π − wπ)cπ(h)‖2F = 0

one obtains that

log

(
Q(π,kl)(X)

Q(X)

)
=

n∑
m=1

dπµD〈wππ(τ−1
m )− wπcπ(h), (w̃π − wπ)cπ(h)〉F (A.17)

+
n∑

m=1

dπ
√
µD〈cπ(Wm), (w̃π − wπ)cπ(h)〉F (A.18)

+
n∑

m=1

1

2

∫
G
|Z̃(2)
m |2h(αm) dαm −

n

2
dπµD‖w̃π‖2F (A.19)

−
n∑

m=1

1

2

∫
G
|Z(2)
m |2h(αm) dαm +

n

2
dπµD‖wπ‖2F (A.20)

−
n∑

m=1

1

2

(∫
G
Z̃(2)
m h(αm) dαm

)2

+
n

2
dπµD‖w̃πcπ(h)‖2F (A.21)

+

n∑
m=1

1

2

(∫
G
Z(2)
m h(αm) dαm

)2

− n

2
dπµD‖wπcπ(h)‖2F (A.22)

−n
2
dπµD‖(w̃π − wπ)cπ(h)‖2F + op(1) . (A.23)
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Control of the term (A.23). Thanks to Assumption 2.1 and the fact that λ−1
π ≤ D−1 for

λπ ∈ ĜD and (A.9), it follows by (A.10) that

ndπµD‖(w̃π − wπ)cπ(h)‖2F ≤ ndπµD‖cπ(h)‖2op‖w̃π − wπ‖2F ≤ 4nµDD
−ν = O(1) , (A.24)

and thus the term (A.23) is bounded in probability.

Control of the term (A.17). Remark that (A.9) can be used to prove that

Var

(
n∑

m=1

dπµD〈wππ(τ−1
m ), (w̃π − wπ)cπ(h)〉F

)
≤ nd2

πµ
2
D‖wπ‖2F ‖(w̃π − wπ)cπ(h)‖2F

≤ nd2
πµ

2
D‖wπ‖2F ‖w̃π − wπ‖2F ‖cπ(h)‖2op

≤ 4nd2
πµ

2
DD

−ν = o(1) ,

and therefore by Chebyshev’s inequality the term (A.17) converges to zero in probability.

Control of the term (A.18). First, since the coefficients of the matrix cπ(Wm) are independent
complex Gaussian random variables with zero expectation and variance d−1

π , one has that Tm =
dπ
√
µD〈cπ(Wm), (w̃π − wπ)cπ(h)〉F are i.i.d. Gaussian random variables with zero mean and

variance dπµD‖(w̃π − wπ)cπ(h)‖2F . Using inequality (A.24) it follows that

Var

(
n∑

m=1

Tm

)
= ndπµD‖(w̃π − wπ)cπ(h)‖2F = O(1) , (A.25)

and standard arguments in concentration of Gaussian variables imply that for any t > 0

P

(∣∣∣∣∣
n∑

m=1

Tm

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2ndπµD‖(w̃π − wπ)cπ(h)‖2F

)
. (A.26)

Therefore, combining (A.25) and (A.26) imply that the term (A.18) is bounded in probability.

Control of the terms (A.19) and (A.20). Remark that Jensen’s inequality, the fact that the

Z̃
(2)
m ’s are i.i.d. Gaussian random variables with zero mean and variance µDd

2
π and (A.9) imply

that

Var

(
n∑

m=1

∫
G
|Z̃(2)
m |2h(αm) dαm

)
=

n∑
m=1

Var

(∫
G
|Z̃(2)
m |2h(αm) dαm

)

≤
n∑

m=1

E
(∫

G
|Z̃(2)
m |2h(αm) dαm

)2

≤ n

∫
G
E|Z̃(2)

1 |
4h(α1) dα1 ≤ 3nµ2

Dd
4
π = o(1) ,

and thus the terms (A.19) and (A.20) converge to zero in probability by Chebyshev’s inequality.

Control of the terms (A.21) and (A.22). Similarly, by Jensen’s inequality and (A.9) one has
that

Var

(
n∑

m=1

(∫
G
Z̃(2)
m h(αm) dαm

)2
)
≤ n

∫
G
E|Z̃(2)

1 |
4h(α1) dα1 ≤ 3nµ2

Dd
4
π = o(1) ,

and thus the terms (A.21) and (A.22) converge to zero in probability by Chebyshev’s inequality.

Combining the above controls of the terms (A.17) to (A.23), one obtains that log
(
Q(π,kl)(X)
Q(X)

)
is bounded in probability which completes the proof of Proposition A.1.
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Now, recall that using (A.6) and (A.7)

sup
fw∈Ω

R(f̂ , f) ≥ µD

4|Ω̃|

∑
π∈ĜD

dπ

dπ∑
k,l=1

∑
w∈Ω̃

wπ,kl=d
−1/2
π

Cπ,kl

≥ µD

4|Ω̃|

∑
π∈ĜD

dπ

dπ∑
k,l=1

∑
w∈Ω̃

wπ,kl=d
−1/2
π

4d−1
π Ew

(
min

(
1,
Q(π,kl)(X)

Q(X)

))

Combining inequality (A.8) and Proposition A.1 one obtains that there exists a constant C > 0

(not depending on n) such that with the choice D =
⌊
n

2
2s+2ν+dimG

⌋
and for all sufficiently large

n

sup
fw∈Ω

R(f̂ , f) ≥ µD

|Ω̃|

∑
π∈ĜD

dπ

dπ∑
k,l=1

∑
w∈Ω̃

wπ,kl=d
−1/2
π

d−1
π C

≥ C

2
µD

∑
π∈ĜD

d2
π,

where we have the fact that for any π, k, l the cardinality of the set {w ∈ Ω̃ with wπ,kl = d
−1/2
π }

is |Ω̃|/2.

Now, let 0 < ρ < 1. Thanks to Proposition C.1, it follows that for η = ρW 2dimG/2−1
2dimG/2+1

, one

has that (W + η)DdimG/2 ≥
∑

π∈ĜD d
2
π ≥ (W − η)DdimG/2 for all sufficiently large D, where W

is the constant defined in (C.1). Hence,∑
π∈ĜD

d2
π =

∑
π :λπ<2D

d2
π −

∑
π :λπ<D

d2
π

≥ (W − η)(2D)dimG/2 − (W + η)DdimG/2

= W ′DdimG/2, with W ′ = (1− ρ)W (2dimG/2 − 1) > 0.

Taking D =
⌊
n

2
2s+2ν+dimG

⌋
and since µD = κD−s−dimG/2 we finally obtain that

n
2s

2s+2ν+dimG sup
fw∈Ω

R(f̂ , f) ≥ n
2s

2s+2ν+dimGKD−s−dimG/2DdimG/2 = K,

for some constant K > 0 not depending on n, which completes the proof of Theorem 3.2.

B Some background on noncommutative harmonic analysis

In this appendix, some aspects of the theory of the Fourier transform on compact Lie groups are
summarized. For detailed introductions to Lie groups and noncommutative harmonic analysis
we refer to the books [7, 9, 28]. Throughout the Appendix, it is assumed that G is a connected
and compact Lie group.

B.1 Representations

Definition B.1. Let V be a finite-dimensional C-vector space. A representation of G in V is
a continuous homomorphism π : G → GL(V ), where GL(V ) is the set of automorphisms of V .
The representation π is said to be irreducible if, for any g ∈ G, the only invariant subspaces by
the automorphism π(g) are {0} and V .
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If G is a compact group and π is an irreducible representation in V , then the vector space
V is finite dimensional, and we denote by dπ the dimension of V . By choosing a basis for V , it
is often convenient to identify π(g) with a matrix of size dπ × dπ with complex entries.

Definition B.2. Two representations π, π′ in V are called equivalent if there exists M ∈ GL(V )
such that π(g) = Mπ′(g)M−1 for all g ∈ G.

Definition B.3. A representation π is said to be unitary if π(g) is a unitary operator for every
g ∈ G.

Let π be a representation in V . Then, there exists an inner product on V such that π is
unitary. This means that any irreducible representation π in V is equivalent to an irreducible
representation that is unitary.

Definition B.4. We denote by Ĝ the set of equivalence classes of irreducible representations of
G, and we identify Ĝ to the set of unitary representations of each class.

Proposition B.1. Let g ∈ G and π ∈ Ĝ, then π(g−1) = π(g)
t
.

B.2 Peter-Weyl theorem

Let π ∈ Ĝ be a representation in a Hilbert space V . Let Bπ = (e1, ..., edπ) a basis of V . For
g ∈ G, denote by (π(g))k,l = 〈ek, π(g)el〉 the coordinates of π in the basis Bπ for k, l ∈ [[1, dπ]].

Theorem B.1. If G is a compact group then
(√
dπ(π(·))k,l

)
π∈Ĝ, k,l∈[[1,dπ ]]

is an orthonormal

basis of the Hilbert space L2(G) endowed with the inner product 〈f, h〉 =
∫
G f(g)h(g)dg.

B.3 Fourier transform and convolution in L2(G)

Let π ∈ Ĝ and define for any f ∈ L2(G) the linear mapping

cπ(f) : V → V

v 7→
∫
G
f(g)π(g)

T
v dg =

∫
G
f(g)π(g−1)v dg.

Note that the matrix cπ(f) is the generalization to functions in L2(G) of the usual notion of
Fourier coefficients.

Definition B.5. Let f ∈ L2(G) and π ∈ Ĝ. We call cπ(f) the π-th Fourier coefficient of f .

Theorem B.2. Let f ∈ L2(G). Then f(g) =
∑

π∈Ĝ dπTr (π(g)cπ(f)) , and ||f ||2L2(G) =∑
π∈Ĝ dπTr

(
cπ(f)cπ(f)

t
)

=
∑

π∈Ĝ dπ ‖cπ(f)‖2F , where ‖·‖F denotes the Frobenius norm of

a matrix.

Definition B.6. Let f, h ∈ L2(G). The convolution of f and h is defined as the function
(f ∗ h)(g) =

∫
G f(g′−1g)h(g′) dg′ for g ∈ G.

Proposition B.2. Let f, h ∈ L2(G) then cπ(f ∗ h) = cπ(f)cπ(h).

C Laplace-Beltrami operator on a compact Lie group

For further details on the material presented in this section we refer to the technical appendix
in [22] and to the book [11]. In this section, we still assume that G is a connected and compact
Lie group. In what follows, with no loss of generality, we identify (through an isomorphism) G
to a subgroup of GLr×r(C) (the set of r×r nonsingular matrices with complex entries) for some
integer r > 0.
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C.1 Lie algebra

Definition C.1. A one parameter subgroup of G is a group homomorphism c : R→ G.

Theorem C.1. Let c : R → GLr×r(C) one parameter subgroup of GLr×r(C). Then c is C∞

and c(t) = exp(tA), with A =
dc

dt
(0).

Definition C.2. LetMr×r(C) be the set of r× r matrices with complex entries. The mapping
[., .] :Mr×r(C)2 →Mr×r(C) : X,Y 7→ [X,Y ] = XY −Y X is called a Lie bracket. A Lie algebra
is the C-vector space g = {X ∈Mr×r(C) : exp(tX) ∈ G ∀t ∈ R} endowed with the bilinear form
[., .] : g× g→ g : X,Y 7→ [X,Y ], which satisfies [X,Y ] = −[Y,X] and [[X,Y ], Z] + [[Y, Z], X] +
[[Z,X], Y ] = 0 (Jacobi identity).

Definition C.3. The Killing form is the bilinear form B defined by

B : g→ C : X,Y 7→ Tr [ad(X)ad(Y )] ,

where ad(X) : g→ g : Y 7→ [X,Y ] is an endomorphism of g.

Since the group G is semi-simple, the Killing form B induces a norm on the Lie algebra g.

C.2 Roots of a Lie algebra

A torus in G is a connected Abelian subgroup of G. It is well known that in a compact Lie
group G, there exists (up to an isomorphism) a maximal torus. Let us fix such a maximal torus
that we denote by T. Denote by t the Lie algebra of T, which is a maximal Abelian subalgebra
of g. Let h = t + it be the complexification of t. Then, h is a maximal Abelian subalgebra of g
such that the linear transformations (ad(H))H∈h are simultaneously diagonalizable. Denote by
h∗ the dual space of h. Let α ∈ h∗, and define

gα = {X ∈ g : ∀H ∈ h, [H,X] = α(H)X} .

Definition C.4. α ∈ h∗ is said to be a root of g with respect to h, if gα is nonzero, and in
this case gα is called the corresponding root space. We also denote by Φ̃ ⊂ h∗ the set of non
vanishing roots.

Each root space gα with α ∈ Φ̃ is of dimension 1. One has that g0 = h (by the maximal
property of h) and g can be decomposed as the following direct sum g = h

⊕
α∈Φ̃

gα, called the

root space decomposition of g. To each α ∈ Φ̃ we associate the hyperplane Hα ⊂ h∗ that is

orthogonal to α. The set of all hyperplanes
{
Hα : α ∈ Φ̃

}
partition h∗ into a finite number

of open convex regions called the Weyl chambers of h∗. In what follows, we choose and fix a
fundamental Weyl chamber denoted by K.

Definition C.5. Let Φ be the set of real roots and Φ+ = {α ∈ Φ : ∀β ∈ K 〈α, β〉 > 0} be
the set of positive roots. Denote one-half of the sum of positive roots by ρ = 1

2

∑
α∈Φ+

α.

C.3 Laplace-Beltrami operator

The Laplace-Beltrami operator is a generalization to Riemannian manifolds (such as Lie groups)
of the usual Laplacian operator. We will denote this operator by ∆. To state the following
proposition, note that one may identify the set Ĝ with a subset of the dual of the maximal torus
(see the technical appendix in [22] for further details on this identification).
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Proposition C.1. The elements of Ĝ are the eigenfunctions of ∆. Let π ∈ Ĝ. The eigenvalue
of π is λπ = ‖π + ρ‖2 − ‖ρ‖2 , where ‖ · ‖ is the norm induced by the Killing form. For π ∈ Ĝ,
one has the following relationship between dπ and λπ∑

π∈Ĝ:λπ<T

d2
π = WT (dimG)/2 + o(T (dimG)/2) as T →∞,

where

W =
volG(

2
√
π
)dimG

Γ(1 + 1
2dimG)

, (C.1)

with volG denoting the volume of G, the bold symbol π denoting the number Pi and Γ(.) being
the classical gamma function.
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[16] J. Istas. Karhunen-Loève expansion of spherical fractional Brownian motions. Statist.
Probab. Lett., 76(14):1578–1583, 2006.

[17] J. Istas. Manifold indexed fractional fields. ESAIM Probability and Statistics, To appear,
2012.

[18] J. Istas and C. Lacaux. On locally self-similar fractional random fields indexed by a mani-
fold. Stochastics, To appear, 2012.

[19] P. T. Kim. Deconvolution density estimation on SO(N). Ann. Statist., 26(3):1083–1102,
1998.

[20] P. T. Kim and J.Y. Koo. Optimal spherical deconvolution. J. Multivariate Anal., 80(1):21–
42, 2002.

[21] P. T. Kim and D. St. P. Richards. Deconvolution density estimation on compact Lie groups.
In Algebraic methods in statistics and probability (Notre Dame, IN, 2000), volume 287 of
Contemp. Math., pages 155–171. Amer. Math. Soc., Providence, RI, 2001.

[22] J. Y. Koo and P. T. Kim. Asymptotic minimax bounds for stochastic deconvolution over
groups. IEEE Trans. Inform. Theory, 54(1):289–298, 2008.

[23] H. Li, B. S. Manjunath, and S. K. Mitra. A contour-based approach to multisensor image
registration. IEEE Transactions on Image Processing, 4(3):320–334, 1995.

[24] Z. M. Luo, P. T. Kim, T. Y. Kim, and J. Y. Koo. Deconvolution on the Euclidean motion
group SE(3). Inverse Problems, 27(3):035014, 30, 2011.
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