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Abstract. Model-Driven Engineering enables to assess a system’s model
properties since the early phases of its lifecycle and to improve itera-
tively these models according to the verification results. Safety critical
real-time systems have stringent requirements related to the specification
and verification of system’s task-level time constraints. The common for-
mal methods used to assess these properties for design models rely on
a translation of the user models into formal verification languages like
Time Petri Net and on the expression of the required properties using
Timed LTL (Linear Temporal Logic)/CTL (Computation Tree Logic) or
µ-calculus. However, these logics are mainly used to assess safety and
liveness properties. Their capability for expressing time related proper-
ties is more limited and can lead to combinatorial state space explosion
problems during model checking. In addition, they are mainly concerned
with symbolic time event-level properties without quantitative time tol-
erance aspects.
This contribution focuses on a formal specification and verification
method for system’s task-level time constraints (including synchroniza-
tion, coincidence, exclusion, precedence, sub-occurrence and causality)
in both finite and infinite time scope. It proposes a method to trans-
late task time constraints that cannot be assessed by common tools to
verifiable time property specifications, which are composed of a set of
verifiable time property patterns. These time property patterns are quan-
titative and independent of both the design modeling language and the
verification language as soon as it provides timed elements, making the
translation method reusable with different tools. Then, observer-based
model checking for Time Petri Nets is used to verify these time property
patterns. This contribution analyses the computational complexity and
the method’s performance for the various patterns. This synchronization
properties’ specification and verification methods have been integrated in
a time property verification framework for UML-MARTE safety critical
real-time systems.

Keywords: MDE, RTS, Task, Time Constraint, Formal Specification, Verifica-
tion, Time Property Patterns, Time Petri Net, Observer-Based Model Checking
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1 Introduction

Model-Driven Engineering enables to verify the system’s model properties since
the early phases of its lifecycle and to improve iteratively the models according
to the verification results. Safety critical real-time systems (RTS) have stringent
requirements related to the specification and verification of system’s task-level
time constraints. However, as the modeling languages commonly used in the
industry like UML are only semi-formal, they cannot be directly verified using
formal methods. The common approaches used to assess the properties of design
models expressed in these languages rely on a translation into a formal verifiable
language for both the design model and the assessed properties. However, to our
knowledge, two main issues still occur in the state-of-the-art methods.

First, the common verifiable formal expressions used to express the time
specifications are Timed LTL (Linear Temporal Logic), CTL (Computation Tree
Logic) and µ-calculus. These logics are mainly used to assess safety and liveness
properties. Their capability for expressing time related properties is limited and
can lead to combinatorial state space explosion problems during model checking.

Second, the common methods are mainly concerned with the logical relations
between events, without any quantitative time tolerance whereas RTS require-
ments usually focus on tasks and more realistic quantitative time, including
tolerance. The users may be concerned with the following kind of requirements:
Whether TaskA and TaskB are coincident within the time tolerance 10ms, in
each of their occurrences. In such cases, a task is considered as the smallest com-
putable unit in a RTS, which will consume time and modify shared resources
(consume and produce). As two simultaneous events cannot be measured with-
out errors in the real world, the concept of time tolerance should be introduced,
thus the different clocks should be mapped to the same physical clock. Accord-
ing to these analyses, this contribution provides a task-level specification for the
time constraints in RTS and the corresponding verification methods.

This paper focuses on a formal specification and verification method for sys-
tem’s task-level time constraints, in both finite and infinite time scope, for both
discrete and dense time. It proposes first a translation from user level time
constraints that cannot be verified as such with classical technologies to veri-
fiable time property specifications defined as a set of verifiable time property
patterns. These time property patterns are quantitative and independent from
both the design modeling language and the verification language as soon as it
provides some timed elements, enabling the reuse of this translation. Then, an
observer-based model checking method relying on Time Petri Nets (TPN) [4] is
used to assess that the time property patterns are satisfied. The computational
complexity of this proposal is then analyzed. This task-level time constraint’s
specification and verification method has been integrated in a time properties
verification framework for UML-MARTE safety critical RTS [3].

In order to follow the OMG MARTE RTS modeling language, the properties
are derived from the same basic semantic elements as CCSL’s [6] ( coincidence,
exclusion, precedence, sub-occurrence, causality) that are extended to cover the
requirements for task level specification of quantitative time properties including
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tolerance. This method provides specification and verification means both for
finite and infinite time scope, discrete and continuous time for the task-level
time constraints in Table 1.

Table 1. Task-level Time Constraints

Definition Task-level Time Constraints
Coincidence Two task executions are coincident

Synchronization Synchronization of two tasks
Exclusion Mutual exclusion of two tasks’ execution

Sub-occurrence One task is another one’s sub-occurrence
Precedence One task is preceding another
Causality One task is causal with respect to another

The paper is organized as follows: Section 2 compares our work with related
works; Section 3 introduces the methodology; Section 4 introduces a case study;
Section 5 presents the specification method for the synchronization properties;
Section 7 gives the specifications of time property patterns, illustrates time prop-
erty patterns verification using observer-based model checking, and discusses the
computational complexity and performance to demonstrate the method’s appli-
cability; Section 8 gives some concluding remarks and discusses the future works.

2 Related Works

Several formal specifications of event-level time constraints exist. CCSL (Clock
Constraints Specification Language) standardizes clock constraint semantics
within UML [5] in the MARTE profile to formally express causal and temporal
constraints between previously defined symbolic discrete clocks and proposes a
process to model time specification. It defines a complete set of clock constraints,
which are driven by instantaneous events. However, as it focus on the event-level
concept, some adaptation are required for task-level temporal specification and
verification. Meanwhile, although it can express the concept of time tolerance,
to our knowledge, no the work efficient verification toolset is available for it.
Concerning the verification method, CCSL transforms UML model to SyncCha-
rts, and uses Esterel assertions to express clock constraints. This language has
a well-defined notion of instant, and at each reaction, any signal has a unique
status. This is not the case with non-strictly synchronous languages [1]. It is thus
less applicable in for real RTS at detailled design and implementation levels, as
the designers must take into account a time duration that must be tolerated by
the system.

3 Methodology

The proposed method is illustrated in Fig. 1. The Transformation of Design
Model activity transforms the Design Model to TPN models. Meanwhile, the
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Transformation of Task Time Constraints activity first translates the Task Time
Constraint into Time Constraint Formal Specification, then decomposes the
specification into Time Property Patterns. Each time property pattern is quan-
titative and can be assessed using observer-based model checking. Each time
property pattern corresponds to one TPN observer. Then the original TPN and
the observer TPN are combined to be model checked by the TINA toolset [2].
The formal specification method is independent of the design modeling language
as soon as it provides timed elements, making it reusable in other verification
frameworks.

Design Model Task TIme Constraint

Task TIme Constraint 
Formal Specification

Time Property Patterns

Time Property Pattern
TPN Observers

TPN

Transformation of Design Model Transformation of Task Time Constraint

Time Property Pattern 
Verification Results

Time Constraint Translation

Specification Decomposition

Observer Generation

Observer-Based Model Checking

Model
Transformation

Independent

Combinational

Figure 1. Independence of the Formal Specification

When designing the formal specification and verification methods for task-
level precedence properties, three temporal aspects should be taken into account:

1. Both logical and physical time concepts. Logical symbolic time can be seen
as instantaneous physical time, i.e. physical time with tolerance being zero.

2. Both discrete and dense time domains. Dense time does not introduce any
issue in the specification. Problems can occur for the verification technolo-
gies. This proposal relies on the TINA toolset for model checking, which
supports TPN for a dense time domain.

3. Both finite and infinite time scopes. Time constraint must be assessed for
each task occurrence. Finite scope targets events that will happen for a finite
number of occurrences in a finite time range, for example aperiodic tasks,
while infinite scope concerns those who have infinite occurrence like periodic
tasks.
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As formal verification is relying on observer-based model checking, it is
mandatory to check whether the properties specification approach allows to make
the model checking feasible and efficient or not. According to our study so far, for
the properties exclusion, sub-occurrence and precedent, the same specification
should not be used under the finite and the infinite time scopes as verification
gets more complex. Thus, a different specification is applied for finite and infinite
time scopes for these properties.

Another important issue is that, although the notion of synchronization
should enforce things to occur simultaneously, in the real world, the strict si-
multaneous character cannot be achieved. This requirement is thus usually as-
sociated with a time tolerance. In order to take into account this more realistic
fact, this time tolerance is introduced for all the precedence time properties
specification. This time tolerance is denoted by δ (δ ∈ R+).

4 Case Study

A simple example is used to illustrate the methodology and to evaluate this
approach in the following parts of the paper. As the specification method is
independent of the modeling languages, no specific diagram is used for any of
them.

A classical asynchronous RTS model is provided in Fig. 2. According to
the general asynchronous message-driven pattern, the Sender will regularly dis-
tribute data to the two receivers Calculator A and Calculator B through the
Router. The receivers provide redundant control service. They will do some
computation after receiving the data. The redundant controller requires that the
output of the two calculators must be available at the same time in each working
cycle; otherwise, the servo of the corresponding actuator cannot correctly unify
the redundant command. In this case, the designer need to verify the coincidence
of computation tasks between calculators A and B. As it is impossible to respect
a strict simultaneous timing with an explicit local synchronisation, a time toler-
ance is defined. Once the two time instants fall into the same time window (size
of window equals to tolerance), they are considered as coincident.

Sender

Calculator A Calculator B

Router

[rTmin,rTmax] [rTmin,rTmax]

[sTmin,sTmax]

Figure 2. Case Study System Model
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5 Formal Specification of Task Time Constraint

In this section, some preliminary definitions are given to help understand the for-
mal specification, then the formal specification is illustrated for the coincidence
time constraint used in the case study. Due to page limits, the formal specifica-
tions for the other time constraints are given without detailed explanations.

5.1 Preliminary definitions

Definition 1 (Task). In the system, a task is considered as the smallest com-
putable unit, which consumes time and modifies resources (consumes and pro-
duces). It computes the outputs using the inputs. A task could be executed in-
finitely or finitely according to the design.
Definition 2 (Presence). The presence of a task is the time duration [ts, te]
of task’s execution, where ts and and te are the start and end time instant.
Definition 3 (Occurrence). Occurrence is an instant concept. It is used to
precise the occurrence of the associated inner event (start and end).

To simplify the presentation, some symbols are defined in Table 2.

Table 2. Symbols for Formal Specification

Symbol Definition
X Task X
Xi The ith presence of task X
Xa The inner event1 a of task X
Xi

a The ith occurrence of Xa

Xt
a The occurrence of Xa which is the nearest

(forward or backward) to the time instant t
T (Xi

a) The occurring time instant of Xi
a

T (Xt
a) The occurring time instant of Xt

a

O(X) The maximum possible presence of task X.
O(Xa) The maximum possible occurrence for Xa.
O(Xt

a) The occurrence count for Xa at time t

5.2 Formal Specification of Coincidence Time Constraint

Coincidence Task X and Y are coincident iff. the nth occurrence of X occurs
simultaneously with the nth occurrence of Y while n ∈ N. It is equivalent saying
the nth occurrence of Xs(e) occurs simultaneously with the nth occurrence of
Ys(e). In Fig. 3(a), the X and Y are coincident.

Specification 1 (Coincidence - Infinite Time Scope)
Cift(X,Y, δ) ≡

∀t ∈ R+ : (|O(Xt
s)−O(Y t

s )| < 2) ∧ (|O(Xt
e)−O(Y t

e )| < 2) (1)
1 The inner events in this paper could be the start of task (Xs) or the end of task
(Xe).
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X[i] X[i+1]

Y[i] Y[i+1]

! ! !

Coincidence(X,Y,!) = true

X

Y

X[i] X[i+1]

! !

!

!

!

Interleave

Coincidence(X,Y,!) = false

Y[i] Y[i+1]

(a) (b)

Figure 3. Coincidence

∀t ∈ R+ : (|T (Xt
s)− T (Y t

s )| < δ) ∧ (|T (Xt
e)− T (Y t

e )| < δ) (2)

∀i ∈ N∗ : (T (Xi
e) + δ < T (Y i+1

s )) ∧ (T (Y i
e ) + δ < T (Xi+1

s )) (3)

Specification 2 (Coincidence - Finite Time Scope)
Cft(X,Y, δ) ≡

(O(Xs) = O(Ys)) ∧ (O(Xe) = O(Ye)) (4)

∀i ∈ [1, O(Xs)] : (|T (Xi
s)− T (Y i

s )| < δ) ∧ (|T (Xi
e)− T (Y i

e )| < δ) (5)

∀i ∈ [1, O(Xe)− 1] : (T (Xi
e) + δ < T (Y i+1

s )) ∧ (T (Y i
e ) + δ < T (Xi+1

s )) (6)

In formula (1) of infinite time scope, at time t, the occurrence difference between
Xs(e) and Ys(e) should be inferior to 2; in formula (4) of finite time scope, the
occurrence times of Xs(e) should be equal to that of Ys(e). In formulas (2) and
(5), the ith occurrence of Xs(e) occurs simultaneously with the jth occurrence of
Ys(e), within time tolerance δ. i = Xt

s, j = Y t
s , as defined in Table 2. In formula

(3) and (6), with the time tolerance introduced, it is possible that an interleave
exists between ith occurrence of X and (i+1)th occurrence of Y , which violates
the coincidence definition. So constraints for consequent occurrences must be
added. In Fig. 3(b), the model satisfies formulas (1) (4) and (2) (5), but violates
the formulas (3) (6). The two tasks are not coincident.

5.3 Formal Specification of other Task Time Constraints

Synchronization Logical synchronization is a reduced coincidence relation
without restricting a simultaneously execution. The only concern is that the ex-
ecution order must persist.

Specification 3 (Synchronization - Finite Time Scope)
Synft(X,Y, δ) ≡

(O(Xs) = O(Ys)) ∧ (O(Xe) = O(Ye))
∀i ∈ [1, O(Xe)− 1] : (T (Xi

e) + δ < T (Y i+1
s )) ∧ (T (Xi

e) + δ < T (Xi+1
s ))

Specification 4 (Synchronization - Infinite Time Scope)
Synift(X,Y, δ) ≡
∀t ∈ R+ : (|O(Xt

s)−O(Y t
s )| < 2) ∧ (|O(Xt

e)−O(Y t
e )| < 2)

∀i ∈ N∗ : (T (Xi
e) + δ < T (Y i+1

s )) ∧ (T (Y i
e ) + δ < T (Xi+1

s ))
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Exclusion Task X and Y are in excluded, iff. Not any presence of X occurs
simultaneously with any presence of Y . It could be considered as another form of
coincidence with some time offset. For this reason, it also needs the constraint
for interleave problem. The schema of exclusion is shown in Fig. 4.

X[i] X[i+1]

Y[j] Y[j+1]

!!!

Exclude(X,Y, !) = true

X[i] X[i+1]

Y[j+1]

!!!

Exclude(X,Y, !) = false

Y[j]

Figure 4. Exclusion

Specification 5 (Exclusion - Finite Time Scope)
Eft(X,Y, δ) ≡
∀i ∈ [1, O(Xs)],∀j ∈ [1, O(Ys)] :
T (Xi

s) + δ < T (Y j
s )⇒ (T (Xi

e) + δ < T (Y j
s )) ∧ (T (Y j

e ) + δ < T (Xi+1
s ))

T (Xi
e) + δ < T (Y j

s )⇒ T (Y j
e ) + δ < T (Xi+1

s )
T (Xi

s) + δ < T (Y j
e )⇒ T (Xi

e) + δ < T (Y j
s )

T (Xi
e) + δ < T (Y j

e )⇒ (T (Xi
e) + δ < T (Y j

s )) ∧ (T (Y j
e ) + δ < T (Xi+1

s ))

As the finite time semantics are not computable in infinite time scope. Some
constraints are required to ensure that between two continuous occurrences of
task X, it exists and only exists one occurrence of task Y, and vice versa.

Specification 6 (Exclusion - Infinite Time Scope)
Eift(X,Y, δ) ≡
∀t ∈ R+ : (|O(Xt

s)−O(Y t
s )| < 2) ∧ (|O(Xt

e)−O(Y t
e )| < 2)

∀i ∈ N∗ :
T (Xi

s) + δ < T (Y i
s )⇒ (T (Xi

e) + δ < T (Y i
s )) ∧ (T (Y i

e ) + δ < T (Xi+1
s ))

T (Xi
e) + δ < T (Y i

s )⇒ T (Y i
e ) + δ < T (Xi+1

s )
T (Xi

s) + δ < T (Y i
e )⇒ T (Xi

e) + δ < T (Y i
s )

T (Xi
e) + δ < T (Y i

e )⇒ (T (Xi
e) + δ < T (Y i

s )) ∧ (T (Y i
e ) + δ < T (Xi+1

s ))

Sub-occurrence Task Y is a sub-occurrence of task X, iff. The ith occurrence
of X and the jth occurrence of Y occur simultaneously, where always j 6 i. The
schema of sub-occurrence is shown in Fig. 5.

Specification 7 (Sub-occurrence - Finite Time Scope)
Sft(X,Y, δ) ≡

(O(Xs) > O(Ys)) ∧ (O(Xe) > O(Ye))
∀j ∈ [1, O(Ys)],∃i ∈ [j,O(Xs)] : (|T (Xi

s)−T (Y j
s )| < δ)∧ (|T (Xi

e)−T (Y j
e )| <

δ) ∧ (T (Xi−1
e ) + δ < T (Y j

s )) ∧ (T (Y j
e ) + δ < T (Xi+1

s ))

The computable semantics for infinite time scope constraints the semantics. The
faster one’s occurrence is always k(k ∈ N∗) times multiple of the slower one’s.
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X[i]

Sub-Occurrence(X,Y, !) = true Sub-Occurrence(X,Y, !) = false

! ! ! !

X[i+1] X[i+2]

Y[j] Y[j+1]

X[i]

! ! !

X[i+1] X[i+2]

Y[j] Y[j+1]

Interleave

Figure 5. Suboccurrence

Specification 8 (Sub-occurrence - Infinite Time Scope)
Sift(X,Y, δ, k) ≡
∀t ∈ R+ : (|O(Xt

s)/k −O(Y t
s )| < 2) ∧ (|O(Xt

e)/k −O(Y t
e )| < 2)

∀i ∈ N∗ : (|T (Xi·k
s )−T (Y i

s )| < δ)∧ (|T (Xi·k
e )−T (Y i

e )| < δ)∧ (T (Xi·k
e )+ δ <

T (Y i+1
s )) ∧ (T (Y i

e ) + δ < T (Xi·k+1
s ))

Precedence Task X precedes task Y iff. At any time, the occurrence of X is
more than or equal to the occurrence of Y . This implies Xi

s must precede Y i
s ,

however it is not necessary to also have Xi
e precedes Y i

s in all context. So to
clarify the strict level of specification, L1(less strict), L2(strict), L3(very strict).

Specification 9 (Precedence - Finite Time Scope)
Pft(X,Y, δ,L1) ≡ ∀i ∈ [1, O(Xs)] : T (X

i
s) + δ < T (Y i

s )
Pft(X,Y, δ,L2) ≡ ∀i ∈ [1, O(Xs)] : (T (X

i
s)+ δ < T (Y i

s ))∧ (T (Xi
e)+ δ < T (Y i

e ))
Pft(X,Y, δ,L3) ≡ ∀i ∈ [1, O(Xs)] : T (X

i
e) + δ < T (Y i

s )

The computable specifications for infinite time scope constrains the semantics,
and it is the same as the causality definition in infinite time scope.

Causality Causality is similar to Precedence, except that it requires the maxi-
mum possible occurrence of X equals to that of Y , because each occurrence/exe-
cution of X causes the corresponding occurrence of Y .

Specification 10 (Causality - Finite Time Scope)
Cft(X,Y, δ,L1) ≡ O(X) = O(Y ), Pft(X,Y, δ,L1)
Cft(X,Y, δ,L2) ≡ O(X) = O(Y ), Pft(X,Y, δ,L2)
Cft(X,Y, δ,L3) ≡ O(X) = O(Y ), Pft(X,Y, δ,L3)

Specification 11 (Causality - Infinite Time Scope)
Cift(X,Y, δ,L1) ≡
∀t ∈ R+ : (|O(Xt

s)−O(Y t
s )| < 2) ∧ (|O(Xt

e)−O(Y t
e )| < 2)

∀i ∈ N∗ : T (Xi
s) + δ < T (Y i

s )
Cift(X,Y, δ,L2) ≡
∀t ∈ R+ : (|O(Xt

s)−O(Y t
s )| < 2) ∧ (|O(Xt

e)−O(Y t
e )| < 2)

∀i ∈ N∗ : (T (Xi
s) + δ < T (Y i

s )) ∧ (T (Xi
e) + δ < T (Y i

e ))
Cift(X,Y, δ,L3) ≡
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∀t ∈ R+ : (|O(Xt
s)−O(Y t

s )| < 2) ∧ (|O(Xt
e)−O(Y t

e )| < 2)
∀i ∈ N∗ : T (Xi

e) + δ < T (Y i
s )

6 Time Property Patterns

All the above specifications can be expressed by a set of time property patterns,
in finite time scope and in infinite time scope. For example, in section 5.2, formula
(2) contains the time property pattern Max interval between two events. All the
time property patterns used in the formal specification of task time constraints
are listed in Table 3 and Table 4.

Table 3. Finite Time Scope Time Property Patterns

Time Property Pattern Formal Specification
Max Occurrence Count ∀i ∈ N∗ : O(Xi

s) < constant

Min time interval between events Ei and Ej ∀i, j ∈ N∗ : T (Ei
1)− T (Ej

2) > δ

Max time interval between events Ei and Ej ∀i, j ∈ N∗ : T (Ei
1)− T (Ej

2) < δ

Table 4. Infinite Time Scope Time Property Patterns

Time Property Patterns Formal Specification
Representation of the next kth occurrence of event Ei Ei+k

Representation of the (i/k)th occurrence of event Ei Ei/k

Occurrence difference ∀t ∈ R+, k ∈ N∗ :
|O(Xt

s)/k −O(Y t
s )| < δ

Minimum time interval between events E1 and E2 ∀i ∈ N∗, k ∈ N∗, b ∈ N, j = i · k + b :

|T (Ei
1)− T (Ej

2)| > δ
Maximum time interval between events E1 and E2 ∀i ∈ N∗, k ∈ N∗, b ∈ N, j = i · k + b :

|T (Ei
1)− T (Ej

2)| < δ

In the case study, there are 4 time property patterns (Table 5) for the coincidence
time constraint in infinite time scope. To assess the coincidence time constraint,
the method will compute the values of these 4 quantitative property patterns.
The verification method will be introduced in the next section.

Table 5. Time Property Patterns

Formal Specification Time Property Pattern
Xi+1

s Representation of the next occurrence of event Xi
s

|O(Xt
a)−O(Y t

a )| < δ Occurrence difference between events Xt
a and Y t

a

|T (Xt
a)− T (Y t

a )| < δ Max time interval between events Xt
a and Y t

a

T (Xi
e) + δ < T (Y i+1

s ) Min time interval between events Xt
a and Y t

b
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7 Verification of Time Property Patterns

7.1 Observer-Based Model Checking on TPN

To assess the time property patterns by model checking, the common formal
methods used rely on a translation of the user models into a formal verifiable
language and express the required properties using verifiable formal expressions.
TPN is selected as the verification model in this work, because it allows ex-
pressing and verifying time properties under both logical and chronometric time
models. Fig. 6 is a TPN example. Compared to Petri Nets, the transitions in

[20,40] [3,10]

n

[11,15]

[19,27]

T1P1

Figure 6. Time Petri Net Example

TPN are extended with a time constraint that controls the firing time. For ex-
ample, transition T1 is attached with time constraint [19,27]. When the token
arrives at place P1, the local timer of T1 starts. Between 19 and 27 time units,
T1 can be fired.

For the verification of one time property pattern, an observer TPN structure
is added into the original TPN, and then TINA is used to verify the observer-
dedicated LTL/CTL/Marking formulas on the combined TPN. As model check-
ing significantly consumes time and memory resource, we use the following 2
approaches to ensure the verification performance.

– When doing the model checking, the TPN shall perform the highest possible
abstraction to unfold the reachability graph. This high abstraction model
should preserve the desired time property. The model-checking is on-the-fly.

– Each formula’s verification is independent in terms of reachability graph
generation, so a parallel computation is possible.

7.2 Verification of Time Property Pattern |T (at)− T (bt)| < δ

One of the property patterns, |T (at)−T (bt)| < δ, has been chosen to illustrate the
verification method. For the page limits, the other observers will be presented in
another paper or technical report. The principle for deciding whether two events
are always occurring in a given bound is to find out whether one could advance
the other by time δ.

An observer pattern (Fig. 7) is added to the original TPN. The middle tran-
sition will always instantly neutralize the tokens from the places Occ A and Occ
B except when one token waits for a time longer than δ that leads to the firing
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Event A

tester A

overflow

[δ,δ]

Observer

 Event B

tester B
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[0,0]

Occ A Occ B

Pass A Pass B

Figure 7. |T (At)− T (bt)| < δ Pattern TPN Observer

of the Pass transition. To guarantee the termination of model checking, the pat-
tern is extended by adding a large overflow number on the tester’s incoming arc.
Places tester A and tester B are used to detect this exception. In the generated
reachability graph, it only requires to verify if tester A or tester B has marking.
The formula is: ♦(testerA = 1) ∨ ♦(testerB = 1).

Once it is known how to verify |T (at) − T (bt)| < δ, it is possible to change
δ to compute a near optimal tolerance. If |T (at) − T (bt)| < δ + 1 is verified as
true, but false for |T (at)− T (bt)| < δ, then the near optimal tolerance is δ + 1.
In order to improve the computation efficiency, a dichotomy search is used to
reduce the complexity from O(N ) to O(logN ) using divide and multiply by two
instead of add or subtract one.

7.3 Computational Complexity Analysis

Coincidence time constraint is taken as example to analyse the computational
complexity. As the observers for infinite and finite time scope are different, the
two cases are respectively analyzed. For simplicity of the presentation, one Kripke
Transition Systems (KTZ) generation time is taken as the unit of time (ut).

In the infinite time scope, as shown in Table 5 and Specification 1, its formal
specification contains 4 time property patterns: Representation of the next oc-
currence of event, Occurrence difference between events Xt

a and Y t
a , Maximum

time interval between events Xt
a and Y t

a , and Minimum time interval between
events Xt

a and Y t
b . For formula (1), it will respectively calculate the value for

|O(Xt
s)−O(Y t

s )| < 2 and |O(Xt
e)−O(Y t

e )| < 2. Each of them corresponds to one
KTZ generation for the TPN with observer. Thus, the computational complex-
ity for formula (1) is 2(ut). Likewise, the computational complexity for formulas
(2) and (3) are both 2(ut). The computational complexity of coincidence in in-
finite time scope is 6(ut). Thus, in the infinite time scope, the computational
complexity is a constant, which means it is independent of the system’s design.

In the finite time scope, as shown in Specification 2, it also contains 3 property
patterns. In formula (4) (O(Xs) = O(Ys)) ∧ (O(Xe) = O(Ye)), it will calculate
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the occurrence’s upper bound of start event and end event. The upper bound
of event’s occurrence is denoted A. As a dichotomy search is used to reduce
the complexity, the computational complexity of O(Xs or O(Xe) is A · log2A,
denoted as B. Thus, the computational complexity of formula (1) is 2B(ut). In
formula (5), to calculate |T (Xi

s)−T (Y i
s )| < δ, is in fact to calculate respectively

T (Xi
s)− T (Y i

s ) < δ and T (Y i
s )− T (Xi

s) < δ. For each of them the complexity is
A(ut), because it should calculate the times of the upper bound of the event’s
occurrence. Thus, the complexity of formula (5) is 4A(ut), and of formula (6) is
2A(ut). The whole computational complexity of coincidence in finite time scope
is 6A+2B. Thus, in the finite time scope, the computational complexity depends
on the complexity of system’s design.

The computational complexity of all the mentioned time constraints are listed
in Table 6, for both finite and infinite time scope. These numbers allow to con-
clude that the verification method guarantees a low computational complexity.

Table 6. Computational Complexity of Task Time Constraints

Task Time Constraint Finite Time Infinite Time
Coincidence 6A+ 2B 6
Synchronization 2A+ 4B 4
Exclusion 6A2 8
Sub-occurrence 7A2 + 2B 6
Precedence (less strict) A 3
Precedence (strict) 2A 4
Precedence (very strict) A 3
Causality (less strict) A+ 2B 3
Causality (strict) 2A+ 2B 4
Causality (very strict) A+ 2B 3

7.4 Performance Analysis

In TPN model checking, the computational performance depends on both the
cost of generating the KTZ and the cost of assessing the formulas for the KTZ.
The former produces the major cost, while the later produces the minor cost once
the decidability has been proved. The computational performance is analyzed
for the time property patterns, then the computational performance of the task
time constraints can be deduced using the complexity table, Table 6.

As the performance depends on the system’s scale, it is important to mea-
sure the performance influence produced by the observer TPN added into the
original TPN. Both the performance of the original TPN and of the observer-
added TPN are evaluated. This influence is computed by comparing the KTZ
generation cost of the original TPN and that of the observer-added TPN. In or-
der to make this performance result demonstrate that the method is applicable
for pragmatic systems, the systems are randomly generated scaling from 2 to
10 parallel threads, where each thread disposes of 10 to 100 periodic tasks. As
shown in Fig. 8, the influence for pattern Occurrence Difference is controlled
in 15%; for pattern Maximum Time Interval, it is controlled in 40%; and for
pattern Minimum Time Interval is also controlled in 40%. The influence test
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result demonstrates that the over-cost of the observer is very slight, thus, the
observer-based model checking method’s performance is very stable. If the origi-
nal TPN can terminate its KTZ generation in an acceptable time range,the cost
of time constraint’s verification is also acceptable. This demonstration is for the
infinite time scope property patterns.
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Figure 8. Performance Influence of the Observer-Based Model Checking Method

The same approach allows to demonstrate the performance for the property
patterns in finite time scope, the results are given in Fig. 9. For the page limits,
the analysis is not detailled.

8 Conclusion

The common system time constraint specification and verification methods focus
on the symbolic event-level and have not considered the quantitative time with
tolerance.

This paper focuses on the formal specification and verification methods for
system’s task-level time precedences properties (including synchronization, co-
incidence, exclusion, precedence, sub-occurrence, causality) in both finite and
infinite time scope. It proposes first a method to translate the non-verifiable time
constraint to verifiable time property specifications, which are composed of a set
of verifiable time property patterns. The time property patterns are quantitative
and independent of both the design modeling language and the verification lan-
guage if they provide timed elements, making the translation method reusable.
Then, an observer-based model checking method using Time Petri Nets is used
to assess the time property patterns. The computational complexity and the



15

-10

 0

 10

 20

 30

 40

 0  10  20  30  40  50  60

d
if
fe

re
n

c
e

 t
o

 o
ri
g

in
a

l 
T

P
N

 (
%

)

system scale

Max occurrence count
Min/Max interval

Figure 9. Performance Influence of the Observer-Based Model Checking Method

method’s performance are analyzed. This synchronization properties’ specifica-
tion and verification method has been integrated in a time properties verification
framework for UML-MARTE safety critical real-time systems.

In the future, on the technical side, we will optimize the TPN by finding some
reducible structural patterns without influencing the system. On the application
side, we will apply this approach in the industrial applications, and integrate this
reusable approach into other time properties verification dedicated frameworks.
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