Communication Dans Un Congrès Année : 2025

Decoupled Design of Experiments for Expensive Multi-objective Problems

Jürgen Branke
  • Fonction : Auteur
Jonathan Fieldsend
Robin Purshouse

Résumé

In this paper we look at the experimental design for multi-objective problems, where the objectives can be evaluated independently (decoupled) and thus it may make sense to evaluate different solutions for each objective if the objectives have different evaluation costs and/or different landscape characteristics. We propose to iteratively add design points in a way that minimises the total integrated mean squared prediction error assuming a Gaussian process response surface model, and show that allowing decoupled evaluations can lead to significantly better Pareto front estimations than a coupled design of experiments if the evaluation costs of the objectives are different. We also find that our approach of minimising mean squared prediction error yields significantly better results than standard Latin Hypercube designs even if the evaluation costs and landscape characteristics of the objectives are the same.
Fichier principal
Vignette du fichier
Decoupled_hal.pdf (1) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04959599 , version 1 (20-02-2025)

Identifiants

Citer

Mickaël Binois, Jürgen Branke, Jonathan Fieldsend, Robin Purshouse. Decoupled Design of Experiments for Expensive Multi-objective Problems. LION 2024 - Learning and Intelligent Optimization Conference, Jun 2024, Ischia, Italy. pp.37-50, ⟨10.1007/978-3-031-75623-8_4⟩. ⟨hal-04959599⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More