Minimal hypersurfaces asymptotic to Simons cones
Abstract
In this paper, we prove that, up to similarity, there are only two minimal hypersurfaces in $\mathbb{R}^{n+2}$ that are asymptotic to a Simons cone, i.e. the minimal cone over the minimal hypersurface $\sqrt{\frac pn}\mathbb{S}^p\times \sqrt{\frac{n-p}n} \mathbb{S}^{n-p}$ of $\mathbb{S}^{n+1}$
Domains
Differential Geometry [math.DG]Origin | Files produced by the author(s) |
---|