Communication Dans Un Congrès Année : 2024

Improved Algorithms for Contextual Dynamic Pricing

Résumé

In contextual dynamic pricing, a seller sequentially prices goods based on contextual information. Buyers will purchase products only if the prices are below their valuations. The goal of the seller is to design a pricing strategy that collects as much revenue as possible. We focus on two different valuation models. The first assumes that valuations linearly depend on the context and are further distorted by noise. Under minor regularity assumptions, our algorithm achieves an optimal regret bound of Õ(T 2/3 ), improving the existing results. The second model removes the linearity assumption, requiring only that the expected buyer valuation is β-Hölder in the context. For this model, our algorithm obtains a regret Õ(T d+2β/d+3β ), where d is the dimension of the context space.

Fichier principal
Vignette du fichier
Improved_Algorithms_for_Contextual_Dynamic_Pricing.pdf (529.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04887635 , version 1 (15-01-2025)

Licence

Identifiants

Citer

Matilde Tullii, Solenne Gaucher, Nadav Merlis, Vianney Perchet. Improved Algorithms for Contextual Dynamic Pricing. NeurIPS 2024, Dec 2024, Vancouver (BC), Canada. ⟨hal-04887635⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More