Article Dans Une Revue Animals Année : 2022

Estimation of the Maternal Investment of Sea Turtles by Automatic Identification of Nesting Behavior and Number of Eggs Laid from a Tri-Axial Accelerometer

Résumé

Monitoring reproductive outputs of sea turtles is difficult, as it requires a large number of observers patrolling extended beaches every night throughout the breeding season with the risk of missing nesting individuals. We introduce the first automatic method to remotely record the reproductive outputs of green turtles (Chelonia mydas) using accelerometers. First, we trained a fully convolutional neural network, the V-net, to automatically identify the six behaviors shown during nesting. With an accuracy of 0.95, the V-net succeeded in detecting the Egg laying process with a precision of 0.97. Then, we estimated the number of laid eggs from the predicted Egg laying sequence and obtained the outputs with a mean relative error of 7% compared to the observed numbers in the field. Based on deployment of non-invasive and miniature loggers, the proposed method should help researchers monitor nesting sea turtle populations. Furthermore, its use can be coupled with the deployment of accelerometers at sea during the intra-nesting period, from which behaviors can also be estimated. The knowledge of the behavior of sea turtle on land and at sea during the entire reproduction period is essential to improve our knowledge of this threatened species.
Fichier principal
Vignette du fichier
animals-12-00520.pdf (2.54 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-03608056 , version 1 (15-07-2024)

Licence

Identifiants

Citer

Lorène Jeantet, Vadym Hadetskyi, Vincent Vigon, François Korysko, Nicolas Paranthoen, et al.. Estimation of the Maternal Investment of Sea Turtles by Automatic Identification of Nesting Behavior and Number of Eggs Laid from a Tri-Axial Accelerometer. Animals, 2022, Applications of Accelerometers and Other Bio-Logging Devices in Captive and Wild Animals, 12 (4), pp.520. ⟨10.3390/ani12040520⟩. ⟨hal-03608056⟩
213 Consultations
39 Téléchargements

Altmetric

Partager

More