index - Laboratoire de Chimie et Physique Quantiques Accéder directement au contenu

Présentation du LCPQ

Le LCPQ (UMR 5626, Laboratoire de Chimie et Physique Quantique) est un laboratoire de recherche localisé sur le campus de l'Université Paul Sabatier de Toulouse. Il regroupe des chercheurs dont les activités couvrent plusieurs domaines de la Chimie Théorique -essentiellement quantique- et de la Physique Moléculaire Théorique.

Le LCPQ est membre de la Fédération de recherche FeRMI (Fédération de recherche Matière et Interactions - FR2051), anciennement IRSAMC (Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes)..

Avant 2007 =>, voir le Laboratoire de Physique Quantique HAL-LPQ.

 

Vous voulez-déposer un nouveau document ?

 

Consultez la politique des éditeurs en matière d'archivage

 

Derniers dépôts, tout type de documents

Short-range corrections to long-range selected configuration interaction calculations are derived from perturbation theory considerations and applied to harmonium (with two to six electrons for some low-lying states). No fitting to reference data is used, and the method is applicable to ground and excited states. The formulas derived are rigorous when the physical interaction is approached. In this regime, the second-order expression provides a lower bound to the long-range full configuration interaction energy. A long-range/short-range separation of the interaction between electrons at a distance of the order of one atomic unit provides total energies within chemical accuracy, and, for the systems studied, provide better results than short-range density functional approximations.

Continuer la lecture Partager

Electronic resonances are metastable states that can decay by electron loss. They are ubiquitous across various fields of science, such as chemistry, physics, and biology. However, current theoretical and computational models for resonances cannot yet rival the level of accuracy achieved by bound-state methodologies. Here, we generalize selected configuration interaction (SCI) to treat resonances using the complex absorbing potential (CAP) technique. By modifying the selection procedure and the extrapolation protocol of standard SCI, the resulting CAP-SCI method yields resonance positions and widths of full configuration interaction quality. Initial results for the shape resonances of \ce{N2-} and \ce{CO-} reveal the important effect of high-order correlation, which shifts the values obtained with CAP-augmented equation-of-motion coupled-cluster with singles and doubles by more than \SI{0.1}{\eV}. The present CAP-SCI approach represents a cornerstone in the development of highly-accurate methodologies for resonances.

Continuer la lecture Partager

This work examines the reliability of the Self Consistent Charge Density Functional based Tight Binding (SCC-DFTB) scheme to derive geometrical and thermochemistry observables for complexes and clusters made of Ag, C and H atoms. In addition to the currently available DFTB parameterization DFTBhyb, it proposes a new SCC-DFTB parameterization based on DFT Slater Koster integrals and recalibrated on atomic pairs MRCI calculations for clusters made of Ag, C and H atoms. Two sets of parameters were determined, one for restricted open shell SCC-DFTB, the other for spin-polarized SCC-DFTB. These two new sets of parameters, namely DFTB$^γ$ and DFTB$^{γpol}$ respectively, along with DFTB$^{hyb}$ , are first tested on Ag$_n$, Ag$_n$C and Ag$_n$H clusters. A key issue being the transferability of such parameters on different types of Ag-X bonds, the three sets of parameters are then tested on Ag$_m$C$_n$H$_p$ (m=1-3, n=2, p=0-2) complexes involving covalent and π metal-ligand bonds. The particular case of naphthalene C$_{10}$H$_8$ as a πligand is also investigated. In general, with respect to DFTB$^{hyb}$ results, using DFTB$^γ$ parameters leads to an improvement of geometries and energetics. In the case of Ag$_n$C$_{10}$H$_8$ clusters, the role of dispersion is evidenced. However, in a few cases, the geometries may distort due to a questionable description of charge transfer with DFTB$^γ$ and DFTB$^{γpol}$. The spin-polarized version of SCC-DFTB is suited to correctly describe open-shell species with more than one unpaired electron in their ground electronic state but is shown not to improve the results otherwise.

Continuer la lecture Partager

This work addresses a class of conjugated hydrocarbons that are expected to be singlet diradicals according to the topological Hückel Hamiltonian while possibly satisfying full on-bond electron pairing. These systems possess two degenerate singly occupied molecular orbitals (SOMOs), but aromaticity brought by properly positioned six-membered rings does prevent Jahn–Teller distortions. Density functional theory (DFT) calculations performed on two emblematic examples confirm the strong bond-length alternation in the closed-shell solutions and the clear spatial symmetry in the open-shell spin-unrestricted determinants, the latter solution always being found to have significantly lower energy. Since the SOMOs are here of different symmetry, the wave function is free from ionic valence-bond component, and spin decontamination of the unrestricted DFT solutions and wave function calculations at the CASSCF-plus-second-order-perturbation level confirm the expected pure diradical character of such molecules. In contrast to disjoint diradicals, the SOMOs of present systems have large amplitudes on neighbor atoms, and we propose to name them entangled pure diradicals, further providing some prescription rules for their design. Additional calculations point out the qualitative contrast between these molecules and the related diradicaloids.

Continuer la lecture Partager

ipie is a Python-based auxiliary-field quantum Monte Carlo (AFQMC) package that has undergone substantial improvements since its initial release [J. Chem. Theory Comput., 2022, 19(1): 109-121]. This paper outlines the improved modularity and new capabilities implemented in ipie. We highlight the ease of incorporating different trial and walker types and the seamless integration of ipie with external libraries. We enable distributed Hamiltonian simulations, allowing for multi-GPU simulations of large systems. This development enabled us to compute the interaction energy of a benzene dimer with 84 electrons and 1512 orbitals, which otherwise would not have fit on a single GPU. We also support GPU-accelerated multi-slater determinant trial wavefunctions [arXiv:2406.08314] to enable efficient and highly accurate simulations of large-scale systems. This allows for near-exact ground state energies of multi-reference clusters, [Cu$_2$O$_2$]$^{2+}$ and [Fe$_2$S$_2$(SCH$_3$)]$^{2-}$. We also describe implementations of free projection AFQMC, finite temperature AFQMC, AFQMC for electron-phonon systems, and automatic differentiation in AFQMC for calculating physical properties. These advancements position ipie as a leading platform for AFQMC research in quantum chemistry, facilitating more complex and ambitious computational method development and their applications.

Continuer la lecture Partager